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Calculation of the optical properties of core-mantle spheroids

with non-confocal boundaries of the mantle
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An exact solution to the problem of light scattering by a spheroidal particle with non-confocal layer boundaries is

obtained. The algorithm of the solution presented includes the main achievements of the theory of last years. Using

the procedures for calculating spheroidal functions recently created by van Buren, a program has been developed

that implements the proposed algorithm in the case of two-layer spheroids. The convergence and accuracy of

the solution is investigated for spheroidal particles of 4 types: with the confocal core and envelope, with similar

shapes of them, with the most spherical and the most elongated/flattened shape of the core when the core to

envelope volume ration is constant. Cross sections of two-layer spheroids of these types calculated at high values

of the diffraction parameter (up to xa = 2πa/λ = 120) are considered and compared with the predictions of the

approximate theory of anomalous diffraction. The results of computations of the scattering matrix elements are

also presented. They demonstrate that usually considered confocal layer spheroids well describe only the optical

properties of particles with similar core and shell shapes.
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Introduction

Light scattering by layered spheroidal particles is of

great interest for the study of many practical aspects

associated with inhomogeneity of individual scatterers as

well as of discrete media elements [1–4]. Until recently,

focus has been generally made on layered spheroids with

confocal layer boundaries, i.e. the boundaries that are

the coordinate surfaces in a unified spheroidal coordinate

system. Withdrawal of this restriction is a key factor

enabling particles with essentially different structures to

be addressed — from spheroidal particles with strongly

elongated/flattened cores to particles with almost spherical

cores.

The issue of light scattering by layered axisymmetric par-

ticles, in particular, spheroids, has a sufficiently wide range

of comparably simple and often very useful approximate

solutions [5,6]. The issue may be resolved more accurately

using various numerical methods [7]. These methods have

advantages and disadvantages — more uniform approaches

are generally more expensive. In particular, numerical

methods based on field expansion in basis functions pro-

vide relatively more accurate and quick solutions that are

generally applicable in a wider parameter domain of a

problem, but certainly only for a limited class of scattering

particles [8,9]. Selecting a suitable basis is an important

factor of such methods.

For arbitrary-shaped particles, a spherical basis is gener-

ally used, i.e. fields are written as expansions in spherical

wave functions used for spheres in the Mie theory. Then,

using the extended boundary condition method (EBCM),
the system of integral equations reduces to an infinite

system of linear algebraic equations (ISLAE) for unknown

scattered field expansion coefficients. The relative simplicity

of the used spherical functions has to be compensated

by a comparatively narrow domain of applicability of the

approach, i.e. the particle shape shall not deviate widely

from a spherical one [10]. For example, for layered

spheroids, semi-axes ratio of shells following the arbitrary

core is limited – ai/bi <
√
2 + 1 [11], though for homoge-

neous spheroids (and accordingly for the cores of multilayer

spheroids), the EBCM method with a spherical basis is

applicable at any semi-axes ratio a/b of a particle [12].
These analytically obtained results were supported by the

special calculations performed for small particles in the

Rayleigh approximation [11,12]. For light scattering, these

conclusions are also in full agreement with the numerical

calculations [10,14].

A fuller consideration of the problem geometry involves

the corresponding spheroidal bases, i.e. spheroidal wave

functions shall be used for field expansion. Until recently,
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the focus has been generally made on light scattering by

confocal layered spheroids [15–18]. The differences in

these studies are either in choosing spheroidal wave vector

harmonics (scalar potentials) or in choosing a solution

method (in fact, in the method of transition between layers).
Note that, for layered confocal spheroids, the used EBCM

method and separation of variables method (SVM) are

equivalent from a theoretical point of view [19], because the

problem is solved in a single spheroidal basis, but in view

of numerical implementation there are some differences

between these methods. The numerical simulation has

shown in general that the algorithm proposed in [18] is

the most effective for such spheroids. It is equally suitable

for particles similar in shape to spheres and for needle-

shaped and disc-shaped spheroids, and there is no essential

restriction on the number of layers.

For non-confocal spheroids, an adequately considered

problem geometry involves using different field expansions

in each layer due to the difference of spheroidal systems

associated with layer boundaries. Then, boundary condi-

tions shall be satisfied either in differential or in integral

form within the SVM or EBCM methods, respectively, with

further crosslinking of different expansions of the same

fields. Such problem solution was brought to numerical

implementation only in [20]. The paper generalized

the Mie solution for a multilayer sphere to non-confocal

layered spheroids, but using standard spheroidal wave vector

harmonics for this. The obtained ISLAE for defining

unknown scattered field expansion coefficients is quite

bulky, nevertheless some numerical results were obtained

for two-layer non-confocal spheroids.

The idea of the new approach to an accurate solution

of the problem of light scattering by a layered spheroid

with non-confocal layer boundaries when using spheroidal

bases was proposed and developed in [21]. However,

due to an mistake in the equations, no calculations were

provided in [21] and it was even not clear whether such

approach works and how well it works. In this work,

besides deriving correct equations, the algorithm is changed

in view of the recent improvements in such approaches: new

normalization of spheroidal functions is used, a complex

TE-mode is excluded from consideration, transition to the

T-matrix is made, etc. [22]. Results of the first numerical

calculations are also provided to understand the convergence

and accuracy of the approach, applicability for particles with

diffraction parameters almost from the area of geometrical

optics, and also some identified features of light scattering

by non-confocal two-layer spheroids are shown.

1. Basic relations

1.1. Problem formulation

Consider a two-layer particle whose external (S1) and

internal (S2) shell boundaries are concentrically coaxial

(with a single center line) spheroids with semi-axes a1, b1

and a2, b2 , respectively (Figure 1). The surfaces Si may

k0
k1

k2

S2

S1

z

x

α

Figure 1. Cross-section of a two-layer spheroidal particle with

symbols.

be flattened ( f i = −1) and elongated ( f i = 1), where the

surface number is i = 1, 2. An important particular case —
confocal shell boundaries when the type of spheroidal

surfaces is the same and the inter-focal distances are equal

di = 2

√

a2
i + b2

i (i = 1, 2).

Let the plane wave fall on the particle at the angle α to its

symmetry axis. Permittivity and magnetic susceptibility of

off-particle, particle shell and core media are homogeneous

and equal to ε0, µ0, ε1, µ1 and ε2, µ2. The wave number in

these media — k j = k̃0 m̃j , where k̃0 = 2π/λ is the wave

number in vacuum, m̃j =
√
ε j µ j is the refractive index, the

layer number j = 0, 1, 2.

The coordinate systems are associated with the particle as

follows. The Cartesian coordinates (x, y, z) are chosen so

that the z axis coincides with the particle center line and the

x axis is in the plane that includes the center line and the

wave vector k. Spherical coordinates (r, θ, ϕ) are linked to

the Cartesian ones as usual (see relations (1) to (3) below).
For the particle surface S1 and core boundary S2, the

individual spheroidal coordinates (ξi , ηi , ϕ) are introduced,

where i = 1, 2, therefore

x = r sin θ cosϕ

= di/2 (ξ2i − f i )
1/2 (1− η2i )

1/2 cosϕ, (1)

y = r sin θ sinϕ

= di/2 (ξ2i − f i )
1/2 (1− η2i )

1/2 sinϕ, (2)

z = r cos θ = di/2 ξi ηi (3)
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and Si is the coordinate surface (with the equation

ξi = ξi ,0 = const in the system associated with it). In a

particular case of two-layer confocal spheroids, a single

spheroidal system is sufficient because d1 = d2.

As usual, we will consider the harmonic fields E(r, ω),
H(r, ω), where ω is the frequency, r is the radius-vector [1].
We will divide all fields into two parts, for example,

E( j ) = E
( j )
A + E

( j )
B , (4)

where E
( j )
A is regular in the origin of coordinates, and

E
( j )
B satisfies the radiation condition at infinity, j = 0, 1, 2.

Then an unknown scattered field is Esca = E
(0)
B , and the

incident wave is Ein = E
(0)
A . The field in the particle core

is apparently regular E
(2)
B = 0. As is commonly known,

it is sufficient to consider two incident plane wave cases

when the electric field vector is perpendicular (transverse
electric or TE-mode) and parallel (transverse magnetic or

TM-mode) to the plane that includes the wave vector k and

particle center line z [23].

1.2. Solution method

We will mainly follow paper [21] below by noting

the most important differences from it. In particular,

axisymmetric portion of the fields was additionally identified

in [21], which offers some advantages [24]. However,

following [25], we won’t do this for a more convenient

transition to the standard T-matrix.

The scattered field (and, therefore, all optical charac-

teristics of a spheroid) may be found in different ways,

including several accurate methods based on field expansion

in spheroidal basis. We use EBCM [2]. SVM [2] may

serve as another method, but EBCM is more preferable for

layered scatterers, because it more conveniently considers

boundary conditions than SVM and provides a system of

equations to find the scattered field [21].
In EBCM, the Maxwell equations and boundary con-

ditions reduce to the following equations at each media

boundary (Si , i = 1, 2) [9]:

∇×
∫

Si

ni × E(i )(r′) G(i−1)(r, r′) ds′

− 1

i k̃0εi−1

∇×∇×
∫

Si

ni ×H(i )(r′) G(i−1)(r, r′) ds′

=

{

−E
(i−1)
A (r), r ∈ D i ,

E
(i−1)
B (r), r ∈ R

3 \ D̄ i ,
(5)

where D i — is a domain inside Si , D̄ i is

the closure of D i (includes the domain boundary),
G(i )(r, r′) = exp(ik i |r− r′|)/(4π|r − r′|) is Green’s func-

tion. Equations (5) are obtained using the Stratton–Chu
integral identities. For example, when i = 1, these identities

are written for the incident and scattered light fields E
(0)
A and

E
(0)
B , therefore Green’s function equal to G(0) with the off-

particle medium permittivity ..... is used ε0. By adding these

relations and considering the boundary conditions on the

particle surface, for example, n0 × (E
(0)
A + E

(0)
B ) = n0 × E(1),

the given equations are derived. If i = 2, then integral

relations for the core shall be addressed in a similar way.

All fields and Green’s functions are expanded in series

in some basis and, after substitution of the expansions

into equations (5) and standard conversions, ISLAE in

the scattered (and internal, if required) field expansion

coefficients is derived [9]. Solution of the system enables

any optical characteristics of the spheroid to be calculated.

We’ll use a specific spheroidal basis that is preferable

for spheroidal particles [24]. For nonaxisymmetric portions

of fields in [21], expansions of the following type (for
example, for the TM-mode) were actually used in each

particle domain

E(r) =
∑

ν

(aν N
z
ν(r) + bν N

r
ν(r)) . (6)

Solutions of the Helmholtz vector equation were used here

Ns
ν(r) =

1

k
∇×∇× (ψν(r) s), (7)

where s — is the unit coordinate vector iz and the radius-

vector r for Nz
ν and Nr

ν , respectively, k is the wave number.

Solution of the Helmholtz scalar equation in spheroidal

coordinates was chosen as follows [26]

ψ̄
(q)
ν (ξ, η, ϕ, c) = R(q)

mn(c, ξ) S̄mn(c, η) Fσ,m(ϕ). (8)

Here, ν = {σ,m, n}, where m = 0, 1, ..., n = m,m+ 1, ...,

while σ = e and o, when Fσ,m(ϕ) = c̃m cosmϕ and

c̃m sinmϕ, respectively, c̃m =
√

(2− δm,0)/2π, where

δm,0 is the Kronecker delta symbol. R(q)
mn(c, ξ) are the

q-th kind (q = 1, 3) spheroidal radial functions. c is

equal to kd/2 and −ikd/2 for the elongated and flattened

spheroidal coordinates, respectively, d is the inter-focal

distance, k is the wave number in the medium. Notation

ψ̄
(q)
ν (barred) hereinafter indicates that normalized angular

functions S̄mn(c, η) = Smn(c, η)/Nmn(c) are used, where

Smn(c, η) — are the spheroidal functions, Nmn(c) is the

normalizing constant. These functions may be defined either

according to Flammer SF
mn(c, η) [27], or to Meixner–Schäfke

SMS
mn(c, η) [28], whereby for the normalized functions we

have

1
∫

−1

|S̄F
mn(c, η)|2 dη =

1
∫

−1

|S̄MS
mn(c, η)|2 dη = 1, (9)

i.e. S̄F
mn(c, η) = S̄MS

mn(c, η). Taking into account that the

normalizing constants for the first determination are equal

to Nmn(c), and for the second determination are equal to –
Nmn(0), directly for the functions themselves we obtain

SF
mn(c, η)/Nmn(c) = SMS

mn(c, η)/Nmn(0). (10)
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Figure 2. Notations of c and expansion coefficient vectors in

various areas of the two-layer particle.

For theoretical and numerical analysis of the spheroidal

angular functions, expansion in the associated Legendre

functions is generally used:

SF
mn(c, η)

SMS
mn(c, η)

=

∞
∑

r =0,1

′
dmn

r (c)

dr (c|mn)
Pm

m+r (η). (11)

Taking into account relation (10), from equation (11) we

find

d̄mn
r (c) = dmn

r (c)/Nmn(c) = dr (c|mn)/Nmn(0) = d̄r (c|mn).
(12)

This result is very important for numerical calculations in

the given scattering problem. In the problem solution algo-

rithms used before, the occurring integrals of the products

of the spheroidal angular functions and their derivatives

were represented as series including coefficients dmn
r (c).

Equations (12) make it possible to solve the problem using

a representation of spheroidal angular functions SMS
mn(c, η)

that is more favorable on the computational side, when

the function values are moderate [29]. Moreover, in

contrast with [21], we use normalized angular functions

because this provides additional advantages — undesired

considerable difference between the expansion coefficients

of the spheroidal angular functions in spherical functions is

avoided [30].

Field representation (6) is equivalent to the scalar poten-

tial expansion U,V , if the fields are introduced properly,

i.e.

E = − 1

i εk̃0

∇×∇× (U iz + V r) ,

H = ∇× (U iz + V r) . (13)

For expansion of the potential U,V , we assume that

each media boundary Si (i = 1, 2) is associated by it

own spheroidal system (ξi , ηi , ϕ), and c included in basis

functions (8) depends on the medium parameters. Figure 2

shows notations of c, where ext and int correspond to

the external and internal areas of the coordinate surface

Si (i = 1, 2).

Taking into account the introduced notations, expansions

of U,V may be written as: for incident radiation

U (0)
A

V(0)
A

=
∞
∑

m=0

∞
∑

n=m

a(0),ext
A,mn

b(0),ext
A,mn

R(1)
mn(c

ext
1 , ξ1) S̄mn(c

ext
1 , η1) Fσ,m(ϕ);

(14)
for scattered radiation

U (0)
B

V(0)
B

=

∞
∑

m=0

∞
∑

n=m

a(0),ext
B,mn

b(0),ext
B,mn

R(3)
mn(c

ext
1 , ξ1) S̄mn(c

ext
1 , η1) Fσ,m(ϕ);

(15)
for radiation within the shell (in the coordinate system

associated with S1)

U (1)
A

V(1)
A

=
∞
∑

m=0

∞
∑

n=m

a(1),int
A,mn

b(1),int
A,mn

R(1)
mn(c

int
1 , ξ1) S̄mn(c

int
1 , η1) Fσ,m(ϕ),

(16)

U (1)
B

V(1)
B

=

∞
∑

m=0

∞
∑

n=m

a(1),int
B,mn

b(1),int
B,mn

R(3)
mn(c

int
1 , ξ1) S̄mn(c

int
1 , η1) Fσ,m(ϕ);

(17)
for radiation within the shell (in the coordinate system

associated with S2)

U (1)
A

V(1)
A

=

∞
∑

m=0

∞
∑

n=m

a(1),ext
A,mn

b(1),ext
A,mn

R(1)
mn(c

ext
2 , ξ2) S̄mn(c

ext
2 , η2) Fσ,m(ϕ),

(18)

U (1)
B

V(1)
B

=

∞
∑

m=0

∞
∑

n=m

a(1),ext
B,mn

b(1),ext
B,mn

R(3)
mn(c

ext
2 , ξ2) S̄mn(c

ext
2 , η2) Fσ,m(ϕ);

(19)
for radiation within the core

U (2)
A

V(2)
A

=

∞
∑

m=0

∞
∑

n=m

a(2),int
A,mn

b(2),int
A,mn

R(1)
mn(c

int
2 , ξ2) S̄mn(c

int
2 , η2) Fσ,m(ϕ).

(20)

For the given plane wave falling at the angle α to the

z axis, the expansion coefficients (14) are known. In

particular, for the TM-mode they are equal to

a(0),ext
A,mn = −4i n

k0

√

ε0

µ0

S̄mn(cext
1 , cosα)

sinα
, b(0),ext

A,mn = 0, (21)

where, for example, for the elongated particle cext
1 = k0d1/2.

In contrast with [21], we will consider only the TM-mode

because, as shown in [31], solution of the problem for a

more complex TE-mode easily follows from the solution for

the TM-mode.

1.3. Determining the field expansion coefficients

Substitution of the potential expansions and Green’s

function taking into account (13) into equations (5) for

each boundary (i = 1, 2) gives, after standard conversions,
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a system of linear equations for each azimuthal number

m [21]:





−A(i )
31,m −A(i )

33,m

A(i )
11,m A(i )

13,m





(

Z
(i ),int
A,m

Z
(i ),int
B,m

)

=

(

Z
(i−1),ext
A,m

Z
(i−1),ext
B,m

)

,

(22)

where expansion coefficient vectors are introduced and are

equal to (i = 1, 2; X=A,B)

Z
(i ),int
X,m =

(

x
(i ),int
X,m , y

(i ),int
X,m

)T
,

Z
(i−1),ext
X,m =

(

x
(i−1),ext
X,m , y

(i−1),ext
X,m

)T
(23)

with the following components:

x(i ),int
X,mn = k0 a(i ),int

X,mn R(q)
mn(c

int
i , ξi ,0),

x(i−1),ext
X,mn = k0 a(i−1),ext

X,mn R(q)
mn(c

ext
i , ξi ,0), (24)

y(i ),int
X,mn = k0

di

2
b(i ),int
X,mn R(q)

mn(c
int
i , ξi ,0),

y(i−1),ext
X,mn = k0

di

2
b(i−1),ext
X,mn R(q)

mn(c
ext
i , ξi ,0). (25)

Note that cint
i , cext

i correspond to Figure 2.

As far as the vectors Z
( j ),Y
X,m in equations (22), (23) consist

of two parts, then the matrices A(i )
ik,m also have a block

structure:

A(i )
lk,m =

(

α
(i )
lk,m,1 β

(i )
lk,m,1

α
(i )
lk,m,2 β

(i )
lk,m,2

)

, (26)

where the block components α
(i )
lk,m,s, β

(i )
ik,m,s (s = 1, 2) are

the combinations of spheroidal radial functions and integrals

of the spheroidal angular functions and their derivatives.

In particular, for the TM-mode, the blocks in the first

column A(i )
31 are calculated as follows (i = 1, 2):

α
(i )
31,m,1 = W(m)

i−1 α̃
(i )
31,m,1 = W(m)

i−1

{

R(m)
3,i−1 1

(m)
i−1,i

− εi−1

εi
1

(m)
i−1,i R̃(m)

1,i +

(

µi

µi−1

− 1

)

ξi ,0

×
[

ξi ,0 R(m)
3,i−1 Q(m)

i−1,i − Q(m)
i−1,i

(

I − 2 ξ2i ,0 Q(m)
i ,i

)]

+

(

−εi−1

εi
− 1

)

ξ2i ,0 Q(m)
i−1,i R̃

(m)
1,i

−
(

µi

µi−1

− εi−1

εi

)

f i − ξi ,0

(ξ2i ,0 − f i )
Q(m)

i−1,i E(m)
i ,i

}

, (27)

β
(i )
31,m,1 = W(m)

i−1 β̃
(i )
31,m,1 W(m)

i−1

{(

µi

µi−1

− 1

)

f i ξi ,0

×
[

R(m)
3,i−1 Q(m)

i−1,i + 2 ξi ,0 Q(m)
i−1,i Q(m)

i ,i

]

Ŵ
(m)
i ,i

+

(

εi−1

εi
− 1

)

f i ξi ,0 Q(m)
i−1,i Ŵ

(m)
i ,i R̃(m)

1,i −
(

µi

µi−1

− εi−1

εi

)

× f i

ξ2i ,0 − f i

[(

ξ2i ,0 Q(m)
i−1,i − 1

(m)
i−1,i

)

K(m)
i ,i + Ŵ

(m)
i−1,i

]}

,

(28)
where the matrices R,W and Q are determined below by

relations (36) to (40), and the matrix I is a single one. The

matrices

1
(m)
i−1,i =

{

δ
(m)
nl (cext

i , cint
i )

}∞

n,l=m

,

Ŵ
(m)
i−1,i =

{

γ
(m)
nl (cext

i , cint
i )

}∞

n,l=m

, (29)

Ŵ
(m)
i ,i =

{

γ
(m)
nl (cint

i , cint
i )

}∞

n,l=m

,

K(m)
i ,i =

{

κ
(m)
nl (cint

i , cint
i )

}∞

n,l=m

,

E(m)
i ,i =

{

ε
(m)
nl (cint

i , cint
i )

}∞

n,l=m

(30)

include the following integrals of the normalized spheroidal

angular functions and their derivatives for the arguments

c1 = cext
i or cint

i and c2 = cint
i :

δ
(m)
nl (c1, c2) =

∫ 1

−1

S̄mn(c1, ηi ) S̄ml(c2, ηi ) dηi , (31)

γ
(m)
nl (c1, c2) =

∫ 1

−1

S̄mn(c1, ηi ) S̄ml(c2, ηi ) ηi dηi , (32)

κ
(m)
nl (c1, c2) =

∫ 1

−1

S̄′
mn(c1, ηi ) S̄ml(c2, ηi ) (1− η2i ) dηi ,

(33)

ε
(m)
nl (c1, c2) =

∫ 1

−1

S̄′
mn(c1, ηi ) S̄ml(c2, ηi ) (1− η2i ) ηi dηi .

(34)
Note that S̄mn(c, η), η S̄′

mn(c, η) are even and odd func-

tions η, when n− m is even and odd, respectively. Therefore

for any c1, c2, the integrals δ
(m)
nl (c1, c2) and ε

(m)
nl (c1, c2)

are equal to zero, when n− l is odd, and the integrals

γ
(m)
nl (c1, c2) and κ

(m)
nl (c1, c2) are equal to zero, when n− l

is even.

Integrals (31) to (34) are represented as series, for

example

δ
(m)
nl (c1, c2) =

∞
∑

k=0,1

′

d̄k(c1|mn) d̄k(c2|ml)

× 2

2k + 2m+ 1

(k + 2m)!

k!
, (35)
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where the groove at the summation symbol means that

summation is only over the even values of k, if (n− m)
is even, and vice versa (the same is for (n− l)), which due

to the above-mentioned parity properties of the spheroidal

angular functions.

The spheroidal radial functions are constant in the surface

(ξi = ξi ,0) integrals that initially constitute the matric com-

ponents A(i )
lk , and, therefore, these functions are available

above only in the following diagonal matrices:

R(m)
q,i−1 =

{

R(q)′
ml (cext

i , ξ j ,0)

R(q)
ml (c

ext
i , ξ j ,0)

δnl

}∞

n,l=m

,

R̃(m)
q,i =

{

R(q)′
ml (cint

i , ξi ,0)

R(q)
ml (c

int
i , ξi ,0)

δnl

}∞

n,l=m

, (36)

R̂(m)
q,i (c, ξ) =

{

R(q)
ml (c, ξ) δnl

}∞

n,l=m
, (37)

W(m)
i−1 = −

[

R(m)
3,i−1 − R(m)

1,i−1

]−1

=
{

icext
i (ξ2j ,0 − f j )R

(1)
ml (c

ext
i , ξi ,0) R(3)

ml (c
ext
i , ξi ,0) δnl

}

,

(38)

where R(q)′
ml (c, ξ) – is the derivative of the spheroidal radial

function of the q-th kind.

The other matrices in relations (27), (28) are equal to

Q(m)
i−1,i = Q(m)(cext

i , cint
i )

= 1
(m)
i−1,i Q(m)(cint

i , cint
i ) = 1

(m)
i−1,i Q(m)

i ,i , (39)

Q(m)
i ,i =

[

ξ2i ,0 I − f i

(

Ŵ
(m)
i ,i

)2
]−1

. (40)

Thus, two matrix equations are derived:





−A(1)
31,m −A(1)

33,m

A(1)
11,m A(1)

13,m





(

Z
(1),int
A,m

Z
(1),int
B,m

)

=

(

Z
(0),ext
A,m

Z
(0),ext
B,m

)

(41)
and





−A(2)
31,m −A(2)

33,m

A(2)
11,m A(2)

13,m





(

Z
(2),int
A,m

Z
(2),int
B,m

)

=

(

Z
(1),ext
A,m

Z
(1),ext
B,m

)

.

(42)
It can be seen that an equation is missing that could relate

the vectors (Z
(1),int
A,m , Z

(1),int
B,m )T and (Z

(1),ext
A,m , Z

(1),ext
B,m )T , i.e. the

potential expansion coefficients U (1) and V(1) in the shell in

the coordinate systems related to S1 and S2.

Such relation was found in [32]. In our notations, it is

written as (X = A,B)

a
(1),int
X,m = 5(1)

m a
(1),ext
X,m , b

(1),int
X,m = 5(1)

m b
(1),ext
X,m , (43)

where the matrix components 5
(1)
m = {π(1)

nl,m} are written as

π
(1)
nl,m = i n−l δ

(m)
nl (cint

1 , cext
1 )

=
∞
∑

s=m

i n−l d̄mn
s−m(cext

1 ) d̄ml
s−m(cint

1 ) N2
ms(0). (44)

Hence, taking into account the change of variables (24),
(25), we get

x(1),int
X,mn =

(

R̂q,1(c
int
1 , ξ1,0)

)

5(1)
m

(

R̂q,1(c
ext
2 , ξ2,0)

)−1
x(1),ext
X,mn

= P(1)
q,m x(1),ext

X,mn , (45)

y(1),int
X,mn =

(

R̂q,1(c
int
1 , ξ1,0)

)

5(1)
m

(

R̂q,1(c
ext
2 , ξ2,0)

)−1 d1

d2

y(1),ext
X,mn

= P(1)
q,m

d1

d2

y(1),ext
X,mn . (46)

So,

Z
(1),int
X,m =

(

x
(1),int
X,m

y
(1),int
X,m

)

=

(

P(1)
q,m 0

0 P(1)
q,m

d1

d2

) (

x
(1),ext
X,m

y
(1),ext
X,m

)

= Z
(1),ext
X,m .

(47)
Finally, we get a matrix interconnecting the vectors

Z
(1),ext
X,m and Z

(0),ext
X,m in a relation identical to equation (41),

(

−Ã(1)
31,m −Ã(1)

33,m

Ã(1)
11,m Ã(1)

13,m

)

. (48)

Blocks of this matrix are defined by

α̃
(1)
ik,m,1 = α

(1)
ik,m,1 P(1)

q,m, β̃
(1)
ik,m,1 = β

(1)
ik,m,1 P(1)

q,m
d1

d2

, (49)

α̃
(1)
ik,m,2 = α

(1)
ik,m,2 P(1)

q,m , β̃
(1)
ik,m,2 = β

(1)
ik,m,2 P(1)

q,m
d1

d2

. (50)

Combining all derived equations, we have

(

Z
(0),ext
A,m

Z
(0),ext
B,m

)

=

(

−Ã(1)
31,m −Ã(1)

33,m

Ã(1)
11,m Ã(1)

13,m

)(

−A(2)
31,m

A(2)
11,m

)

Z
(2),int
A,m ,

(51)

, where the matrix blocks A(2)
ik,m shall not be multiplied by

Pq,m, i.e. they are calculated using equations (27), (28).
In [21], the problem solution was correct up to re-

lation (46) and accordingly to the subsequent relations.

The error was caused by a wrong change of variables

in relations (25) in transitions from b( j ),int
X,mn to y( j ),int

X,mn
for j = i and i − 1 (the multiplier di/2 was omitted).
However, the above solution differs from that given in [21]
in many important improvements: a) here we used the

normalized spheroidal angular functions that offer some

advantages during calculations; b) assuming that van Buren
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subroutines are used to calculate the spheroidal functions

determined according to Meixner and Schäfke, we forwent

the determination of these functions according to Flammer

as in [21] (for normalized spheroidal functions, the system

matrix components are changed); c) clearer notations were

introduced in this work (in particular for ci ); d) transition

to the T-matrices was made, which is convenient for some

mass calculations.

1.4. T-matrix and cross-sections

Since the equations underlying the problem solution are

linear, the expansion coefficient vectors of the scattered and

incident radiation are also related linearly by the so-called T-
matrix (transition matrix). In case of spheroids, the T-matrix

is known to be broken into unrelated blocks for different

azimuthal indices m, i.e.

(

ascam

bscam

)

= Tm

(

ainm

0

)

, (52)

where notations .... are introduced for compactness

ascam = a
(0),ext
B,m , bscam = b

(0),ext
B,m , ainm = a

(0),ext
A,m .

An auxiliary matrix T̃m is introduced to relate the

expansion coefficient vectors:

(

x
(0),ext
B,m

y
(0),ext
B,m

)

=

(

T̃11,m T̃12,m

T̃21,m T̃22,m

)(

x
(0),ext
A,m

y
(0),ext
A,m

)

, (53)

where, according to relation (51),

T̃m = −
(

Ã(1)
31,m A(2)

31,m − Ã(1)
33,m A(2)

11,m

)−1

×
(

Ã(1)
11,m A(2)

31,m − Ã(1)
13,m A(2)

11,m

)

. (54)

Taking into account that y
(0),ext
A,m = 0, we have

x
(0),ext
B,m = T̃11,mx

(0),ext
A,m , y

(0),ext
B,m = T̃21,mx

(0),ext
A,m . (55)

Finally, for the T-matrix, we obtain

T11,m =
(

R̂3,m(cint
1 , ξ1,0)

)−1
T̃11,m

(

R̂1,m(cint
1 , ξ1,0)

)

, (56)

T21,m =
(

cint
1 R̂3,m(cint

1 , ξ1,0)
)−1

T̃21,m
(

R̂1,m(cint
1 , ξ1,0)

)

.

(57)
The block matrix T = {Tm}∞m=0 derived above for the

spheroidal basis is transformed to the standard T-matrix

relating the field expansion coefficients in a certain spherical

basis according to the relations given in [25]. The last T-
matrix is widely used for spheroid assemblies because it

enables analytical averaging of cross-sections for them, for

example, in random particle orientation.

For an individual particle, the T-matrix is usually irrele-

vant and is needed to determine the expansion coefficients

of an unknown field. Commonly used attenuation and

scattering cross-sections are calculated using the following

equations

Cext =
4π

k2
0

∞
∑

m=0

∞
∑

l=m

i−(l−1)

(

k0 asca
ml Sml(cosα)

+ ibsca
ml

dSml(cosα)

d cosα

)

sinα, (58)

Csca =
π

k2
0

∞
∑

m=0

∞
∑

l=m

∞
∑

n=m

i (n−l)

{

k2
0 asca

ml (asca
mn)

∗ ω
(m)
ln

+ik0

[

bsca
ml (a

sca
mn)

∗ κ
(m)
ln −asca

ml (bsca
mn)

∗κ
(m)
nl

]

+bsca
ml (b

sca
mn)

∗ τ
(m)

ln

}

,

(59)
where the asterisk means the complex conjugation, asca

ml
and bsca

ml are the components of the vectors ascam and bscam ,

respectively, α is the angle between the wave vector and

spheroid center line. The integral κ
(m)
ln was calculated above

and the other integrals are equal to

ω
(m)
nl (c1, c2) =

∫ 1

−1

S̄mn(c1, ηi ) S̄ml(c2, ηi ) (1− η2i ) dηi ,

(60)

τ
(m)

nl (c1, c2) =

∫ 1

−1

[

S̄′
mn(c1, ηi ) S̄′

ml(c2, ηi ) (1− η2i )

+
m

(1− η2i )
S̄mn(c1, ηi ) S̄ml(c2, ηi )

]

dηi

(61)
and are also represented as series [16].

2. Analysis of the numerical calculation
results

The approach described in Section 1 was implemented as

software written in Fortran 2008. Numerical calculations

used the subroutines for calculation of elongated and

flattened spheroidal functions developed in [29] and suitable

in a wide range of problem parameters, in particular, for

the diffraction parameter xa = 2πa/λ ≤ 300, where a is the

semi-major axis of the spheroid. For such large particles, the

geometrical optics approximation may be often used [25].
For relatively small two-layer spheroids with a confocal core

that have xa ≤ 50, optical properties were addressed in [16].

2.1. Description of particle structure

The main focus in this work is made on the analysis

of numerical calculations of the attenuation, scattering and

absorption cross-sections for two-layer particles with differ-

ent internal structures. To compare the optical properties

of such particles, scatterers with identical external surfaces

will be considered, i.e. with fixed semi-axes a1 and

b1. Moreover, fixed ratio of the particle volume to the

core volume will be taken, for example, V1/V2 = 2 (in
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other words, the shell and core volumes will be equal).
In this case, it is natural to use the same cross-section

normalization:

C̄ = C/πr 2V, (62)

where Cext and Csca are calculated using equations

(58), (59), and the absorption cross-section is equal

to Cabs = Cext −Csca. The equivoluminar sphere radius

rV depends on the particle shape: rV = (a b2)1/3 and

rV = (a2 b)1/3 for the elongated and flattened spheroids,

respectively.

Four types of two-layer scatterers whose cores are

confocal, similar, sphere-shaped and most elongated or

flattened. In the latter three cases, focuses of the internal

spheroids do not coincide with the focuses of the external

spheroidal shell. Note that hereinafter dimensionless linear

particle parameters are used for convenience: xa = k0 a and

xb = k0 bas well as xV = k0 rV .
When considering the two-layer confocal spheroid, the

known particle surface coordinate ξ1,0 and the core and

particle volume ratio kV = V2/V1 may be used to find

the core surface coordinate by numerical solution of the

third-order algebraic equation [16]. For the elongated

spheroids in accordance with the Banach theorem, the

converging sequence will be obtained using an ordinary

iterative method:

(ξ2,0)n+1 =
[

(ξ2,0)n + kV

(

ξ31,0 − ξ1,0
)]1/3

, (63)

where n = 0, 1, 2, ... and (ξ2,0)0 = ξ1,0 .

For the flattened spheroids, use the Newton method (i.e.
the tangent method):

(ξ2,0)n+1 =
2 (ξ32,0)n + kV

(

ξ31,0 + ξ1,0
)

3 (ξ22,0)n + 1
, (64)

where n = 0, 1, 2, ... and (ξ2,0)0 = 0. With the fixed core

and volume ratio, the particle surface coordinate may be

found using equations (63), (64) after substitution ofξ2,0
forξ1,0, of ξ1,0 for ξ2,0 and of kV for k−1

V .

For spheroids with similar layer boundaries, the relation

between the core and particle semi-axes may be written as

follows: k0 a2 = k0 a1
3
√

kV, k0 b2 = k0 b1
3
√

kV both for the

elongated and flattened spheroids.

For the flattened particles, the core will have a

shape as close to a sphere as possible, if the semi-

minor axis of the core is close to the semi-minor

axis of the shell, or example, k0 b2 = 0.99 k0 b1.

The semi-major axis is determined from the fixed

volume condition k0 a2 = kV k0 a1 (k0 b1)
2/(k0 b2)

2.

For the flattened particles, we will similarly obtain

for a sphere-shaped corek0 b2 = 0.99 k0 b1 and

k0 a2 = kV[(k0 b1 (k0 a1)
2/k0 b2]

1/2.

For the fourth type of particles, the most elongated

core is calculated using equations k0 a2 = 0.99 k0 a1 and

k0 b2 = kV[k0 a1(k0 b1)
2/k0 a2]

1/2. For the flattened parti-

cles, we will similarly obtain for the most flattened core

k0 a2 = 0.99 k0 a1 and k0 b2 = kV k0 b1(k0 a1)
2/(k0 a2)

2.

Table 1 and 2 show the parameters of the examined

elongated and flattened particles having the same maximum

linear diffraction parameter xa1
= k0 a1 = 40, as well as the

same external surface semi-axes ratio a1/b1 = 2.

Note that the central cross-sections of these elongated and

flattened scatterers coincide. The difference is in that, to

obtain the whole particle, the cross-sections shall be rotated

about the major axis in the first case and about the minor

axis of the external ellipse in the second case.

2.2. Validation of numerical calculations

Within the chosen solution method, electromagnetic fields

are represented as infinite series in the chosen spheroidal

bases that to the most extent correspond to the problem

geometry (in contrast with the spherical basis). Due to

this, the validity of obtained numerical results depends on

the number of considered terms in these series. As shown

before [16], this is the largest particle size together with

refractive index (in this case for the non-absorbing particle

shell and core it is equal to m1 = 1.3 and m2 = 1.5, re-

spectively) that defines the sufficient number of considered

terms Nmax over the index n for high-accuracy cross-section

calculation. This result has been obtained for relatively small

particles with xV1
≤ 50. Quite large particles are addressed

here, and the above-mentioned statement remains valid

considering Nmax = m2 xa1 + 4. For the above eight particles

(Table 1, 2) that have the internal structure with significantly

different shape, the number of considered terms shall be

equal to Nmax = 64. The number of terms Mmax over m is

usually about Nmax/2 and is defined by the consideration of

the convergence of results with increasing number of terms

over m [33].
Figure 3 shows a relative computational error of nor-

malized cross-sections δN = |C̄(Nmax) − C̄(N)|/C̄(Nmax) for

the above-mentioned types of particles depending on the

number of N (Nmax = 96was chosen for reliability of

results). In this case, the relative computational error of

cross-sections varies from 10−9 − 10−10 for the flattened

and elongated spheroidal particles with confocal or similar

core to 10−6 − 10−8 for particles with sphere-shaped or

very elongated (flattened) core. The curves in figures

break off in case when the next point corresponds to

computer zero. Note that the convergence rate is relatively

weakly dependent on the core shape (elongated or flattened,

confocal or similar), if it differs in shape from the shell not

too much. The worst convergence is observed in extreme

cases (sphere-shaped, maximum elongated or maximum

flattened), when the core surface approaches very closely

to the shell surface. This effect is the most vivid for a very

flattened core because it is
”
two-dimensional“ in nature in

contrast with the elongated particles for which the proximity

is observed in one direction.

Table 3 shows the normalized cross-sections for four

types of considered elongated particles (for the flattened

particles, the situation is similar). Pursuant to the law of

conservation of energy, equality of C̄ext and C̄scais true for
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Table 1. Parameters of the spheroidal cores of the two-layer elongated spheroidal particles with the fixed external surface

(a1/b1 = 2, xa1 = k0a1 = 40, xV1 = 21/3k0b1 = 25.1984) and fixed core volume

Core shape xa2 = k0a2 xb2 = k0b2 a2/b2 xr 2 = k0r V2 xd2 = k0d2/2

Most elongated 39.6 14.2134 2.7861 20 36.9613

Confocal 37.5890 14.5920 2.5760 20 34.6410

Similar 31.7480 15.8740 2 20 27.4946

Sphere-shaped 20.4061 19.8 1.0306 20 4.9365

Table 2. The same as in Table 1, but for the flattened spheroids at xV1 = a1/2
1/3 = 31.7480

Core shape xa2 = k0a2 xb2 = k0b2 a2/b2 xr 2 = k0r V2 xd2 = k0d2/2

Most flattened 39.6 10.2030 3.8812 25.1984 38.2630

Confocal 36.6373 11.9200 3.0734 25.1984 34.6440

Similar 31.7480 15.8740 2 25.1984 27.4946

Sphere-shaped 28.4267 19.8 1.4357 25.1984 20.3970
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Figure 3. Convergence of the dimensionless attenuation cross-section for different types of two-layer flattened (a) and elongated (b)
spheroidal particles (Tables 1, 2) with growth of the number of considered field expansion terms N. Radiation falls parallel to the particle

center line (α = 0), the refractive indices of the particle shell and core arem1 = 1.3 and m2 = 1.5, respectively, xa1 = 40.

non-absorbing particles with the absorption cross-section

C̄abs = C̄ext − C̄sca = 0, which traditionally serves as the

estimation of the absolute computational error of cross-

sections. Note that the maximum number of terms in

Table 3 was increased toNmax = 96 in order to decrease

the error to 10−9 for any particles. When analyzing, it

is easy to see that, though the convergence rate of cross-

section calculations decreases considerably for particles with

extreme cores, the relative error becomes rather high, about

10−9, when the number of considered terms increases up to

Nmax = 96. At the same time, to achieve very high accuracy

of about 10−10 for particles with confocal or similar cores,

the one-half lower number of terms is sufficient, as proposed

before: Nmax = 64.

When the plane electromagnetic wave falls along the two-

layer particle center line (α = 0), orientation of the electric

field strength vector does not affect the cross-sections, i.e.

their values or the TM- and TE-type waves shall coincide
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Table 3. Normalized attenuation (ext), scattering (sca) and absorption (abs) cross-sections for two-layer elongated

spheroidal particles for the TM- and TE-modes with the different number of considered field expansion terms N
(a1/b1 = 2, α = 0, xV1 = 25.198421, xV2 = 20,m1 = 1.3,m2 = 1.5)

N C̄TM C̄TE

ext sca abs ext sca abs

a2/b2 = 2.7861

40 1.71E+00 5.13E+01 -4.96E+01 7.66E+00 1.21E+04 -1.21E+04

60 1.87E+00 1.87E+00 -4.24E-08 1.87E+00 1.87E+00 6.03E-08

80 1.87E+00 1.87E+00 -8.62E-11 1.87E+00 1.87E+00 -8.62E-11

96 1.87E+00 1.87E+00 -8.36E-11 1.87E+00 1.87E+00 -8.36E-11

a2/b2 = 2.5760

40 1.83E+00 2.61E+00 -7.77E-01 1.28E+00 7.36E+01 -7.23E+01

60 1.93E+00 1.93E+00 -8.62E-11 1.93E+00 1.93E+00 6.51E-08

80 1.93E+00 1.93E+00 -8.62E-11 1.93E+00 1.93E+00 -8.62E-11

96 1.93E+00 1.93E+00 -8.62E-11 1.93E+00 1.93E+00 -8.62E-11

a2/b2 = 2

40 1.62E+00 1.70E+00 -7.46E-02 7.76E+00 5.07E+02 -5.00E+02

60 1.63E+00 1.63E+00 -7.34E-11 1.63E+00 1.63E+00 1.76E-08

80 1.63E+00 1.63E+00 -7.30E-11 1.63E+00 1.63E+00 -7.30E-11

96 1.63E+00 1.63E+00 -7.30E-11 1.63E+00 1.63E+00 -7.30E-11

a2/b2 = 1.0306

40 1.41E+00 9.43E+00 -8.02E+00 -1.31E+00 2.27E+03 -2.27E+03

60 1.44E+00 1.44E+00 -7.73E-06 1.44E+00 1.44E+00 -7.72E-06

80 1.44E+00 1.44E+00 -4.59E-11 1.44E+00 1.44E+00 -4.59E-11

96 1.44E+00 1.44E+00 -1.36E-10 1.44E+00 1.44E+00 -1.36E-10

completely: C̄TM = C̄TE . As far as the proposed equations

for calculation of the optical properties of particles differ

considerably from each other for these two types of incident

radiation polarization, then this equality is a very good

check for numerical calculations. In the considered cases,

the check gives the required results with high accuracy as

specified above.

With oblique radiation incidence of the plane wave,

the scattering problem is solved independently for each

azimuthal index m due to the commutativity of the rotation

operator and the operator corresponding to this problem.

Then the results shall be summarized over m with the

corresponding series being infinite, but the numerical

calculations consider a sufficient though finite number of

Mmax (similar to Nmax for n). In [16], convergence of the

corresponding numerical results was reviewed and it was

found that the sufficient number of terms increases as the

particle volume and the refractive index of both the shell and

core grow. With the same dimensions and semi-axes ratio,

the number of Mmax for the elongated particles is multiple

time lower than for the flattened ones, and the multiplier

is close to a/b. Our calculations for much larger particles

have proved these conclusions.

2.3. Calculation of attenuation and scattering

factors

To analyze the effects of radiation attenuation, scattering

and absorption by the two-layer spheroidal particles depend-

ing on their size up to geometric-optical limits, it is natural

to use the efficiency factors

Qx = Cx/G, (65)

where G is the geometric cross-section of the ex-

ternal spheroid, and x = ext, sca or abs. When

the plane wave falls at the angle α to the parti-

cle center line G(α) = πb1 (a2
1 sin

2 α + b2
1 cos

2 α)1/2 and
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Figure 4. The attenuation efficiency factors Qext for various types of two-layer elongated spheroidal particles (Table 1) depending on

the linear diffraction parameter xa1 with the parallel radiation incidence (α = 0) and refractive indices of the shell m1 = 1.3 and core

m2 = 1.5.

G(α) = πa1 (a2
1 cos

2 α + b2
1 sin

2 α)1/2 for the elongated and

flattened spheroids, respectively. Note that for the parallel

incidence in the first case G(0) = πb2
1, and in the second

case G(0) = πa2
1, while for the perpendicular incidence

G(90) = πb1a1 in both cases.

Relation between the normalized cross-sections and effi-

ciency factors is defined only by the geometrical parameters

of the external shell and the angle of incidence of the plane

wave α:

C̄ =
C
πr 2v

=
(ξ21 − f cos2 α)1/2

[ξ41 (ξ21 − f )]1/6
Q, (66)

where f = 1 and f = −1 for the elongated and flattened

spheroids, respectively. It follows that the conversion factor

for the parallel incidence and perpendicular incidence is

equal to (a1/b1)
−2 f /3 and (a1/b1)

f /3, respectively. It

follows from the above considerations that, for the given

particles with a fixed shell, the normalized cross-sections

and effective factors have the same dependence on x.

Figures 4 to 7 show that the general behavior of the

dependence of Q on the linear diffraction parameter is

equivalent to that for homogeneous particles. Alternation of

large-scale peaks and valleys results from the interference

between the incident and directly transmitted radiation.

In the first approximation, this phenomenon, including

the extreme values may be described using abnormal

diffraction [1]. Peak positions are defined by the phase shift

of the central beam

8 = 2(l1 − l2)|m1 − 1| + 2l2|m2 − 1|, (67)

where 2(l1 − l2) and 2l2 are the beam paths (measured

in the dimensionless quantities x) in the shell and core,

respectively. The oscillation period may be evaluated from

19 = 2π.

In case of the parallel radiation incidence for the two-layer

particles with the most elongated core, the central beam

propagates almost only in the core, therefore the equation

for the oscillation period is written as 2T|m2 − 1| ≈ 2π,
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Figure 5. The same as in Figure 4, but for the two-layer flattened spheroidal particles (Table 2).

i.e. in our case T ≈ 2π. The curves in Figure 4 show

that, excluding the particles with the sphere-shaped core

(Figure 4, c), 8.5 and 11.5 periods fall on segments [20,80]

and [40,120], respectively. Thus, the theoretical evaluation

in the first approximation gives T ≈ 6.3, and the direct

numerical calculation gives only 10% more: T ≈ 7.0, which

may be considered as a satisfactory agreement. Note that,

for the elongated spheroids at α = 0 , equation (67) predicts

an approx. 1.25 times longer period for the particles with

the sphere-shaped core than for those with a very elongated

core, which is generally observed in Figure 4.

For the flattened particles, the semi-major axes shall

be replaced with semi-minor axes in this case, i.e.

l1 = xb1
, l2 = xb2

. Since the curve in Figure 5 is plotted

depending on the dimensionless linear diffraction parameter

xa1
, then the oscillation period increases by a1/b1 = 2

times. Direct counting on the same segments shows that

the number of periods for the flattened particles (Figure 5)

is twice as small as for the elongated particles.

In the perpendicular incidence (α = 90), the oscilla-

tion behavior is inverted because now or the elongated

particles l1 = xb1
, l2 = xb2

, and for the flattened particles

l1 = xa1
, l2 = xa2

. As a result, the number of extreme

values for the flattened particles is twice as large as for

the elongated ones, and the number of peaks and valleys

remains the same, i.e. 14 of both on segment [0, 100]
(Figure 4 and 6). Moreover, even the extreme positions

on the x axis vary insignificantly. If the incident plane

wave propagates at an angle to the particle center line,

then the Te- and TM-type waves are considered depending

on the orientation of the electric field strength vector . In

Figure 6, the corresponding lines almost merge with each

other having the highest differences on segment [0, 10].

This result is supported by more detailed calculations for

small particles [16]. This paper also provides a convenient

model for a two-layer spheroid in the form of a homoge-

neous spheroidal particle with the effective refractive index

mef = [m1(V1 −V2) + m2V2]/V1 that is doing well at the first

stage, i.e. until the first peak.
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Figure 6. The same as in Figure 4, but with perpendicular incidence (α = 90◦) for the TM- and TE-modes.

The issue of geometric-optical limit of the attenuation

efficiency factor for two-layer spheroidal particles is of

interest. The given figures show that in accordance with the

theory Qext → 2 at xa1
→ ∞ for dielectric particles and also

for particles with an absorbing core (Figure 7). Whereas in

the latter case this conclusion is clear, for dielectric particles

the presence of a priori known geometric-optical limit is

masked by oscillations that achieve their highest value for

the elongated particles in the parallel radiation incidence.

In general, convergence on the valleys to the limit is quite

clearly pronounced, and for the peaks this trend is well

traced considering the above-mentioned remark.

For two-layer spheroids with the absorbing core, behavior

of the attenuation efficiency factor on the first third of the

given particle size variation interval is the same as for the

equivalent dielectric particles. The main difference is in

the fact that the factor oscillations attenuate fast enough,

i.e. they are almost absent at xa1
≥ 50 (Figure 4). Here, a

conclusion may be made that the influence of core shape on

the attenuation, scattering and absorption efficiency factors

is quite weak.

2.4. Influence of the core shape on the particle

scattering matrix

In some provisions of the light scattering theory, besides

the integral optical characteristics of scatterers (various

cross-sections ,etc.), differential characteristics (scattering

matrix , etc.) appear to be important. We have considered

the scattering matrix component variations for two-layer

spheroids with core shape variation. Some results of such

calculations Some results of such calculations are given in

Figure 8 that shows the components of the 4×4 scattering

matrix F11, F21 (determined according to [1]) depending on

the angle θ (the scattering angle is equal to θ − α) in

the planes φ = 0 or 90◦ for the elongated spheroids with

xV1
= 3, the particle surface semi-axes ratio a1/b1 = 2 and

shell-to-core volume ratio (V1 −V2)/V2 = 2 in the oblique

radiation incidence to the particle center line (α = 45◦).

The refractive indices of the core (m2 = 1.5 + 0.01i ) and

the shell (m1 = 1.3) are typical for contaminated silicates

and water ice in the visible spectrum.
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Figure 7. The same as in Figure 4, but for the attenuation and scattering efficiency factors Qext and Qsca , respectively, in case of an

absorbing core with the refractive index m2 = 1.5 + 0.05i .

Figure 8 shows that for spheroids whose size is compa-

rable with the wavelength (rV ∼ λ), the core shape almost

does nor affect the indicatrix (F11), but changes greatly the

orientation and degree (F21/F11) of polarization of radiation

scattered at large angles (the plane with φ equal to 0

includes the particle center line and wave vector). The

particles with confocal and similar core and shell have quite

similar indicatrix (and polarization).

We have also considered two-layer spheroidal particles

whose core shape and relative volume did not changed, but

the shell shape varied. Some results are shown in Figure 9

that gives the data for the two-layer elongated spheroids

with the same core and shell volumes for the plane φ = 90◦

(the rest parameters are as shown above). Apparently, the

differences in polarization (F21/F11) observed in the figure

for particles with different shell shape are not significant

because they will be smoothed by the particle distribution

by orientations and seizes that is expected in practice. On

the other hand, the shell shape changes considerably the

fraction of radiation scattered at large angles.

Thus, non-confocality of the core and shell of the two-

layer spheroids may induce significant effects in optical

properties of such scatterers. Such effects are fundamentally

ignored when using a confocal spheroid model widely used,

for example, in astronomy.

3. Conclusion

The problem of light scattering by the spheroidal particle

with non-confocal layer boundaries has been effectively

solved for the first time using the field expansion in

spheroidal bases. A solution algorithm provided includes

the main recent theoretical achievements: employment

of a new spheroidal function normalization, exclusion

of the complex TE-mode from consideration, transition

from the spheroidal T-matrix to a regular spherical one,

etc.

Using the procedures for spheroidal function calculation

that had been recently created by van Buren, a program

was written to implement the proposed algorithm in case

of two-layer spheroids. Convergence and accuracy of the
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solution have been investigated for spheroidal particels with

four types of codes: confocal to the shell, similar to the shell,

most sphere-shaped and most elongated/flattened with the

specified particle shape and core-to-shell volume ratio.

Cross-section calculation data for the two-layer spheroids

of the specified types with high diffraction parameter values

(up to xa = 2πa/λ = 120) has been reviewed. Similar

numerical results for layered spheroids has been compared

with approximate abnormal diffraction theory. Calculations

of the scattering matrix components are also provided

to show that the usually addressed layered spheroids

with confocal layer boundaries describe well the optical
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properties of only those particles whose core and shell are

similar in shape. It is noted that new optical effects may be

also observed for two-layer spheroids of another type, i.e.

for particles with the same core shape, but different shell

(particle) shape.
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