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Integral area of charges for a given distribution of electric area of pulses
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A general solution to the problem of determining the electric charge density distribution in a vacuum that

provides a given spatial distribution of the electric pulse area is presented and discussed. An example of charge

distribution for obtaining a spherically symmetric distribution of the electric area is given.
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Generation of increasingly shorter pulses necessary to

control transient processes is one of the most fast-moving

modern laser physics and nonlinear optics areas as it

appears from the Nobel Prize 2023 [1]. The main method

here is the coherent addition of many optical harmonics,

i.e. radiation spectrum expansion. Transition into the high-

frequency spectrum range also facilitates pulse duration

reduction. Thus, a pulse duration of 43 as was successfully

achieved in the X-ray range [2].

The so obtained pulses contain numerous field oscilla-

tions (cycles) during which the orientation of the electric

strength E varies significantly. The electric area for them is

accordingly close to zero

SE(r) =

∫

E(r, t)dt, (1)

where r is the radius vector and t is the time. Note that

this value is named
”
time integral of field“ in book [3] and

then in [4] and many other further papers. At the same

time, another option for pulse reduction is possible reducing

the number of cycles up to the limit — one half-cycle

(unidirectional pulse). The electric area for such pulses is

already nonzero. This is very important, because it means

that a mechanical pulse proportional to the electric area may

be transmitted by the shortest possible pulses to electric

charges interacting with radiation.

Various methods for generating pulses with nonzero

electric area, that will be called unidirectional pulses, are

discussed in [5]. Solution of the problem of determining

the electric area of a pulse generated at the pre-defined

charge motion in vacuum is described in [6], see also [7,8].
This paper focuses on the inverse problem — determination

of distribution of electric-charge density that ensures the

required spatial distribution of the electric area of pulses.

We shall specify in advance that not any distributions of

electric area are allowable. Actually, they shall first satisfy

the general relation expressing a vortex-free nature of the

electric are field [7,9]

rot SE = 0. (2)

Then, it is reasonable that we will be interested in charge

distributions localized in a finite spatial domain. The

analysis shows that for them the far-field electric area at

distances R that are much longer than the localization

domain sizes shall decrease not slower than R−3 [7,10].
At the specified restrictions, solution of the formulated

problem is given by [6,7]

div SE = 4π Q, (3)

where the integral charge density is introduced

Q(r) =

∞
∫

−∞

ρ(r, t)dt (4)

(ρ(r, t) is the charge density). Note that from (3) and

from charge conservation it follows that the system shall be

generally charge-neutral

q0 =

∫

ρ(r, t)dr = 0. (5)

Therefore, the system shall contain both positive and

negative charges (ions).
One of the types of electric area distributions for which

condition (2) is met automatically is the radially symmetric

distribution with a single nonzero radial component in the

spherical coordinate system:

SE =
(

SE,r(r), 0, 0
)

.

Whereby the integral charge density is spherically symmet-

ric:

Q(r) =
1

4πr2
d
dr

(r2SE,r). (6)

For example:

SE,r = S0r
n exp(−αr2), n ≥ 1. (7)

599



600 N.N. Rosanov

0 1 2 3
0

0.6

0.2

0.8

0.4

a

r
0 1 2 3

–0.5

0.5

1.0

n = 1 

n = 2

n = 3

n = 5

n = 7

0

b

r

0
n = 1 

n = 2

n = 3

n = 5

n = 7

QS
E

Normalized profiles of the radial component of electric area of pulse written as (7) (a) and of the corresponding electric charge density (b);
radius r in terms of α−1/2.

The radial component of electric area is sign-constant and

positive provided that S0 > 0. The maximum value is

reached at αr2max = n/2, with

max SE,r = S0[n/(2α)]n/2 exp[−n(r/rmax)
2/2]. (8)

Normalized-to-maximum distributions of this component are

shown in Figure 1, a at several values of n. According to (6),
such distribution of electric area is formed with the integral

charge density distribution

Q(r) =
S0

4π
[(n + 2) − 2αr2]rn−1 exp(−αr2). (9)

Positive (r < r0) and negative (r > r0) charges are sepa-

rated by a sphere with radius

r0 =
√

(n + 2)/(2α),

that grows with n. The profiles have their valley and peak,

respectively, at

αr2± =
1

4

(

2n + 3±
√
8n + 17

)

. (10)

The normalized-to-maximum distributions of the radial

component of electric area corresponding to the integral

charge density profiles in Figure a are also shown in

Figure b. The figure shows that the positive charge at

n = 1 is concentrated in the central region, and as ngrows —
the positive charge is concentrated in the spherical layer of

increasingly larger radius.

The approach described herein does not fix the electric

current density structure and does not allow us to determine

the duration and shape of the generated pulses. To find

complete electric and magnetic strength behavior, complete

system of Maxwell equations shall be solved [11].
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