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In the Fresnel approximation, an analytical model of a Gaussian laser beam with random phase distortions of

the field has been developed. It is accepted in the work that random phase distortions of the field are distributed

according to the normal law, statistically homogeneous and isotropic. The propagating beam is represented by the

sum of two components: diffraction-limited and partially coherent (scattered by phase inhomogeneities). In turn,

the partially coherent component is represented by the sum of statistically independent subbeams, each of which

has a zero average statistical field. The distribution of subbeams by radiation power is related to the dispersion

of phase distortions. The study of the spatial structure of subbeams was carried out using the methods of the

theory of spatial moments. Analytical relations have been obtained and studied that uniformly approximate the

distribution function of the average statistical radiation flux depending on the size of the receiver and the distance

to the observation plane without restrictions on the amplitude and scale of random phase distortions of the field.

The research results can be used in the development and optimization of laser transceiver optical systems, in

methodologies for measuring the parameters and quality of laser beams.
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component, axial intensity, beam width.
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1. Introduction

Spatial energy characteristics of a laser beam depend

considerably on phase distortions (PD) of the field [1].
PD sources are active medium nonuniformities within a

laser resonator [2,3], manufacturing errors and roughness [4]
of beam shaping optics mirrors, laser beam propagation

medium nonuniformities [5], etc. Due to this fact, theo-

retical and practical interest in the development of receiv-

ing/transmitting laser systems is associated with the investi-

gations of intralaser output radiation deformations [2,3,6,7],
phase structure features of the field [6,7], spatial energy

structure of the propagating laser beam [6–12]. Analytical

research methods for investigating laser optical systems

considering deterministic aberration and diffraction defor-

mations (PD) of a laser beam are summarized in [6,10,11].
Note that due to the lack of information and problems

of describing the field PD sources, influence of the PD

sources is often considered using statistical models. In

this case, statistical approach to the field PD description

allows an in-depth analysis to be performed to investigate

the main characteristics of the formed radiation considering

all features of the receiving/transmitting optical systems [7–
9].
However, analytical studies of beams with random PDs

are generally restricted [8,9] to a limiting case of PD

with small measurement amplitude. The objective of the

study is to develop an analytical model and analytical

investigations of an average spatial energy structure of

a propagating laser beam without restrictions on the

amplitude and scope of variation of random field PDs.

Modeling was performed using a laser beam representation

in the form of a sum of two statistically independent

components — diffraction-limited and partially coherent

(scattered by phase nonuniformities) components with zero

average value. In diffraction approximation using the spatial

moment theory methods [11,12] (for propagating laser

radiation intensity distribution), analytical relations were

derived and investigated for uniform approximation of the

average radiation flux distribution function depending on

the receiver sizes and distance to the observation plane.

2. Basic equations

Field distributions U0(ρ) of the radiation intensity I0(ρ)
and power flux W0(ρ) for the Gaussian beam in the absence

of PD are written as:

U0(ρ) =

√

4

π
exp(−2ρ2),

I0(ρ) =

(

4

π

)

exp(−4ρ2),

W0(ρ) = 1− exp(−4ρ2). (1)

Here, the vector ρ = r/a , r is the radius vector of the

point in the output aperture plane, a is the beam radius.
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Then the propagating beam characteristics are examined in

a cylindrical coordinate system. The Z axis of this system

coincides with the optical axis and ρ = (x , y) is the radial

vector, ρ = |ρ|.
Considering the field PDs concentrated in the output

aperture plane of the optical system, the kernel of the

distribution integral in the Fresnel approximation [1] is

written as:

H(ρ1, ρ) = (−iNz )

× exp

{

iπ

[(

2z
λ

)

+Nz (ρ1 − ρ)2−N f ρ
2
1

]}

exp(iϕ(ρ1)).

(2)
Here, Nz = a2/(λz ) and N f = a2/(λ f ) are the Fresnel

numbers, λ is the radiation wavelength, z is the distance

to the observation plane, f is the focal distance; ϕ(ρ1) —
is the field PD function. In expression (2), ρ1 in the output

aperture plane, ρ is in the observation plane.

The field phase distortion function ϕ(ρ) = 2πL(ρ)/λ,
L(ρ) is the corresponding geometrical wave surface [1].
Statistical characteristics of ϕ(ρ) will be taken as fol-

lows: average PD is equal to zero, ϕ(ρ) = 0; symbol

(...) hereinafter denotes the statistical averaging operation;

dispersion σ 2 = ϕ2(ρ) is homogeneous; correlation factor

is isotropic and equal to K(ρ) = exp(−ρ2/c2), c = Cϕ/a is

the normalized correlation radius, Cϕ is the correlation

radius. The field correlation function is written as

Ŵ(ρ1, ρ2) = exp{i[ϕ(ρ1) − ϕ(ρ2)]}

= exp{−σ 2[1− K(ρ1 − ρ2)]}, (3)

where ρ1,2 are the points in the output aperture plane z = 0.

Find the intensity distribution function I(ρ) in the z
plane. For this, substitute correlation function (3) as Taylor’s
series in σ 2K(ρ) into average intensity expression [1].
Considering (1) and (3) for I(ρ), the following can be

derived

I(ρ) = exp(−σ 2)

∞
∑

n=0

σ 2nI(ρ/ηn)

n!η2n
,

ηn =

√

1 +
n
c2

z
, (4)

where

I(ρ) =

(

4

πρ2
z

)

exp

[

−4

(

ρ

ρz

)2
]

(5)

— is the intensity distribution in the z plane in the absence

of PD;

ρz = s z

(

2

πNz

)

, s z =

√

1 +
[π

2
(Nz − N f )

]2

, (6)

ρz — is the beam radius without PD; cz = cs z is the

effective correlation radius in the z plane; cz is minimum in

focus, c f = c . Relations (3)−(5) imply that the full power

of the Gaussian beam is equal to 1 and does not depend on

the distance z to the observation plane.

The axial intensity I(0) and Strehl number [1] St for the

beam formed in the z plane are equal

I(0) = St

(

4

πρ2
z

)

, St = 1F1(1; 1 + c2
z ;−σ 2), (7)

where 1F1(. . .) is the degenerate hypergeometric func-

tion [13]. With σ 2 ≪ 1, St ≈ exp[−σ 2/(1 + c2
z )].

From equation (4), we derive the expression for the

average radiation flux through a round receiving plate with

the radius ρ:

W (ρ) = exp(−σ 2)

∞
∑

n=0

(σ 2n/n!)W (ρ/ηn). (8)

Here, W (ρ) = 1− exp[−(4ρ/ρz )
2] is the radiation flux

without field PDs. With σ 2 << 1,

W (ρ) ≈ W (ρ) − σ 2

[

W (ρ) −W

(

ρ
/

√

1 + 1/c2
z

)]

.

Equations (4), (8) that represent the average radiation

intensity and flux distributions as functional series are the

basic relations for further analysis.

3. Spatial moments and beam width

Consider the characteristics of the Gaussian beams

with random field PDs using the spatial moment theory

methods [11,12] for the function of intensity distribution in

beam cross-section. This theory defines the basic spatial

energy characteristics of the propagating laser beam: beam

width and waist position, and energy divergence angle.

Let’s introduce the n-th relative spatial moment into the

study:

mn =

∫

I(ρ)(xn + yn)d2
ρ

∫

I(ρ)(xn + yn)d2ρ
, n = 2, 4, . . . (9)

For the moments m2 and m4 considering (4), (5), we

derive the following algebraic expressions

m2 = 1 +
σ 2

c2
z
,

m4 = m2
2 +

σ 2

c2
z
. (10)

Assuming (10) as a system of equations, we find the

following for calculation of random field PDs

σ 2 = (m2 − 1)2/(m4 − m2
2),

c = (1/s z )
√

(m2 − 1)/(m4 − m2
2).

Thus, the fourth spatial moment together with the second

standard moment (Q factor M2) are used, in particular, to

find the dispersion and correlation radius of the random

field PDs according to the experimental results.

Equations (9), (11) are examined and considered below

for solution of the analytical approximation problem of

functional series (4), (8) for the average radiation intensity

and flux distribution functions.
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3.1. Beam width in the statistical model

In the spatial moment theory, the beam diameter 2AZ

(width) on the z plane and distance z = z b to the waist

plane are the main beam characteristics. Depending on PD,

AZ is proportional to the propagation coefficient M2
z (M2

z is

the Q factor). The beam radius in this case is equal to

Az = M2
z a z , a z = ρz a, (11)

where a z is the beam radius without PD. In the z plane,

within the region with the radius AZ , more than ∼ 90% of

the full beam power propagates, W (Az/a) > 0.9.

Within the statistical approach considering (5), (9) and

(11), the relative beam radius is equal to

Az

a
=

(

2

πNez

)

√

1 +
[π

2
(Nez − Ne f )

]2

. (12)

Here, Nez = Nz /M2
f , Ne f = N f /M2

f are the effective Fres-

nel numbers, M2
f =

√

1 + σ 2/c2. Thus, in the spatial

moment theory, the average beam with random PDs is

equivalent to the beam without PDs with the Fresnel

number reduced in M2
f .

The beam radius is minimum in the waist plane z = z b .

From (12), we find

minAz =
a

√

1 + (πNe f /2)2
, z b =

f
1 + [2/(πNe f )]2

.

(13)

From equations (13) and general ideas of the properties

of laser beams with field PDs, it is clear that, as beam PDs

grow, the waist moves closer to the output aperture plane

and the waist diameter and distance between the focus and

waist,

f − z b = f

/

[

1 + (πNe f /2)
2
]

,

increase as σ 2/c2 grows. At the distance z = 2z b , the beam

width is equal to the initial beam width (determined in the

output aperture plane).

The following shall be noted here. Expression (12) for

the Q factor M2
f includes σ 2/c2. In physical meaning, it is

proportional to the average squared wavefront angles [14]:

σ 2/c2 = 〈[gradϕ(ρ)]2〉

/

4 = σ 2
[

−dK(ρ)/dρ2|ρ=0

]

,

where the angle brackets 〈. . .〉 mean averaging over the

output aperture area. Whereby σ 2/c4 ∼ (m4 − m2
2) is

inversely proportional to the average squared radius of field

curvature in the output aperture plane. Therefore, the

spatial moment m4 used in the given model considers more

consistently not only the beam width, but also the possible

deviations from the normal beam curvature radius.
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Figure 1. Beam width Az /a (curves 3, 5 and 6) and width of the

partially coherent component Asz /a (curves 1, 2 and 4) depending

on z/ f at N f = 6, σ 2 = 0.5. Curves 1 and 3 — at c = 0.25;

curves 2 and 5 — at c = 0.35; 4 and 6 at c = 0.5. Curve 7 —
for the diffraction-limited beam.

3.2. Average beam as a sum of coherent and
partially coherent beams

Taking into account PDs, the field in the output aperture

plane will be written as

U0(ρ) exp(iϕ(ρ)) = U0(ρ) exp(−σ 2/2) + Us (ρ),

Us (ρ) = U0(ρ)[exp(iϕ(ρ)) − exp(−σ 2/2)].

Here, Us (ρ) is the random field with zero average value.

Thus, the average intensity distribution in the z plane

considering (4) is described by the following relation:

I(ρ) = exp(−σ 2)I(ρ) + [1− exp(−σ 2)] Is (ρ). (14)

In expression (14), I(ρ) is distribution (5) without PDs,

Is(ρ) =

∞
∑

n=1

σ 2nI(ρ/ηn)

n!η2n [exp(σ 2) − 1]
(15)

is the intensity distribution in partially coherent beam

component. In (14), exp(−σ 2) and [1− exp(−σ 2)] are the

coherent and scattered component powers.

The power of partially coherent component grows as the

dispersion grows and is equal to the coherent component

power at σ 2 ≈ 0.7. When σ 2 > 0.7, the spatial energy

structure of the beam begins to be defined by the scattered

beam component.

According to (14), (15), we find for the M2
z -factor

M2
z =

√

exp(−σ 2) + [1− exp(−σ 2)]M4
sz ,

whereby M2
sz defines the scattered beam component width,

M2
sz =

√

1 +
M4

z − 1

1− exp(−σ 2)
. (16)
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Figure 2. Radiation flux W(ρ) in the optical system focus in

the two-component approximation. Curve 1 — for the diffraction-

limited beam; 2 — at σ 2 = 0.2, c = 0.3; 3 — σ 2 = 0.7, c = 0.3;

4 — σ 2 = 0.7, c = 0.1; 5 — σ 2 = 2, c = 0.5; 6 — σ 2 = 2,

c = 0.3; 7 — σ 2 = 4, c = 0.1. Solid line is the approximated

calculation, dashed line near the solid one is the accurate

calculation.

Thus, in the spatial moment theory, the scattered beam

component width is calculated by equation (13) considering

the substitution Nez = Nz /M2
s f , Ne f = N f /M2

s f at

M2
s f =

√

1 + (σ 2/c2)
/

[1− exp(−σ 2)].

The minimum beam widths for the diffraction-limited and

quasi-coherent components are achieved at different distance

z db and z sb :

z db =
f

1 + [2/(πN f )]2
,

z sb =
f

1 + [2M2
s f /(πN f )]2

. (17)

Therefore, the beam with random PDs may be treated as

a sum of coherent and partially coherent components with

different wavefront curvature radii.

Figure 1 shows the typical calculation results for the

beam width Az/a and scattered beam component Asz/a
depending on z/ f .

Waist positions for the diffraction-limited component z db,

scattered component z sb and whole beam z b satisfy the

inequality z sb < z b < z db < f . As PDs grow, the z b and

z sb planes approach the output aperture plane.

The shown result makes it possible to consider in more

detail the ray paths in the receiving-transmitting laser optical

systems and to optimize the system design parameters more

accurately.

1
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6

z/f

S
t

0 1.0 1.50.5
0

0.5

Figure 3. Dependence of the Strehl number St on the relative

distance z/ f at several dispersions σ 2 and correlations radii c,
N f = 6. Curves 1−6 correspond to (σ 2, c) = (0.4, 2), (1.4, 0.7),
(2, 0.3), (5, 0.3), (5, 0.15), (6, 0.03).

4. Analytical relations for I(ρ), W(ρ) and
computational experiment results

We will derive approximated analytical relations to ap-

proximate functional series (4), (8) for average intensity

and radiation flux at the specified field PD dispersion σ 2

and correlation radius c (or at the known spatial moments

m2 and m4).

4.1. Two-component beam model

In the two-component model, the partially coherent beam

component is approximated by the Gaussian beam whose

width is larger that of the diffraction-limited component.

Taking into account the results of [15] and expression (16),
for the relative scattered beam component width we have

I(ρ) ≈ DI(ρ) +
1− D
µ2

I

(

ρ

µ

)

,

W (ρ) ≈ DW (ρ) + (1− D)W

(

ρ

µ

)

, µ = M2
sz , (18)

where D = exp(−σ 2). Approximation accuracy (18) of

radiation flux (8) is illustrated in Figure 2.

Relative error of the analytical calculation of the radiation

flux W (ρ) achieves 20%, absolute error is lower than

0.07−0.1.

In the statisctical laser beam model of interest, the

amplitude of field formed in the specified space point is

equal to the sum of the regular component and random

component whose average value is equal to zero. If

the random field fluctuation amplitude is quite high, then

caustic products with extremely high and zero radiation

intensity may be formed. Let’s determine the parameters

of random PDs at which paraxial intensity distribution
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Figure 4. Dependence of the axial intensity I(0) on z/ f for a

beam with the Fresnel number N f = 6 at σ 2 = 5. Curves 1−7

correspond to the correlation radii c = 0.7, 0.5, 0.3, 0.2, 0.15, 0.1,

0.03.

does not contain points with zero values. Note that the

given condition is sufficient for the absence of phase screw

dislocations in the beam [6,7]. There are no dislocations

within the given laser beam model, if the regular field

component intensity is higher than the average random

component intensity. Taking into account relation (14), the
condition of interest is equivalent to

exp(−σ 2)I(ρ) > [1− exp(−σ 2)]Is (ρ). (19)

It follows rom this inequality that there are no dislocations in

the paraxial area limited by the diffraction radius ρ = 0.7ρz

(with W (ρ) ≈ 0.86), when

σ 2 < ln[1 + µ2 exp(−2(1 − 1/µ2))].

If σ 2 < 0.55, inequality (19) is satisfied at any µ > 1.

Generally, µ depends on z . Therefore, at fixed PD

parameters, satisfiability of (19) and local regions with zero

intensity in the beam depend on the observation plane

position. The given conclusions agree with the results

of [7], where the wavefront screw dislocations were studied

experimentally and using the computational mathematics

methods.

4.2. Three-component beam model

Then, we will refine the beam model by considering the

partially Gaussian beams:

Is(ρ) =
1

2

[

1

µ2
1

I

(

ρ

µ1

)

+
1

µ2
2

I

(

ρ

µ2

)]

,

Ws(ρ) =
1

2

[

W

(

ρ

µ1

)

+ W

(

ρ

µ2

)]

. (20)

µ1,2 > 1 define the divergence of the partially coherent field

component. Let’s find the correlation between µ1,2 and the

1
2

3
4

5
6

7

0 1.0 1.50.5
0

0.2

0.4

0.6

0.8

W

z/f

8

Figure 5. Dependence of the radiation flux on z/ f at the receiver

with the radius ρ = 1/N f for the beam with the Fresnel number

N f = 6. Curves 2−8 correspond to the correlation radii c = 0.8,

0.5, 0.3, 0.2, 0.14, 0.08, 0.03 at σ 2 = 3. Curve 1 — for the

diffraction-limited beam.
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Figure 6. Beam radius depending on z/ f . Curves 1 and 2

correspond to the beam with the following parameters: γW̄ = 0.25,

N f = 14, c = 0.012 at σ 2 = 1.5 and σ 2 = 0.5. Curves 3, 4 —
γW̄ = 0.63, N f = 6, σ 2 = 1.5 at c = 0.3 and c = 0.5. Curve 5 —
for the diffraction-limited beam with N f = 6 at γW̄ = 0.63. The

beam radius ρ is normalized to ad = a
√

ln[1/(1− γW̄ )]/2 that is

equal to the beam radius in the output aperture plane.

beam parameters. According to definition (9) of the spatial

moments considering representation (20), we obtain the set

of equations

St = D + (1− D)

(

µ2
1 + µ2

2

2µ2
1µ

2
2

)

, (21)

m2 = D + (1− D)

(

µ2
1 + µ2

2

2

)

,

m4 = D + (1− D)

(

µ4
1 + µ4

2

2

)

. (22)
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Assuming (22) as a system of equations in µ1,2, we find

µ1,2 =

√

ms2

(

1±

√

ms4

ms2
− 1

)

,

msn =
mn − D
1− D

, n = 2, 4, (23)

where msn are relative spatial moments for quasi-coherent

field component. By means of algebraic transformations of

expression (23), it is easy to derive

µ1,2 = M2
sz

√

1±

(

1−
1

M4
sz

)

ks ,

M2
sz =

√

1 +
σ 2/c2

z

1− exp(−σ 2)
,

ks =

√

1− (1 + σ 2) exp(−σ 2)

σ 2
. (24)

Whereby the Strehl number considering equations (21),
(24) is equal to

St ≈ D +
1− D
µ2

, µ = M2
sz

√

1− (1− 1/M4
sz )

2k2
s . (25)

ks = ks(σ
2) is maximum atσ 2 = 1.79,

max [ks(σ
2)] = 0.546.

The above-mentioned equations solve the problem of

analytical approximation of functional series (4), (8). When

using equations (24), (25) for the Strehl number, the

absolute calculation error does not exceed 0.01, the relative

error is lower than 3.4%. So, the absolute error is lower

than min(0.01; 0.034St). The absolute error of the radiation

error calculation is lower than 0.017, the relative error is

lower than 3.7%.

4.3. Computational experiment results

Some results of calculations of the average intensity and

power flux for the focused laser beam depending on the

relative distance z/ f and (σ 2, c) are shown in Figure 3−6.

In the computational experiment, the σ 2 varied in the

range of [0; 10]. Taking into account the rule 3σ [16],
the amplitude of random wavefront deformations did not

exceed 1.6λ.

Figure 3 illustrates the dependence of the Strehl number

on the distance to the observation plane.

The Strehl number gradually increases as σ 2 decreases

and/or cz grows. At fixed σ 2 and c, St depending on z is

minimum in focus, when cz = c f = c . When z decreases in

the region upstream of focus, cz → ∞ and St approaches 1.
As z grows in the range of z > f , the effective correlation

radius cz grows and the Strehl number approaches the value

defined at

cz = c∞ = c
√

1 + (πN f /2)2.

Figure 4 shows the results of calculations of the axial

intensity I(0).
I(0) = (4/πρ2

z )St depends on z in a more complex way

than the integral beam width 2Az (Figure 1) and the Strehl

number (Figure 3). The presence of PD may result in

appearance of the second local maximum in the intensity

distribution along the optical axis. As PDs grow, the global

beam intensity peak moves towards the output aperture. the

above-mentioned effect was experimentally observed in [17].
Let’s evaluate the conditions at which the dependence

of I(0) on z has two peaks. According to equations (16),
(18), it is clear that the second intensity peak (and waist)
for the partially coherent component of the focused beam

shall be in the region where z is much lower than the

focal distance f . This condition is satisfied when the

relative width µ of the beam component of interest is

comparable with the Fresnel number N f ; more exactly

µ2 − 1 ∼ N2
f , N f > 1. In addition, the radiation intensity of

the partially coherent component shall be comparable with

the intensity of the diffraction-limited component, therefore

σ 2 > ln(1 + µ2).
Figure 5 shows individual calculations of the radiation

flux through the plate with the fifed radius ρ depending on

the distance to the observation plane.

Curves in Figure 5 are identical to curves in Figure 4 for

the axial intensity, but are smoother as could be expected.

Figure 6 illustrates the calculated beam radius ρ

at the specified (fixed) relative radiation flux

level γW = W (ρ) < 1.

The local minimum beam radius moves towards the

radiating aperture as σ 2 increase and/or c decreases.

At the end of Section 4, it should be noted that the

derived and examined analytical relations approximate the

average radiation flux distribution function depending on

the receiver dimensions and distance to the observation

plane without restrictions to the random field PD amplitude

and scale. The absolute error of the derived analytical

relation doesn’t exceed 0.017, the relative error is lower

than 3.7%. Additional investigations show that the given

analytical model of the Gaussian beam with random PDs

admits expansion to the version when the random field

PD function is the sum of several statistically independent

components.

5. Conclusion

In the Fresnel approximation, an analytical model has

been developed and analytical studies have been performed

to investigate the spatial energy characteristics of the average

laser Gaussian beam with random normally distributed

field PDs with the Gaussian correlation function without

restrictions to the field PD amplitude and scale.

The field of the propagating laser Gaussian beam with

random PDs is represented by a sum of two components:

coherent (diffraction-limited) and partially coherent (scat-
tered by phase nonuniformities), the latter has the zero

Optics and Spectroscopy, 2024, Vol. 132, No. 6
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average value. Analytical relations have been derived and

examined to approximate evenly the average radiation flux

distribution function depending on the receiver dimensions

and distance to the observation plane without restrictions to

the random field PD amplitude and scale.

It is shown that the field PDs may lead to appearance

of the second peak in the average intensity and radiation

flux distribution along the optical axis and to the shift of

the global peak closer to the output aperture of the system.

These effects are caused by the presence of the partially

coherent component in the beam. The axial intensity of

this beam component has its peak that is closer to the

output aperture than the intensity peak for the diffraction-

limited component. Analytical relations have been derived

for calculation of the propagating beam width and beam

waist position depending on the field PD dispersion and

correlation radius.

Of interest is the possible development of the described

Gaussian beam model to a more general case when the

wavefront deformation has several sources and the phase

deformation function of the field is equal to the sum of

several randomly distributed components.

The results of the research may be used for the develop-

ment and optimization of receiving-transmitting laser optical

systems, laser beam parameter and quality measurement

techniques.
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