05,06,12

Микрофазное расслоение в композите ПВДФ—CoFe₂O₄ при печати методом послойного наложения

© П.А. Ершов¹, В.Д. Сальников¹, В.В. Савин¹, П.А. Воронцов¹, Л.В. Панина^{1,2}, В.В. Родионова¹

Калининград, Россия

E-mail: pershov@kantiana.ru

Поступила в Редакцию 30 ноября 2024 г. В окончательной редакции 1 декабря 2024 г. Принята к публикации 5 декабря 2024 г.

Исследовано микрофазное расслоение композита на стадии формирования филаментной нити и последующее его влияние на FDM-печать (fusion deposition modelling) и свойства напечатанных объектов. Установлено, что с ростом процентного содержания наночастиц в филаменте размеры пор и рытвин на периферии филамента возрастают. Появление дефектов в полимерной матрице при увеличении концентрации ${\rm CoFe_2O_4}$ (CFO) до 15% подтверждается дифференциально-сканирующей калориметрией (DSC) — на кривых изменения энтальнии образуется дополнительный пик. Несмотря на то, что наибольшее содержание электро-активной фазы и значение намагниченности обнаружено в пленке, напечатанной из филаментной нити с 15% содержанием наночастиц CFO, максимальный магнитоэлектрический коэффициент $\alpha_{33}=3.2\,{\rm mV/(cm\cdot Oe)}$ был получен на напечатанной пленке с 10% содержанием CFO, что обусловлено микрофазным расслоением. Полученное значение магнитоэлектрического коэффициента меньше, чем в слоистых композитах, однако является достаточным для применения композитов в биомедицине, а использование технологии FDM-печати обеспечивает возможность создания сложных структур, таких как клеточные скаффолды.

Ключевые слова: 3D-печать, мультиферроики, функциональные композиты, магнитные наночастицы, фторопласт.

DOI: 10.61011/FTT.2024.12.59611.334

1. Введение

Настоящее исследование посвящено изучению 3Dпечати функциональными полимерными композитами на основе поливинилиденфторида (ПВДФ, PVDF) с добавлением наночастиц СоFe₂O₄ (СFO) с концентрациями 5, 10, 15 wt%. Аддитивные технологии произвели революцию в способах проектирования и производства, позволяя создавать уникальные устройства на основе сложной геометрии с высокой точностью [1]. Наиболее распространенной технологией 3D-печати стала технология моделирования методом послойного наложения (FDM, от англ. fused deposition modelling), позволяющая использовать термопластичные полимеры для создания объектов сложной формы [2]. Ключевыми свойствами объектов, изготовленных методами 3D-печати, являются прочность на разрыв, износостойкость и максимальные рабочие температуры.

В последние годы особое внимание уделяется разработке технологий 3D-печати с использованием функциональных композитов. Функциональные композиты — это материалы, сочетающие в себе преимущества традиционных полимерных материалов с дополнительными свойствами за счет добавок-филлеров, такими как улучшенная электропроводность [3,4], магнитные свойства [5,6], магнитоэлектрические свойства [7,8]. Интегрируя функциональные материалы в 3D-печать, можно со-

здавать сложные геометрические формы с индивидуальными свойствами, чего невозможно достичь обычными методами производства [9].

Одним из набирающих популярность, но все еще малоизученным функциональным композитным материалом является ПВДФ с добавлением магнитных наночастиц. Интерес связан с синергией пьезоэлектрических и магнитострикционных свойств, которая делает возможным генерацию электрических импульсов посредством внешнего магнитного поля [10]. Материалы, в которых электрическая поляризация индуцируется магнитным полем через механическое соединение пьезои магнитных компонентов, называются магнитоэлектрическими (МЭ) [11,12]. Эффективность МЭ-связи в полимерных композитах с ферромагнитными наночастицами в качестве наполнителя изначально зависит от пьезоэлектрических и механических свойств полимерной матрицы. МЭ-композиты на основе ПВДФ и СГО являются перспективным материалом для создания нового типа магнитостимулирующих скаффолдов для тканевой инженерии [8], МЭ-преобразователей (для мониторинга состояния человека) [13] и гибких датчиков [14,15].

Однако при добавлении наночастиц в полимерную матрицу зачастую наблюдается эффект микрофазного расслоения с образованием неоднородных структур на микроуровне между наночастицами и полимером [16,17]. Это расслоение может возникать вследствие различий

 $^{^{1}}$ Балтийский федеральный университет им. Иммануила Канта,

 $^{^2}$ Национальный исследовательский технологический университет "МИСиС", Москва, Россия

в химической совместимости, термической расширяемости и/или механических свойств компонент. В случае ПВДФ, микрофазное расслоение может существенно влиять на электрические и механические свойства материала [18,19]. В то же время, микрофазное расслоение может быть использовано для достижения специфических свойств в области мембранных технологий или сенсоров [20,21], где ПВДФ применяется благодаря своим пьезоэлектрическим и диэлектрическим свойствам [22].

Настоящая работа посвящена изучению 3D-печати функциональными полимерными композитами на основе поливинилиденфторида (ПВДФ) с добавлением наночастиц СГО с концентрациями 5, 10, 15 wt%. Исследуется эффект микрофазного расслоения, вызванный сегрегацией наночастиц СГО в матрице ПВДФ, для определения оптимального содержания магнитных наночастиц СГО с целью максимизации магнитоэлектрического отклика напечатанного объекта.

2. Исследуемые образцы и методика эксперимента

В работе использовались следующие реагенты: $Co(NO_3)_2 \cdot 6H_2O$ ($\geq 98\%$; ЛенРеактив, Санкт-Петербург, Россия), $Fe(NO_3)_3 \cdot 9H_2O$ ($\geq 98\%$; ЛенРеактив, Санкт-Петербург, Россия), лимонная кислота ($\geq 98\%$; ЛенРеактив, Санкт-Петербург, Россия), раствор аммиака 30% ($\geq 98\%$; СигмаТек, Химки, Россия), N,N-диметилформамид ($\geq 98\%$; Экос-1, Москва, Россия) ПВДФ, 80000 mol (ГалоПолимер, Москва, Россия).

Магнитные наночастицы СFО были получены с использованием метода золь-гель-самосгорания [23]. Для получения CFO соли металлов брали в молярном соотношении Co_2^+ : $\mathrm{Fe}_3^+=1:2$. К одномолярному водному раствору солей добавляли одномолярный раствор лимонной кислоты того же объема. Уровень рН доводили до ~ 7 добавлением водного аммиака. Полученные растворы нагревали при $150^{\circ}\mathrm{C}$ при интенсивном перемешивании до достижения гелеобразного состояния. Реакцию самосгорания инициировали повышением температуры до $300^{\circ}\mathrm{C}$. Продукт реакции измельчали в агатовой ступке и несколько раз промывали дистиллированной водой и ацетоном. Средний размер полученных кристаллитов не превышает 20 nm [24].

Гранулы ПВДФ растворялись в диметилформамиде (ДМФ) при 40°С с непрерывным перемешиванием до полного растворения полимерной исходной смеси с массовым соотношением 1:6. Общая концентрация ПВДФ к ДМФ была скорректирована до 1:8 введением суспензии частиц. Конечная массовая концентрация частиц в композите равнялась 5, 10, 15%.

Тонкая композитная пленка ПВДФ-СFО была сформирована с помощью техники ракельного ножа [25]. Полимерный раствор помещался на подложку перед движущимся лезвием, которое распределяло раствор по поверхности подложки. Толщина слоя была установлена

на уровне $100\,\mu\mathrm{m}$ путем регулировки зазора между ножом и подложкой.

Композитная нить ПВДФ-СГО была создана путем экструзии измельченной пленки, полученной на предыдущем этапе. Экструзия проводилась с использованием микроэкструдера Twin Tech Screw (Rondol). Температура экструзии проходила при температуре 220°С. Скорость вращения экструдера была равна 12 грт. Экструдированная нить охлаждалась при комнатной температуре. Нить, полученная на начальном и конечном этапах экструзии, отбраковывалась. Для процесса экструзии использовалось круглая фильера с диаметром 1.75 mm, подходящая для FDM-печати.

Для 3D-печати экструдированными композитными нитями использовался FDM-принтер Creality Ender 3 Pro с соплом диаметром 0.4 mm. 3D-печать проводилась при температуре экструдера 290° С и температуре стола 100° С. Скорость печати составляла 20 mm/s. Для исследования были напечатаны квадратные пленки толщиной 0.12 mm и размерами 10×10 mm с концентрическим заполнением.

Для изучения поверхности нанокомпозита использовали сканирующий электронный микроскоп (СЭМ, Hitachi TM4000 Plus) в режиме обратного рассеяния электронов.

Дифференциальная сканирующая калориметрия (ДСК, NETZSCH 204 F1 Phoenix) использовалась для оценки степени кристалличности образцов, сравнивая теплоту плавления образца и полностью кристаллизованного ПВДФ (104.6 J/g) [26]. Образцы анализировали в интервале от комнатной температуры до 200°С при скорости нагрева 5°С/min в атмосфере аргона. Степень кристалличности χ рассчитывали из уравнения

$$\chi = \frac{\Delta H}{H_{100} \varphi_{\mathrm{PVDF}}} \times 100\%,$$

где ΔH — теплота плавления, H_{100} — энтальпия для 100% кристаллической фазы ПВДФ, φ_{PVDF} — массовая концентрация ПВДФ.

ИК-спектры были получены с помощью ИК-Фурьеспектрометра (Simex FT-801 IR). Полученные филаменты и напечатанные композитные пленки ПВДФ-СГО исследовали с помощью метода нарушенного полного внутреннего отражения (НПВО) в диапазоне волновых чисел от 4000 до 600 ст⁻¹. Образцы размещали на алмазной призме и придавливали для обеспечения максимального контакта между поверхностями. ИК-спектры снимали с 3-х областей на пробе, а потом усредняли. Количество электроактивной фазы FEA оценивалось по уравнению [27]

$$F_{\mathrm{EA}} = rac{I_{\mathrm{EA}}}{\left(K_{840}/K_{763}
ight)I_{763} + I_{\mathrm{EA}}} imes 100\%,$$

где I_{763} и $I_{\rm EA}$ — интенсивности поглощения при характеристических волновых чисел 763 и 840 cm $^{-1}$; K_{840} и K_{763} — соответствующие коэффициенты поглощения.

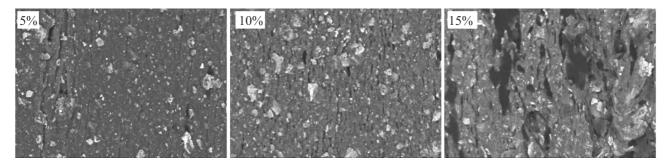
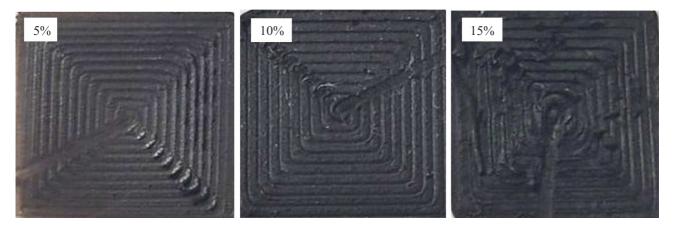



Рис. 1. СЭМ-изображения филаментов ПВДФ/СFO с разным содержанием наночастиц: 5, 10 и 15 wt%.

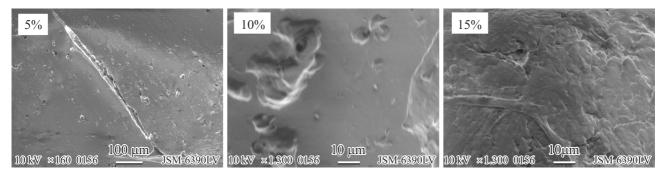
Рис. 2. Фото напечатанных пленок, размером $10 \times 10 \, \mathrm{mm}$, заполненных концентрически.

Полевые зависимости намагниченности для всех образцов измерены на вибрационном магнитометре (Lakeshore 7400 System) в полях до $12\,\mathrm{kOe}$ при комнатной температуре. Образцы нитей и пленок $(5\times5\,\mathrm{mm})$ были зафиксированы в ориентации, когда магнитное поле перпендикулярно плоскости пленок. Результаты измерения петель гистерезиса наночастиц СFO представлены в работе [28].

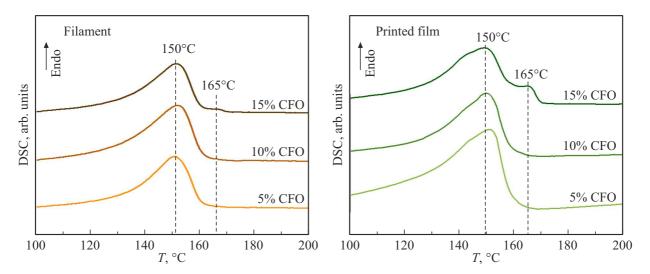
Измерение магнитоэлектрического коэффициента α_{33} в ориентации композита, когда направление внешнего магнитного поля (как постоянного, так и переменного) совпадает с направлением поляризации внутри образца, производилось динамическим методом [29,30]. Постоянное магнитное поле, в которое помещался образец, создавалось с помощью электромагнитов вибрационного магнитометра (7400 System VSM; Lake Shore Cryotronics Inc). Слабое переменное магнитное поле $H_{\rm AC}$ величиной до 1.5 Ое и частотой 770 Hz создавалось с помощью катушек Гельмгольца. Разность потенциалов $V_{\rm out}$, создаваемая между поверхностями образца, детектировалась с помощью усилителя lock-in SR 830 (Stanford Research Systems). Величина магнитоэлектрического коэффициента была рассчитана по формуле

$$\alpha_{33} = \frac{V_{\text{out}}}{tH_{\text{AC}}},$$

где t — толщина образца. Толщины образцов были измерены с помощью микрометра.


3. Экспериментальные результаты и их обсуждение

Как видно на СЭМ-изображениях филаментов (рис. 1), микрофазное расслоение приводит к ухудшению целостности композита. Рытвины и поры вытянуты и направлены в стороны вытяжки филамента. Расслоение начинает наблюдаться при концентрации частиц СFO 10%. Их размер меняется от $\sim 3\,\mu\mathrm{m}$ для 10% содержания частиц до десятка микрон при 15% содержании СFO. Кроме этого, на изображениях также присутствуют агломераты наночастиц (НЧ) с размерами от 3 до 20 $\mu\mathrm{m}$, которые также оказывают влияние на процессы микрофазного расслоения и являются следствием сегрегации частиц и их скопления на стадиях получения филамента.


В результате при FDM-печати композитом ПВДФ-СFO, микрофазное расслоение на филаменте приводит к появлению дефектов—наплывов, как видно на фотографиях напечатанных пленок (рис. 2).

На СЭМ-изображениях гладкой стороны напечатанных пленок (рис. 3) микротекстура присутствует только на пленке, напечатанной с 15% содержанием наночастиц СГО, что говорит о том, что микрофазное расслоение полимера передается от филамента на напечатанную пленку.

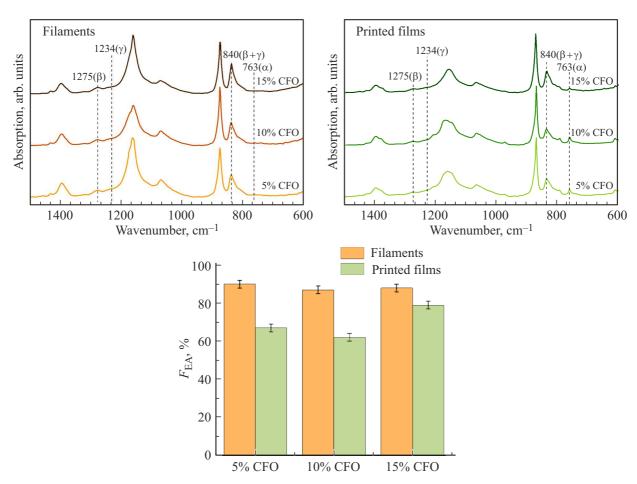
При анализе кривых дифференциальной сканирующей калориметрии (ДСК, DSC) (рис. 4) установлено, что

Рис. 3. СЭМ-изображение гладкой стороны напечатанной пленки, прилегающей к стеклу во время 3D-печати композитом ПВДФ-СFO.

Рис. 4. ДСК-кривые для композитных пленок ПВДФ-СFO с различным содержанием частиц CFO: 5–15%.

Таблица 1. Рассчитанные значения кристалличности χ для филаментов и напечатанных пленок

Образец	χ, % для филамента	χ, % для напечатанных пленок
ПВДФ-5% СГО	31	63
ПВДФ-10% СГО	39	40
ПВДФ-15% СГО	35	46


в пленках с содержанием наночастиц 10 и 15% происходит уменьшение степени кристалличности в сравнение с образцом, где содержание НЧ составляет 5%, при этом температура плавления не меняется (см. табл. 1).

Уменьшение степени кристалличности объясняется большей агломерацией НЧ при концентрациях 10 и 15 wt%. Агломераты НЧ нарушают процесс кристаллизации, что в свою очередь препятствует выравниванию и упорядоченному расположению полимерных цепей [31]. Также на кривой ДСК для напечатанного образца с 15% содержанием НЧ наблюдается раздвоение

пика. При увеличении концентрации НЧ в полимерной матрице происходит увеличение размеров агломератов, что является дефектом для полимерной матрицы, который может приводит к различным фазовым переходам при нагреве. Таким образом, взаимодействие между агломератами НЧ и матрицей ПВДФ может изменить процесс кристаллизации, в результате чего возможно формирование разных кристаллических форм, наблюдаемых как раздвоение пика плавления, что также может свидетельствовать об образовании электроаткивной фазы $(\beta + \gamma)$ [32].

Для изучения влияния расслоения на фазовый состав композита была проведена ИК-спектрометрия как полученных филаментов, так и напечатанных композитных пленок (рис. 5). Доля электроактивной фазы в экструдированных композитных филаментах остается неизменной в пределах статистического разброса этой величины — $87 \pm 2\%$.

После 3D-печати уменьшается количество электроактивной фазы (что определялось по характерному пику на волновом числе $840~{\rm cm}^{-1}$), однако наименьшее изменение количества электроактивной фазы после печати

Рис. 5. ИК-спектры филаментов (слева) и напечатанных пленок (справа). Внизу приведено рассчитанное количество электроактивной фазы по полученным спектрам.

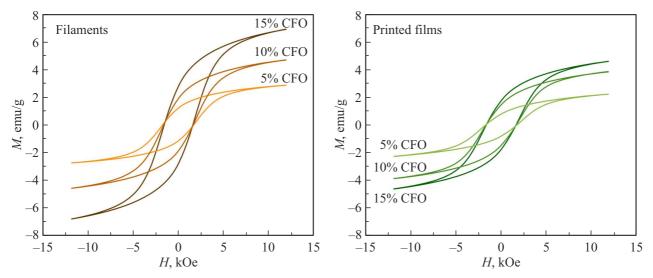


Рис. 6. Полевая зависимость намагниченности М для филаментной нити (слева) и напечатанных композитных пленок (справа).

Таблица 2. Измеренные магнитные характеристики композитов

		H_c , kOe	M_s , emu/g	M_r/M_s	%
CFO		1.46	47	0.29	100
ПВДФ-15% СГО	филамент	1.59	8.4	0.32	17
	пленка	1.63	5.7	0.30	12
ПВДФ-10% СГО	филамент	1.64	5.6	0.33	11
	пленка	1.66	4.7	0.30	10
ПВДФ-5% СГО	филамент	1.72	3.4	0.34	7
	пленка	1.72	2.9	0.27	6

Таблица 3. Измеренные магнитоэлектрические показатели напечатанных пленок

Концентрация частиц СFО в композитной пленке, %	α_{33} , mV/(cm · Oe)	
5	2.0 ± 0.1	
10	3.2 ± 0.2	
15	1.8 ± 0.1	

наблюдается на образце с 15% содержанием наночастиц CFO. Можно заключить, что наличие расслоения положительно влияет на образование электроактивной фазы при FDM-печати.

Падение доли электроактивной фазы после FDMпечати можно объяснить процессом расплавления полимера без последующего вытягивания расплава, что приводит к образованию более стабильной альфа фазы ПВДФ.

Измеренные магнитные характеристики композитов и основные магнитные параметры материалов приведены в табл. 2.

Значения намагниченности насыщения M_s композитных пленок согласуются с заданным содержанием наночастиц, кроме образца ПВДФ-15% СFO. Относительная остаточная намагниченность (M_r/M_s) для всех образцов составила порядка 30%, что ниже ожидаемого значения для невзаимодействующих однодоменных частиц согласно модели Стоунера—Вольфарта [33].

Наблюдаемое значение коэрцитивной силы H_c для композитов выше, чем для частиц. Такой характер изменения H_c может говорить о влиянии межчастичного взаимодействия из-за изменения расстояния между частицами в матрице, т.е. о снижении агломерации [34]. При этом повышение концентрации частиц ведет к образованию более крупных агломератов, что приводит к снижению H_c . Интересно, что в композите после печати частицы менее агрегированы, чем в филаментной

нити, т.е. происходит перераспределение частиц вследствие вытяжки нити во время печати.

Магнитоэлектрический коэффициент α_{33} измерялся на композитных пленках размером 10×10 mm, толщиной $200\,\mu$ m. Максимальные значения магнитоэлектрического коэффициента для изучаемых композитов представлены в табл. 3.

Установлено, что наивысшим магнитоэлектрическим коэффициентом обладает пленка с 10% CFO. Уменьшение магнитоэлектрического коэффициента в пленке с 15% CFO может быть обусловлено микрофазным расслоением, которое препятствует однородной передаче механических напряжений. Также, агломерация CFO частиц при увеличении их концентрации уменьшает связность компонент композита.

4. Заключение

Технология 3D-печати функциональными полимерными композитами, в том числе с магнитными наночастицами, открывает новые возможности для управления не только формой объектов, но и их свойствами. Однако добавление наночастиц в полимерную матрицу может вызывать нежелательные процессы разрушения полимера.

Исследован эффект микрофазного расслоения композита ПВДФ-СГО, который наблюдался на этапе получения филаментной нити для FDM-печати, и его влияние на свойства напечатанного объекта. Анализируя композиты с 5, 10, 15 wt% содержанием наночастиц кобальтового феррита (СГО), было обнаружено, что на периферии филамента присутствуют рытвины и поры, размеры которых увеличиваются с содержанием НЧ. Анализ ДСК-кривых показал, что в филаментах и напечатанных пленках с 15% содержанием наночастиц наблюдается дополнительный пик, который можно отнести к появлению дефектов в полимерной матрице. Анализируя качество пленок ПВДФ-СFO, полученных методом FDMпечати, можно заключить что микрофазное расслоение приводит к появлению дефектов печати — наплывов. Согласно данным ИК-спектрометрии, количество электроактивной фазы, несмотря на расслоение, для филаментов не изменилось и составляет $87 \pm 2\%$ с учетом статистического разброса. Трансформация фазового состава при переходе к напечатанному объекту для образцов с разной долей частиц СГО происходит неодинаково. Наибольшая доля электроактивной фазы обнаружена у напечатанной пленки с 15% содержанием наночастиц, из чего можно заключить о благоприятном влиянии эффекта расслоения полимера на образование электроактивной фазы. Тем не менее, измерения магнитоэлектрических свойств показали, что наибольшее значение магнитоэлектрического коэффициента 3.2 mV/(cm · Oe) достигаются при 10% содержании НЧ СГО. Это обусловлено тем, что процесс фазового расслоения, который увеличивается с увеличением концентрации СГО, нарушает механическую связность компонент. Таким образом, можно заключить, что оптимальным количеством НЧ СГО для обеспечения магнитоэлектрических свойств композитных пленок, напечатанных методом FDM, является 10%, а сама FDM-печать не позволяет избавится от микрофазного расслоения, наблюдаемого на стадии филаментной нити. Полученные значения магнитоэлектрического коэффициента достаточны для использования напечатанных композитов для магнитоэлектрической стимуляции в биомедицинских приложениях, например, в регенеративной медицине, а возможности 3D-печати дают возможность воссоздавать необходимые сложные формы для клеточных скаффолдов.

Благодарности

Авторы выражают свою благодарность А.А. Амирову за изготовление филаментов, А.С. Омельянчику за изготовление наночастиц, Г.В. Киричуку за его ценный вклад в измерения с помощью СЭМ.

Финансирование работы

Исследования были выполнены при финансовой поддержке Российского научного фонда в рамках проекта N_2 21-72-30032.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice,
 Z. Al Tamimi, G. Hansotte, L.D. Sunkara, J. Bernat. Sensors
 24, 9, 2668 (2024).
- [2] R. Kristiawan, F. Imaduddin, D. Ariawan, U. Sabino, Z. Arifin. Open Engineering **11**, *I*, 639 (2021).
- [3] J. Yang, N. Li, J. Shi, W. Tang, G. Zhang, F. Zhang. Multimaterial 3D Printing Techology. Elsevier (2021). P. 113–152.
- [4] G. Cao, S. Cai, H. Zhang, Y. Chen, Y. Tian. ACS Appl. Polym. Mater. 4, 5, 3352 (2022).
- [5] Q. Lu, K. Choi, J.-D. Nam, H.J. Choi. Polymers (Basel) 13, 4, 512 (2021).
- [6] S. Salem, E. Yilmaz. In: Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications / Eds A. Ehrmann, M. Ahmadi, A. Farmani, P. Nguyen-Tri, T.A. Nguyen. Elsevier (2021). P. 139–182.
- [7] A. Sasmal, A. Arockiarajan. Nano Energy **115**, 108733 (2023).
- [8] A. Omelyanchik, V. Antipova, C. Gritsenko, V. Kolesnikova, D. Murzin, Y. Han, A.V. Turutin, I.V. Kubasov, A.M. Kislyuk, T.S. Ilina, D.A. Kiselev, M.I. Voronova, M.D. Malinkovich, Y.N. Parkhomenko, M. Silibin, E.N. Kozlova, D. Peddis, K. Levada, L. Makarova, A. Amirov, V. Rodionova. Nanomater. 11, 5, 1154 (2021).
- [9] Y. Wang, B. Jia, S. Liu, X. Yao, C. Sun. In: Advances in Transdisciplinary Engineering 22. IOS Press (2022). P. 128–138. https://doi.org/10.3233/ATDE220220

- [10] J.-W. Zhang, H.-Y. Guo, X. Chen, R.-T. Liu. In: Magnetoelectric Polymer—Based Composites. Wiley (2017). P. 1–12.
- [11] L.A. Makarova, D.A. Isaev, A.S. Omelyanchik, I.A. Alekhina, M.B. Isaenko, V.V. Rodionova, Y.L. Raikher, N.S. Perov. Polymers (Basel) 14, 1, 153 (2022).
- [12] P. Martins, S. Lanceros-Méndez. Adv. Funct. Mater. **23**, *27*, 3371 (2013).
- [13] K. Maity, D. Mandal. In: Woodhead Publishing in Materials, Advanced Lightweight Multifunctional Materials. Woodhead Publishing (2021). P. 239–282.
- [14] T. Li, Z. Xu, B.B. Xu, Z. Guo, Y. Jiang, X. Zhang, M. Bayati, T.X. Liu, Y.-H. Liu. Nano Res. 16, 7, 10493 (2023).
- [15] L. Zhang, S. Li, Z. Zhu, G. Rui, B. Du, D. Chen, Y.-F. Huang, L. Zhu. Adv. Funct. Mater. 33, 38, 2301302 (2023).
- [16] E. Koumoulos, E. Gkartzou, C.A. Charitidis. Manufact. Rev. 4, 12 (2017). https://doi.org/10.1051/mfreview/2017012
- [17] C. Liu, Q. Li, W. Kang, W. Lei, X. Wang, C. Lu, M. Naebe. J. Mater. Chem. A 10, 1, 10 (2022).
- [18] U.O. Uyor, A.P. Popoola, O. Popoola, V.S. Aigbodion. Adv. Polymer Technol. 37, 8, 2838 (2018).
- [19] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li. J. Membrane Sci. 375, 1 (2011).
- [20] N. Zhu, J. Zhou, L. Zhang, N. Yao, D. Dastan, J. Zhang, Y. Chen, X. Zhang. Soft Matter 19, 24, 4401 (2023).
- [21] C. Li, S.M. Meckler, Z.P. Smith, J.E. Bachman, L. Maserati, J.R. Long, B.A. Helms. Adv. Mater. 30, 8, 1704953 (2018).
- [22] S. Yempally, E. Kacem, D. Ponnamma. Discover Nano 18, 1, 93 (2023).
- [23] C. Cannas, A. Falqui, A. Musinu, D. Peddis, G. Piccaluga. J. Nanoparticle Res. 8, 2, 255 (2006).
- [24] A. Amirov, A. Omelyanchik, D. Murzin, V. Kolesnikova, S. Vorontsov, I. Musov, K. Musov, S. Khashirova, V. Rodionova. Processes 10, 11, 2412 (2022).
- [25] C. Ribeiro, C.M. Costa, D.M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Gonçalves, V.F. Cardoso, S. Lanceros-Méndez. Nature Protoc. 13, 4, 681 (2018).
- [26] F. Orudzhev, S. Ramazanov, D. Sobola, P. Kaspar, T. Trčka, K. Částková, J. Kastyl, I. Zvereva, C. Wang, D. Selimov, R. Gulakhmedov, M. Abdurakhmanov, A. Shuaibov, M. Kadiev. Nano Energy 90, Part B, 106586 (2021).
- [27] X. Cai, T. Lei, D. Sun, L. Lin. RSC Adv. 7, 25, 15382 (2017).
- [28] V. Antipova, A. Omelyanchik, K. Sobolev, S. Pshenichnikov, S. Vorontsov, E. Korepanova, D. Schitz, D. Peddis, L. Panina, K. Levada, V. Rodionova. Polymer (Guildf) 290, 126567 (2024).
- [29] M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaram. Bull. Mater. Sci. 21, 3, 251 (1998).
- [30] M.H. Amiri, H. Sharifi Dehsari, K. Asadi. J. Appl. Phys. 132, 16, 164102 (2022).
- [31] D. Petrukhin, V. Salnikov, A. Nikitin, I. Sidane, S. Slimani, S. Alberti, D. Peddis, A. Omelyanchik, V. Rodionova. J. Composites Sci. 8, 8, 329 (2024).
- [32] N. María, Y. Patil, G. Polymeropoulos, A. Peshkov, V. Rodionov, J. Maiz, N. Hadjichristidis, A.J. Müller. Eur. Polym. J. 179, 111506 (2022).
- [33] E.C. Stoner, E.P. Wohlfarth. Philosophical Trans. Royal Soc. London. Series A, Mathematical and Physical Sciences 240, 826, 599 (1948).
- [34] S. Slimani, A. Talone, M. Abdolrahimi, P. Imperatori, G. Barucca, D. Fiorani, D. Peddis. J. Phys. Chem. C 127, 18, 8840 (2023).

Редактор Е.В. Толстякова