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The problems of studying the lattice properties of a nanocrystal at various pressures and temperatures are

discussed. The changes in the equation of state and baric dependences of various properties of gold during the

transition from macro- to nanocrystal of cubic or rod-like shape of 306 atoms were analyzed. The following

properties were considered: Debye temperature, first and second Grüneisen parameters, elastic modulus, thermal

expansion coefficient, isochoric and isobaric heat capacity, specific free surface energy and its derivative by

temperature, melting point. The pressure derivatives of these functions were also considered. The presented

dependences are compared with the results of other authors and the problems of calculation of these properties

by different methods are discussed. It was shown that at isomorphic-isothermo-isobaric reduction of a nanocrystal

size the values of some properties decrease, others — increase, and there are some that can change their size

dependence at change of P−T -conditions. It was shown that when the nanocrystal shape deviates from the

energy-optimal shape, the size changes of the baric dependences are increase.
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1. Introduction

In recent years, it was experimentally shown that size

effects have a significant impact on the baric dependences

of various properties of nanocrystals [1–3]. Meanwhile,

changes in baric dependences with decreasing nanocrystal

size have been studied relatively little theoretically, both

analytically and using computer simulation. This is asso-

ciated with that different calculation methods for properties

of nanocrystal of N atoms include the specific (per unit

area) surface free energy: σ , its size dependence at different

pressures is difficult for determination.

The experimental measurement of σ value for the

macrocrystal is remarkably laborious and is fimplemented

only at atmospheric pressure and high temperatures [4–6].
At that, even at high temperatures, the accuracy of σ

measurement is very low. As for the nanocrystals, the

experimental dependence of σ function on nanocrystal size

is as not reported yet, since the surface properties of the

nanocrystals are hard to measure. That’s why, in spite of

many papers relating the calculation methods of function

σ (N), till now there is no clear and unambiguous answer

to the question: whether the function σ (N) decreases or

increases during isomorphic (i. e. with unchanged shape)
decrease in number of atoms in nanocrystal under constant

pressure P and temperature T . Current literature (see, for
example, Refs.[7–10]) comprises theoretical papers arguing

both or decrease (this is reported primarily in analytical

studies) and increase (this was determined via computer

modeling) of function σ (N) with an isomorphic-isothermal

reduction in the size of the nanoparticle.

Thus, currently the dependence of function σ on tem-

perature, specific (per atom) volume (v = V/N), size

(or number of atoms) and shape of nanocrystal surface

is difficult for description both analytically, and using

computer simulation. However, without the dependence

σ (T, v, N) it is impossible to obtain the equation of state
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of the nanocrystal, i. e. function P(T, v, N). That is why

it was not yet possible to theoretically study the baric

dependences of properties of nanocrystals with its size

isomorphic decreasing along various isotherms.

In our papers we suggested the analytical method (i. e.
without computer simulation), ensuring calculation, based

on pair potential of interatomic interaction, of both function

σ (T, v, N), and nanocrystal equation of state P(T, v, N).
Here we summarize results obtained by our method and

specify the results obtained by other methods. At that,

if in papers of other authors one or another method was

developed to calculate the size dependences of specific

properties only at P = 0, then here we demonstrate how

under single method we can calculate the size changes of

baric dependences of all lattice properties along various

isotherms. Besides, under the same calculation method

for the first time the derivatives of these dependences

with respect to pressure, both during isomorphic change

of size, and during isomeric (i. e. at constant N) change of

nanocrystal shape.

2. Method for calculating the properties
of macro- and nanocrystals

To calculate the lattice properties of the nanocrystal, it

is necessary to determine both the interaction potential of

its atom pair and the calculation method based on this

potential. Such method was described in detail by us in

Refs. [10,11]. Here we provide basic formulas to calculate

the nanocrystal properties.

The pair interatomic interaction is represented by the

Mie−Lennard-Jones potential in the form:

φ(r) =
D

(b − a)

[

a
(ro

r

)b
− b

(ro
r

)a
]

, (1)

where D and ro are the depth and the coordinate of the

potential minimum, b > a > 1 are numerical parameters,

and r is the distance between atom centers.

Then, using the
”
only nearest neighbor interac-

tion“approximation, the Debye temperature as a function

of the first coordination number and the nanocrystal density

can be determined as follows [12]:

2(kn, R) = Aw(kn, R)ξ

[

−1 +
(

1 +
8D

kBAw(kn, R)ξ2

)1/2
]

.

(2)
Here, kB is Boltzmann constant, kn is first coordination

number that in the nanocrystal depends on both its size

and shape of its surface [13,14], R = ro/c is relative linear

density, c = (6k pv/π)1/3 is distance between centers of

nearest atoms, k p is packing index of nanocrystal structure.

The function Aw arises due to taking into account the energy

of
”
zero vibrations“ of atoms in the crystal:

Aw(kn, R) = KR
5knab(b + 1)

144(b − a)
Rb+2,

KR =
~
2

kBr2om
, ξ =

9

kn(∞)
, (3)

where m is atom mass, ~ is Planck’s constant, kn(∞) is first

coordination number in macrocrystal.

Let the considered nanocrystal is in vacuum and limited

by Gibbs geometric surface. Also for atom interaction

energy calculation we use the
”
only nearest neighbor inter-

action“approximation. Then the dependence of nanocrystal

energy on size and shape will be determined by the depen-

dence on size and shape of average (over the nanocrystal)
value of first coordination number kn. Under accepted

assumptions, using for the oscillation spectrum of the

nanocrystal the Einstein model, the specific (per atom)
Helmholtz free energy of nanocrystal can be determined

by the expression [11,13,14]:

f H(kn, R, T ) =
(kn

2

)

D ·U(R) + 3kB2E(kn, R)

×

{

1

2
+

(

T
2E(kn, R)

)

ln

[

1− exp

(

−
2E(kn, R)

T

)]}

.

(4)
Here, 2E is Einstein temperature associated to Debye

temperature by relationship [15]: 2 = (4/3)2E, function of

potential energy, as per (1), equal to:

U(R) =
aRb − bRa

b − a
.

Let’s suppose the dependence of function kn on size

and shape of the nanocrystal with Gibbs surface does not

depend on density and temperature, and is determined only

by number of atoms in the nanocrystal, by parameter of its

shape and constants kn(∞) and k p. Based on (4) for the

equation of state and isothermal elastic modulus (BT ) one

can obtain expressions [11,14]:

P =−
(∂ f H

∂v

)

T
=

[

kn

6
D ·U ′(R)+3kB2E · γ · Ew

(2E

T

)

]

1

v
,

(5)

BT = −v
(∂P
∂v

)

T
= P +

[

kn

18
D ·U ′′(R) + 3kB2E

× γ(γ − q) · Ew

(2E

T

)

− 3kB · γ2 · T · FE

(2E

T

)

]

1

v
,

(6)
The following functions are introduced here:

Ew(y) = 0.5 +
1

[exp(y) − 1]
,

FE(y) =
∂Ew(y)

∂(1/y)
=

y2 exp(y)

[exp(y) − 1]2
,

U ′(R) = R

[

∂U(R)

∂R

]

=
ab(Rb − Ra)

b − a
,

U ′′(R) = R

[

∂U ′(R)

∂R

]

=
ab(bRb − aRa)

b − a
. (7)
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From Eq. (2) it is easy to find expressions for the first (γ)
and second (q) Grüneisen parameters:

γ = −

(

∂ ln2

∂ ln v

)

T

=
b + 2

6(1 + Xw)
,

q =

(

∂ ln γ

∂ ln v

)

T

= γ
Xw(1 + 2Xw)

(1 + Xw)
, (8)

where function is introduced: Xw = Awξ/2, it determines

the role of quantum effects in the crystal energy.

Since the function 2 in Eq. (2) does not depend on

temperature during isochoric heating of the crystal, then

isochoric and isobaric heat capacities can be determined in

the form [15]:

Cv = 3N · kB · FE

(

2E/T
)

,

C p = Cv(1 + γαpT ). (9)

The isobaric thermal volume-expansion coefficient can be

calculated from the Grüneisen equation [15]:

αp =
γ ·Cv

V · BT
=

γ ·Cv

N · BT [πr3o/(6k p)]

(vo

v

)

, vo =
πr3o
6k p

.

(10)
The obtained Eqs. (2)−(10) ensure calculation of

the dependence of the both equation of state, and

of the specified properties on the normalized volume:

v/vo = (c/ro)3 = R−3, temperature and N− f -arguments

for single-component nanocrystal with specified structure

(i. e. at given values kn(∞) and k p). At that it is necessary
to know both parameters of interatomic potential (1), and
kn(N, f ) — functional dependence of the first coordination

number on size and shape of the nanocrystal.

To determine the dependences of function kn on size

(i. e. number of atoms N) and shape of the nanocrystal

we developed RP-model [13,14], its essence is as follows.

Let us assume that nanocrystal with free Gibbs surface

has the form of a rectangular parallelepiped with a square

base, faceted by faces of the (100) type. The value

f = Nps/Npo is a shape parameter, which is determined

by the ratio of the number of atoms on the side edge Nps to

the number of atoms on the base edge Npo . For a rod-

like shape f > 1, for a cube f = 1, for a plate-shaped

nanocrystal f < 1. The number of atoms in nanocrystal

is equal to: N = f N3
po/α, varies within: 23/α ≤ N ≤ ∞,

where α = π/(6k p) is structure parameter.

Note that shape of rectangular parallelepiped with square

base is forced simplification. Actual nanocrystals have facet

corresponding to their crystal structure and P−T -condition.
But use of RP-model makes it possible the nanocrystal

shape variation in isochoric-isomeric way. Just by this

way the correct determination of both function σ (T, v, N),
and other properties of the nanocrystal was obtained in

Refs. [10,11,13,14,16].
Within the framework of RP-model, the dependence of

the normalized average (over the nanocrystal) value of

the first coordination number on N− f -arguments has the

form [13,14]:

k∗

n =
kn(N, f )

kn(∞)
= 1− Zs ( f )

(α2

N

)1/3

, (11)

where shape function is introduced:

Zs ( f ) =
1 + 2 f
3 f 2/3

. (12)

The function (12) reaches a minimum equal to 1 at

f = 1, i. e. for the cube shape. For plate ( f < 1) or rod-like
( f > 1) shapes, the Zs ( f ) value is greater than 1. Therefore,

the function kn( f )∗ from (11) at any N has a maximum

at f = 1, i. e. for a cube, of the energy-optimal shape of

rectangular parallelepiped. The volume and surface area for

the RP-model are equal to [13,14]:

V = N3
po f c3 = Nαc3, 6 = 6c2αs (Nα)2/3Zs ( f ),

where αs is coefficient considering density of atoms packing

on the facet (i. e. in surface layer) of the nanocrystal:

αs
∼= α2/3 . We can easily see that the volume of the

nanocrystal V does not depend on the shape of the system,

i. e. on the value f .
Within the RP-model, for the function σ (N, f ) —

specific (per unit area) of free surface energy of the face

(100) nanocrystal, isochoric and isobaric derivatives of func-

tion σ (N, f ) with respect to temperature and for surface

pressure (Ps f ) the following expressions [10,11,13,14,16]
were obtained:

σ (N, f ) = −
kn(∞)DR2

12αs r2o
LE(N, f ), (13)

σ ′(T )v =
(∂σ

∂T

)

c,N, f
= −

3kBR2γ(N, f )

2αs (b + 2)r2okn(N, f )∗
FE

(2E

T

)

,

(14)

σ ′(T )P =
(∂σ

∂T

)

P,N, f
= σ ′(T )v + v · αp

(∂σ

∂v

)

T,N, f

= σ ′(T )v −
2

3
σ · αp · 1p, (15)

Ps f =

[

∂(σ6/N)

∂v

]

T,N

= PLs(1− 1p). (16)

Here, the Laplace pressure (PLs) and the functions intro-

duced are written as:

PLs =
26

3V
σ =

4αs Zs( f )

(αN)1/3c
σ = 4αs

(1− k∗

n)

αc
σ, (17)

LE(N, f ) = U(R) + 3Hw(N, T ), (18)

1p = −
1

2

[

∂ ln(σ )

∂ ln(c)

]

T,N,k p, f

= 1 +
1

2LE(N, f )

×

{

U ′(R) − 9

[

q − γ · ty

(2E

T

)

]

Hw(N, T )

}

, (19)

1∗ Physics of the Solid State, 2024, Vol. 66, No. 10



1572 M.N. Magomedov

Hw(N, T ) =
6γ(N, f )

(b + 2)

[

kB2E(N, f )

Dkn(N, f )

]

Ew

(2E

T

)

,

ty (y) = 1−
2y exp(y)

[exp(2y) − 1]
. (20)

In
”
thermodynamic limit“ (i. e. when N → ∞ and

V → ∞ at v = V/N = const) from (11) we obtain

k∗

n(N → ∞) → 1. Then functions PLs from (17) and Ps f

from (16) disappear, and the Eqs. (13)−(15) transform into

formulas for macrocrystal. At T → 0 K functions from (14)
and (15) aspire to zero at any values N or v , this is in

agreement with third law of thermodynamics.

Note that surface pressure can be also determined using

Eq. (5), as difference between pressures calculated for

macro- and nanocrystal by formula:

Ps f = P(T, v, N = ∞) − P(T, v, N, f ). (21)

So, the obtained within the RP-model formulas

from (1)−(20) ensure calculation of dependence of all

lattice and surface properties on size and shape of the

nanocrystal at any (corresponding to solid phase) P−T -
conditions. Just by this method we studied changes of the

both equation of state, and baric dependences of various

properties during transition from macro- to nanocrystal with

Gibbs free surface in Refs. [10,11,13,14,16]. In this review

we present the results obtained for gold and compare them

with modern state of calculations made by other authors.

3. Calculation results of gold nanocrystal
properties

For calculations gold (Au, m(Au)= 196.967 a.m.u.) was

selected as for the gold macrocrystal there are reliable

experimental data used to test the calculation method.

Gold is widely used in nanotechnologies and nanomedicine

due to its low oxidability and well biocompatibility. Gold

has a face-centered cubic (FCC) structure (kn(∞) = 12,

k p = 0.7405, α = π/(6k p) = 0.70709) and does not expe-

rience polymorphic phase transitions up to 220GPa [17].
That is why the equation of state and baric dependences of

the properties of FCC-Au macrocrystal are well studied and

it is used as a pressure standard [18].
The parameters of pair interatomic potential (1) for

FCC-Au were determined with the use of a self-consistency

method in Ref. [16]. They have the following values:

ro = 2.87 · 10−10 m, D/kB = 7446.04K,

b = 15.75, a = 2.79. (22)

The equation of state and properties of macrocrystal

FCC-Au with parameters of interatomic potential (22) were

calculated by us using the Eqs. (1)−(10) in Ref. [19]. As

at P = 0 FCC-Au macrocrystal has a melting point equal

to: Tm(P = 0, N = ∞) = 1337K [20], so in Ref. [19] the

baric and temperature dependences of various properties

of FCC-Au were calculated in range of temperatures:

T = 10−1337K, and pressures: P = 0−110GPa. The baric

dependences obtained in [19] for FCC-Au macrocrystal

showed good agreement with the experimental and theo-

retical results of other authors. Therefore, in this paper we

used the potential parameters from (22).
We studied the change in baric dependences during

the transition from macrocrystal to nanocrystal from

N = 306 atoms. The N = 306 value was chosen for the

following reasons. On the one hand, we wanted to illustrate

most vividly the difference in the baric dependences for

macro- and nano-size systems at various P−T -conditions.
However, on the other hand, as it was shown experimentally

in [21–24], and also by computer modeling in [25–27], and
by the analytical method in [28–31], with the decrease

in size of nanoparticle (nanocrystal or nanodroplet) with

free surface, the parameters of the crystal−liquid phase

transition (C−L PT) in it change. Moreover, at a certain

number of atoms (N0) the specific (per atom) latent heat of
C−L PT disappears: 1h(N0) = 0, and also jump in specific

volume of C−L PT 1v(N0) = 0. Thus, at N ≤ N0 the phase

difference disappears, and C−L PT is no longer possible

here, since for such a cluster the thermodynamic concept

of the solid or liquid phase is no longer applicable. At

P = 0 the following estimates were theoretically obtained:

for metals N0 = 300 [25], 86 [26] and 50−300 [29]; for

silicon: N0 = 23−400 [30]. For FCC-argon by the analytical

method using RP-model it was shown in Ref. [31] that

S-loop of C−L PT on the isotherm of the equation of state

disappears at the following cluster sizes:

N0(T = 150K) = 485 (i. e. Npo = 7)

N0(T = 60K) = 38 (i. e. Npo = 3).

Besides, we took the value N = 306 to study the

influence of the nanocrystal shape on both the equation

of state and the baric dependences of the lattice proper-

ties. The main calculations were made for nanocrystal of

N = f N3
po/α = 306 atoms with the energy optimal shape

of rectangular parallelepiped, i. e., with the shape of cube:

f = 1, Npo = 6, k∗

n = 0.882152, kn = 10.5858.

However, some of the calculations were made for

nanocrystal of same N = f N3
po/α = 306 atoms, but in the

rod shape, i. e. at following values of parameters:

f = 8, Npo = 3, Nps = Npo f = 24,

k∗

n = 0.833048, kn = 9.99658.

This allowed us to study the change in properties during

an isothermal-isobaric change in the nanocrystal shape.

3.1. Equation of state

Modern literature presents many theoretical methods

for size dependences calculation of various properties of

nanocrystal at definite temperature. However, neither paper

when studying the size dependence of properties did not
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Figure 1. Isotherms of the equation of state (a) and isotherm baric dependences of following functions: b — for isochoric derivative

(∂P/∂T )v , c — for Laplace pressure and surface pressure, d — for function 1p from (19). Solid curves are calculations for macrocrystal,

dashed lines are results for cubic nanocrystal. Thin solid line in Figures 1, a and b represents 1337K isotherm for rod-like nanocrystal.

study the equation of state of nanocrystal, i. e. P(v, T ).
At that in these papers (both with analytical and with

computer calculations) by default it is assumed that with
nanocrystal size decreasing in calculations P = 0 is fulfilled.

However, they did not contain evidences of this equality.

This resulted in wrong results, this was stated in by us in
papers [10,32].
Figure 1, a shows the behavior of the thermal equation

of state for FCC-Au, i. e. the isothermal dependences

of the pressure (P , in GPa) on normalized volume

(v/vo = (c/ro)3 = R−3) along three isotherms (bottom-up
for a, b, d and top-down for c): 100, 300, 1337K.

Figure 1, b shows the baric dependence for the isochoric

derivative (∂P/∂T )v (in 10−3 GPa/K), which was calculated
by formula [15]: (∂P/∂T )v = αp · BT . Solid thick curves

show the results for macrocrystal, i. e. for N = ∞. The

dashed lines show the results for cubic nanocrystal ( f = 1)
of 306 atoms. Thin solid line in Figures 1, a and b represents

1337K isotherm for a rod-like ( f = 8) nanocrystal of
306 atoms. The asterisk in Figure 1, b shows the result of

calculating the αp · BT value for FCC-Au macrocrystal at

P = 0 and T = 300K from Ref. [33]. Comparison of our
calculated dependences P(V ) and αp · BT (P, T ) with exper-

imental data for FCC-Au macrocrystal was provided in [19].

It is evident from Figure 1, a that isothermal dependences

P(v/vo) for nano- and macrocrystals intersect at a

certain value of relative volume (v/vo)0. So, in
point: (v/vo)0, P0, surface pressure becomes zero,

i. e.: Ps f (v/vo)0 = P(Macro) − P(Nano) = 0. So, in

this point, according to (19), the following is fulfilled:
1p(N, P0) = 1. This is shown in detail in Figure 1, c and d.

At P > P0 the surface pressure compresses the nanocrystal
(Ps f > 0); and at P < P0 the surface pressure stretches

the nanocrystal: Ps f < 0. Calculations showed that P0

decreases both at isomorphic-isomeric ( f , N — const)
increase in temperature, and at isomorphic-isothermal

( f , T — const) decrease in N.

As can be seen from Figure 1, b at low temperatures
T < 100K the function (∂P/∂T )v increases both with

isomorphic-isobaric decrease in the number of atoms N, and

with isomeric-isobaric deviation of the nanocrystal shape
from the energy optimal shape (for RP-model this is cube).
However, at T > 300K, the function (∂P/∂T )v depends
weakly on the size and shape of the nanocrystal. In [19]
it was shown that there is a certain temperature TB , in the

region of which the Birch approximation is satisfied, which
assumes that at high temperatures the product αp · BT does

not depend on pressure. In this paper for FCC-Au macro-

Physics of the Solid State, 2024, Vol. 66, No. 10
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crystal we obtained: TB(N = ∞) = 137± 15K. For cube

nanocrystal FCC-Au of N = 306 atoms we obtained:

TB(N = 306) = 131± 15K. This indicates weak depen-

dence of function (∂P/∂T )v = αp · BT on size and shape

of nanocrystal at high temperatures.

Figure 1, c shows the isotherms of baric dependences of

Laplace pressure from (17) (three top curves) and surface

pressure from (16) (three bottom rising lines) for FCC-Au

cube nanocrystal of N = 306 atoms. These functions were

calculated along three isotherms (top-down): 100, 300,

1337K. Figure 1, c and d shows that at pressure PS the

function 1p(N) = 1− (Ps f /PLs) from (19) changes sign. If
at low pressures (P < PS) the surface pressure is below

the Laplace pressure: Ps f < PLs, i. e. 1p(N) > 0, then at

P > PS the surface pressure exceeds the Laplace pressure:

Ps f > PLs, i. e. 1p(N) < 0.

Figure 1, a and c show that at P < P0 the surface

pressure is negative: Ps f < 0, i. e. it stretches the

nanocrystal. In addition to our papers [11,14], such behavior

of surface pressure in nanocrystal was also obtained in the

papers of other authors who used the analytical calculation

method: for FCC-Au in [34], for BCC-Nb in [35], for

BCC-W in [36], for BCC of substitutional alloy Mo −W

in [37]. In Ref. [38] by means of molecular dynamics

was studied the surface pressure for FCC-Ag nanocrystal

of spherical shape. In [38] the transition of nanocrystal

surface pressure to the negative region was also indicated.

In the Ref. [39] it was shown that as the size of FCC-

ruthenium (Ru) nanocrystal decreases at P = 0, the average

interatomic distance in it increases. This also indicates that

the nanocrystal is stretched by surface pressure.

3.2. Debye temperature and Grüneisen parameter

Size dependence of the Debye temperature was studied

in many theoretical papers, but the baric dependence the

2(N) function has not been studied due to the absence of

the equation of state of the nanocrystal in these papers. So

far, it has been possible to study the function 2(N, f , P, T )
only within the framework of RP-model.

Figure 2 shows isothermal baric dependences for func-

tions: a — for Debye temperature 2 from (2), b —
for derivative of function 2 with respect to pressure:

2′(P) = (∂2/∂P)T , in K/GPa, c and d — for the first γ and

the second q Grüneisen parameters from (8). Calculations

were performed along three isotherms (from top to bottom

for a and d, from bottom to top for b and c): 100, 300,

1337K. Solid curves correspond to the results of calculation
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Figure 3. Isotherms of baric dependences of functions: a — for elastic modulus BT in GPa, b — for function B ′(P), c — for thermal

expansion coefficient αp in 10−6 1/K, d — for function α′

p(P) in 10−6 1/(GPaK). Solid curves are the calculations for macrocrystal,

and dashed are results for a cubic nanocrystal consisting of 306 atoms. The thin solid line represents the 1337K isotherm for rod-like

nanocrystal.

for macrocrystal, and dashed lines are results for cubic

nanocrystal ( f = 1) consisting of 306 atoms. Thin solid line

represents 1337K isotherm for rod-like ( f = 8) nanocrystal
of 306 atoms.

Figure 2 shows that during isomorphic-isothermal-isobaric

decrease in nanocrystal size the values of Debye tempera-

ture 2 and second Grüneisen parameter q decrease, and

values of 2′(P) and first Grüneisen parameter γ increase

at any pressure. The size dependence of these functions

becomes more pronounced as the temperature rises and

as the nanocrystal shape deviates further from the energy-

optimal one (cubic for the RP model).

From Eqs. (2), (3) and (8) we can easily show that at

limit compression, i. e. at v/v0 → 0, functions 2(v) and

q(v) increase to maximum, and function γ(v) decrease to

zero [12]:

lim
v/v0→0

2(v, N, f ) = 2max(N, f ) =
4kn(N, f )D

9kB

,

lim
v/v0→0

γ = γmin = 0, lim
v/v0→0

q = qmax =
b + 2

3
. (23)

From (22) and (23) for macro- and nanocrystal FCC-Au
we can obtain:

2max(N = ∞) = 39712.2K, qmax = 5.917,

2max(N = 306, f = 1) = 35034.1K.

Comparison of our calculated values 2 and γ for
FCC-Au macrocrystal at P = 0 with experimental data was
performed in Ref. [19]. At P = 0 the 2 decreasing for
FCC-Au upon N decreasing was studied both theoretically
in [40,41], and experimentally in [42]. However, the
dependence of functions 2 and γ on size and shape of
nanocrystal at various P−T -conditions was studied only by
analytical method from (1)−(20) for FCC substitution alloy
Au-Fe in [11], for Si in [14] and for BCC-Nb in [35]. Size
changes for baric dependence of functions 2, 2′(P), γ and
q for FCC-Au were studied by us for the first time.

3.3. Elastic modulus and thermal expansion
coefficient

Figure 3 shows isotherms of baric dependence of the
following functions: a — for isothermal elastic modulus:
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BT = −v(∂P/∂v)T , in GPa, b — for baric derivative of

elastic modulus: B ′(P) = (∂BT /∂P)T , c — for thermal

expansion coefficient: αp = (∂ ln v/∂T )P , in 10−6 1/K,

d — for baric derivative of thermal expansion coefficient:

α′

p(P) = (∂αp/∂P)T , in 10−6 1/(GPa K). Calculations were
performed in accordance with Eqs. (6) and (10) along

three isotherms (from top to bottom, for a and d, from

bottom to top for b and c): 100, 300, 1337 K. Solid curves

are calculations for macrocrystal, dashed curves are results

for cubic nanocrystal ( f = 1) consisting of 306 atoms.

Thin solid line represents 1337K isotherm for rod-like

( f = 8) nanocrystal of 306 atoms. Symbols in Figure 3, a

and c show the calculation results for values of BT and

αp for FCC-Au macrocrystal at P = 0 and T = 300K

from Ref. [33].
Figure 3, a, c and d shows that with isomorphic-

isothermal-isobaric decrease in nanocrystal size the values

BT and α′

p(P) decrease, and value αp increase at any

pressure and temperature. The size variation of these

functions becomes more pronounced as the temperature

rises and as the nanocrystal shape deviates further from the

energy-optimal one (cubic for the RP model). However, size
dependence for the baric derivative B ′(P) is more complex.

Figure 3, b shows that isothermal baric dependences of

function B ′(P) for macro- and nanocrystal at a certain

pressure (PB) intersect, i. e. B ′(PB)∞ − B ′(PB)N = 0.

At pressure PB the size dependence of function B ′(P)
changes its sign. At P < PB B ′(P) increases at isotherm-

isobaric decrease in N, and at P > PB B ′(P) decreases.

Comparison of our calculated dependences BT (P, T ),
B ′(P) and αp(P, T ) with experimental data for FCC-Au

macrocrystal was provided in [19]. Note that size change

of functions BT and αp was studied in many papers

(see, e. g., [11,38,41,43–48]). However, in these papers

the dependence BT and αp on size of nanocrystal was

studied either at v = vo, or at P = 0. But P = 0 meeting

upon decrease in nanocrystal size was not proved in these

papers. As for size change of baric dependences BT and αp,

and their baric derivatives B ′(P) and α′

p(P), the existing

experimental or theoretical methods till now do not permit

evaluation of these functions even at P = 0 and T = 300K.

However, the dependence of functions BT , αp, B ′(P) and

α′

p(P) on the nanocrystal size at various P−T -conditions
was studied by the analytical method from (1)−(20) for

FCC substitution alloy in Au−Fe in [11], for Si in [14], for
BCC-Nb in [35], for BCC-W in [36], for BCC of substitution

alloy Mo−W in [37]. Size changes of baric dependence

of functions BT , αp, B ′(P) and α′

p(P) for FCC-Au were

studied by us for the first time. Under other methods (both
analytical and computer simulation) this was not made yet.

3.4. Isochoric and isobaric thermal capacity

Figure 4 shows isotherms of baric dependence of follo-

wing functions: a — normalized isochoric thermal capacity

Cv/(NkB), b — baric derivative of normalized isochoric

thermal capacity: C′

v(P)/(NkB) = (NkB)−1(∂Cv/∂P)T , in

1/GPa, c — normalized isobaric thermal capacity C p/(NkB),

d — baric derivative of normalized isobaric thermal

capacity: C′

p(P)/(NkB) = (NkB)−1(∂C p/∂P)T , in 1/GPa.

Calculations were performed in accordance with formu-

las (9) along three isotherms (from bottom to top for a, b

and c): 100, 300, 1337K. Solid curves are calculations

for macrocrystal, dashed curves are results for cubic

nanocrystal ( f = 1) consisting of 306 atoms. Thin solid line

represents 1337 K isotherm for rod-like ( f = 8) nanocrystal
of 306 atoms. Symbols in Figure 4, a and c show the

calculation results for values of Cv/(NkB) and C p/(NkB)
for FCC-Au macrocrystal at P = 0 and P = 100GPa on

isotherm T = 300K from Ref. [33].
Comparison of our calculated dependences Cv(P, T ) and

C p(P, T ) with experimental data for FCC-Au macrocrystal

was provided in [19]. In paper [45] we analytical showed

that at c = ro the maximum of surface contribution into

specific isochoric thermal capacity of the nanocrystal is

reached at low temperature T/2 = 0.2026. With tem-

perature rise the size change of isochoric thermal ca-

pacity disappears, this is the result of Dulong−Petit law:

Cv(T/2 ≫ 1)/(NkB) = 3. Figure 4 shows that effect of

size on baric dependence of isobaric thermal capacity is

maximum at high temperatures. But this size change

decreases with pressure rise.

The Refs. [40,43,46–49] evaluated the size change of

thermal capacity at c = ro. However, in these papers

the equation of state of nanocrystal was not studied. So,

evaluations of size contribution into the isobaric thermal

capacity are approximate in these papers. Due to same

reason in publications there are no data in size change of

baric derivatives of isochoric and isobaric thermal capacities

of nanocrystals. The dependence of function C p on

nanocrystal size at various P−T -conditions was studied only

by analytical method from (1)−(20) for FCC substitution

alloy in Au−Fe in [11], for Si in [14], for BCC-W in [36]
and for BCC of substitution alloy Mo−W in [37]. Size

changes of baric dependence of functions Cv , C p, C′

v(P)
and C′

p(P) for FCC-Au were studied by us for the first time.

3.5. Specific free surface energy

Review of modern calculation methods for specific free

surface energy (hereinafter referred to as specific surface

energy) for both macro-, and nanocrystals was made by us

in Refs. [10,16,32]. However, as these papers do not contain

the equation of state, it is unclear — whether the values

of σ (T ) obtained in these papers correspond to the isobar

P = 0?

Figure 5 shows isotherms of baric dependence (a and c)
and isobars of temperature dependence (b and d) for spe-

cific surface energy σ of facet (100) in 10−3 J/m2 (a and b),
and derivative of function σ (100) with respect to pres-

sure σ (P) in 10−3 J/(m2 GPa) (c and d). Calculations

were performed in accordance with Eq. (13) along three

isotherms (from top to bottom, for a, from bottom to top

for c): 100, 300, 1337 K, and along three isobars (from
bottom to top for b, from top to bottom for d): 0, 24,
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Figure 4. Isotherms of baric dependence of functions: a — for normalized isochoric thermal capacity Cv/(NkB), b — for function

C′

v(P)/(NkB) in 1/GPa, c — for normalized isobaric thermal capacity C p/(NkB), d — for function C′

p(P)/(NkB) in 1/GPa. Solid curves

are calculations for macrocrystal, dashed lines are results for cubic nanocrystal. The thin solid line represents the 1337K isotherm for

rod-like nanocrystal. Symbols in Figure 4, a and c show the calculation results for FCC-Au macrocrystal from [33].

60GPa. Solid curves are calculations for macrocrystal,
dashed curves are results for cubic nanocrystal ( f = 1)
consisting of 306 atoms. Thin solid curves in Figure 5, a
and c represent the 1337K isotherm for rod-like nanocrystal
( f = 8) of 306 atoms. Comparison of our calculated values
σ (100) for FCC-Au macrocrystal at P = 0 with evaluations
made by other authors was performed in Refs. [16,19].
From Figure 5, a and b we see that at P = 0, the σ value

decreases with decreasing N, the more noticeably the higher
the temperature. However, at low temperatures and high
pressures on isotherm there are two P-points, where the
specific surface energy does not depend on the nanocrystal
size: σ (N) = σ (∞). With temperature rise these P-points
approach each other, and at high temperatures such P-points
are not observed on the isotherm. In region, enclosed by
P-points value σ increases with isothermal-isobaric decrease
in nanocrystal size. Such function σ (P, N) behaviour is due
that at low temperatures, with increasing pressure, the sur-
face pressure compresses the nanocrystal (see Figure 1, c).
This results in more noticeable rise of function σ (N) with
pressure as compared to rise of function σ (∞). So, the first
P-point appears, as well as region, where the following is
met: σ (N) > σ (∞). With pressure rise the function σ (N)
reaches maximum at lower pressure than function σ (∞).

This results in second P-point formation on the isotherm.
During isobaric rise of temperature the function σ (N)
decreases more than function σ (∞). As result the region
with P-points disappears at high temperatures.
It can be seen from Figure 5, b and c that σ ′(P)T in-

creases with isomorphic-isomeric-isobaric temperature rise.
At that on isotherm at definite pressure (Pσ ) there is a
point, where the baric dependences σ ′(P)T for macro-
and nanocrystal intersect, i. e. σ ′(Pσ )T,∞ − σ ′(Pσ )T,N = 0.
In these crossing points the size dependence of function
σ ′(P)T changes. At P < Pσ the function σ ′(P)T rises upon
isothermal-isobaric decrease of N, and at P > Pσ the func-
tion σ ′(P)T decreases. Here we see the analogy between
baric dependences of function σ ′(P)T from Figure 5, b and
function B ′(P) from Figure 3, b.
We see from Eq. (13) that at strong isothermal com-

pressions or stretchings, or at large isobaric heating of the
crystal the function σ (P) transits in negative region. It
is easy to understand that at σ < 0 fragmentation shall
start, i. e. the crystal will aspire to increase in any way its
specific (per atom) surface: either free (under stretching),
or intercrystalline (under compression). The conditions of
baric and temperature fragmentation of the crystal were
considered by us in detail in Ref. [14].
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Figure 5. Isotherms of baric dependence (a and c) and isobars of temperature dependence (b and d) for specific surface energy σ

in 10−3 J/m2 (a and b), and derivative of function σ with respect to pressure σ ′(P) in 10−3 J/(m2 GPa) (c and d). Solid curves are

calculations for macrocrystal, dashed lines are results for cubic nanocrystal. Thin solid line in Figure 5, a and c represent the 1337K

isotherm for rod-like nanocrystal.

3.6. Derivatives of specific surface energy with
respect to temperature

Figure 6 shows isotherms of baric dependence (a and c)
and isobars of temperature dependence (b and d) for
isochoric derivatives of specific surface energy with respect
to temperature, i. e. for function σ ′(T )v (a and b),
and function σ ′(T )P (c and d). Both functions are in
10−6 J/(m2 K). Calculations were performed in accordance

with Eqs. (14) and (15) along three isotherms (from top
to bottom, for a and c): 100, 300, and 1337K, and
along three isobars (from bottom to top, for d): 0, 24,
60GPa. Solid curves correspond to the results of calculation

for macrocrystal, and dashed lines are results for cubic
nanocrystal ( f = 1) consisting of 306 atoms. Thin solid
line in Figure 6, a and c represents 1337K isotherm for rod-
like ( f = 8) nanocrystal of 306 atoms. Comparison of our

calculated values σ ′(T )P for FCC-Au macrocrystal at P = 0
with evaluations made by other authors was performed in
Refs. [16,19].
Figure 6 shows that during isomorphic-isothermal-isobaric

decrease in nanocrystal size |σ ′(T )v | and |σ ′(T )P | increase
at any P−T -conditions. The size changes of these func-
tions becomes more noticeable as the temperature rises

and at the nanocrystal shape deviates from the energy-

optimal one (cubic for the RP model). At low pressures

|σ ′(T )v | < |σ ′(T )P | is fulfilled. However, at high pressures

this inequality changes to opposite. Therefore, one should

not equate functions σ ′(T )v and σ ′(T )P , as it is done in

certain studies. At T ≫ 2 and low pressures the function

σ ′(T )v is almost independent of temperature, and |σ ′(T )P |
is greater the higher the temperature is.

As it was noted in Ref. [45], function σ at T = 0K shall

satisfy the following conditions (i = v or P) to adhere to

the third law of thermodynamics:

lim
T→0K

(∂σ

∂T

)

i,N
= −0,

lim
T→0K

[∂(∂σ/∂T )v,N
∂v

]

T,N
= −0,

lim
T→0K

T
[ ∂

∂T

(∂σ

∂T

)

v,N

]

i,N
= −0. (24)

Conditions (24) are valid for any crystal structure, at any

specific volume and pressure, and for any size and shape of

the nanocrystal. At the same time, in some papers for the
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temperature dependence σ (T ) the linear approximation of

the following form was used [4,6]:

σ (T ) = σ (T = 0K) − const · T. (25)

However, it follows from Figure 6 the approximation (25)
is valid at high temperatures only: T ≫ 2 (for i = v)
or at high pressures (for i = v or i = P). The use of

approximation (25) at low temperatures can lead both

to numerical errors and to violation of the third law of

thermodynamics (24).
Different methods for calculation of the derivative of

function σ with respect to temperature for macrocrystal at

P = 0 were suggested (see, for example, Ref. [4–6,50–55]).
However, since the equation of state considering the surface

was not given in these studies, it remains unclear whether

the obtained in these papers value σ ′(T ) is an isochoric

derivative or isobaric one. At the same time, it can be seen

from Figure 6 that the difference between functions σ ′(T )v
and σ ′(T )P is significant, especially at P = 0.

The specific surface energy decreasing with the nanocrys-

tal size decreasing at P = 0 was obtained also in theoretical

papers of other authors [7,8,40,49,56] (although the equality

P = 0 was not proved in these papers). However, size

dependence of functions σ (P) and σ ′(P) was studied by

analytical method from (1)−(20) only for FCC substitution

alloy in Au−Fe [11], for Si in [14], for FCC-Rh in [16],
for BCC-Nb in [35], for BCC-W in [36], and for BCC

substitution alloy Mo−W in [37]. These data are not yet

obtained by other methods (both analytical and computer).
The problem here is related to the fact that in the theoretical

models within which the function σ was calculated, the

equation of state of the crystal taking into account the

surface was not obtained. Meanwhile, the dependence σ (P)
is necessary for studying both the crack initiation under

baric action on the macrocrystal, and for obtaining the

equation of state for the nanocrystal. The size changes of

baric dependence of functions σ , σ ′(P), σ ′(T )v and σ ′(T )P

for FCC-Au were studied by us for the first time.

3.7. Baric dependence of melting point

The melt point is single parameter, which the size depen-

dence can be experimentally measured [57,58]. That’s why

various calculation methods for nanocrystal properties were
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checked exactly during calculation of the size dependence

of melt point. However, it was not possible to prove that the

dependence Tm(N) obtained in these papers is an isobaric

size dependence in these papers.

There is no melting theory [59], so to study the size de-

pendence of the melt point various empiric criteria are used.

In the Ref. [60], based on the method from Ref. [19] and

the delocalization criterion for the phase transition crystal-

liquid from Refs. [59,61], the expression was obtained to

calculate the baric dependence of the melting point (Tm) for
single-component macrocrystal, which has the form:

Tm(P) = Tm(P, Tm(0))

× exp
[

−
b
3
αp(P, Tm(0))[Tm(P, Tm(0)) − Tm(0)]

]

, (26)

where Tm(0) — melting point of macrocrystal at P = 0,

αp(P, Tm(0)) — thermal volumetric expansion coefficient at

pressure P, calculated along the isotherm Tm(0) [19,60],

Tm(P, Tm(0)) = Tm(0) ·

[

co(P, Tm(0)) · 2o(P, Tm(0))

co(0, Tm(0)) · 2o(0, Tm(0))

]2

×
f y (yw(P, Tm(0)))

f y(yw(0, Tm(0)))
. (27)

Function f y (yw) appears in (27) in order to consider

quantum effects and is written as [60]:

f y(yw) =
2

yw

[1− exp(−yw)]

[1 + exp(−yw)]
, yw =

2E

T
=

32

4T
. (28)

Within RP-model the baric dependence of the melting

point from (26) can be summarized for the case of

nanocrystal of N atoms in the form [62]:

Tm(P, N) = Tm(P, Tm(0), N) exp
[

−
b
3
αp(P, Tm(0), N)

× [Tm(P, Tm(0), N) − Tm(0, Tm(0), N)]
]

, (29)

Here, we introduce functions that are summarized (27)
for the case of nanocrystal:

Tm(P, Tm(0), N) = Tm(0, Tm(0), N)

×
[co(P, Tm(0), N) · 2o(P, Tm(0), N)

co(0, Tm(0), N) · 2o(0, Tm(0), N)

]2

×
f y(yw(P, Tm(0), N))

f y (yw(0, Tm(0), N))
. (30)

Tm(0, Tm(0), N) = Tm(0)

×
[ co(0, Tm(0), N) ·2o(0, Tm(0), N)

co(0, Tm(0),∞) ·2o(0, Tm(0),∞)

]2

×
f y(yw(0, Tm(0), N))

f y (yw(0, Tm(0),∞))
. (31)

In
”
thermodynamic limit“ (i. e. when N → ∞

and V → ∞ at v = V/N = const) from (12) we ob-

tain k∗

n(N → ∞) = 1. Then from (31) we obtain

Tm(0, Tm(0), N → ∞) = Tm(0), and Eq. (30) transits into

function (27).
When using potential parameters (22), by Eqs. (3)−(20)

for parameters included in formulas (30) and (31) along

isotherm Tm(0) = 1337K at P = 0 we obtained:

for macrocrystal:

co(0, Tm(0),∞) = 2.93432 · 10−10 m,

2o(0, Tm(0),∞) = 168.280K,

for nano-cube:

co(0, Tm(0), 306, 1) = 2.94560 · 10−10 m,

2o(0, Tm(0), 306, 1) = 152.793K,

for nano-rod:

co(0, Tm(0), 306, 8) = 2.95162 · 10−10 m,

2o(0, Tm(0), 306, 8) = 145.823K.

Using these values and Eqs. (3)−(20), in Ref. [62] the

baric dependences of the melting point were calculated for

both macro- and nanocrystals of 306 atoms with cube and

rod-like surfaces.

Figure 7 shows baric dependences both for the mel-

ting temperature Tm(P) (a and c), and for the melt-

ing temperature derivative with respect to pressure:

T ′

m(P) = dTm/dP (b and d) in K/GPa. Function T ′

m(P)
was calculated by means of numerical differentiation of

isothermal dependence from (29) with respect to pressure.

In Figure 7 the solid and dashed lines show the experimental

dependences for the FCC-Au macrocrystal from Refs. [63]
and [20], respectively. These experimental data were

approximated by the Simon−Glatzel equation − of the

following form:

Tm(P) = Tm0

[

1 +
P
P0

]cs

, (32)

T ′

m(P) =
dTm(P)

dP
= Tm0

cs

P0

[

1 +
P
P0

]cs−1

. (33)

In Ref. [63] for FCC-Au for the pressure region up to

6GPa we obtained:

Tm0 = 1339K, P0 = 16.1GPa, cs = 0.57

— solid line in Figure 7.

In Ref. [20] for FCC-Au for the pressure region up to

106GPa were obtained:

Tm0=1337K, P0=22.265 ± 1.83GPa, cs =0.662± 0.03

— dashed line in Figure 7.
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Figure 7. Baric dependence of the melting point Tm(P) (a and c), and its derivative with respect to pressure T ′

m(P) (b and d) for FCC-Au.
The upper graphs show the low pressure region: P = 0−20GPa, and in bottom graphs the range P = 0−100GPa is shown.

Also in the Ref. [20] the dependence Tm(P,∞) for

FCC-Au was calculated using the molecular dynamics

simulations. For the pressure range up to 107GPa were

obtained:

Tm0 = 1181K, P0 = 17.94GPa, cs = 0.709.

This calculated dependence is shown in Figure 7 by dash-

dotted line.

Our calculation for macrocrystal is shown by solid

thick line, which practically merges with the experimental

dependence Tm(P) from Ref. [20]. The dotted line shows

our calculations for cube nanocrystal of 306 atoms. The

thin solid line shows our calculations for rod-like nanocrystal

of 306 atoms.

From Figure 7, a and c we see that our dependence

Tm(P) for the macrocrystal is in better agreement with

the experimental dependences from Refs. [20,63], than

dependence obtained in Ref. [20] by molecular dynamics

simulations up to 100GPa. As can be seen from Figu-

re 7, a and c the dependence Tm(P) for the nanocrystal

lays below the dependence for macrocrystal. Moreover,

the difference Tm(P,∞) − Tm(P, N) is greater, the greater

the nanocrystal shape deviates from the energy optimal

shape (for RP-model this is cube). This is in agree-

ment with experimental and theoretical results obtained

in Refs. [26,29,34,40,43,46,49,64–69] for FCC metals at

P = 0 (although the equality P = 0 was not proved in these

papers). From Figure 7, a it also follows that during isobaric

heating of an array of isomeric (i. e. with the same number

of atoms N) nanocrystals the nanocrystals, whose shape

deviates most from the energy optimal shape, will melt first.

Nanocrystals with energy optimal shape have maximum

melting point for a given number of atoms. This was first

stated in the Ref. [13]. In this case, the shape relaxation can

occur, i. e., nanocrystal with
”
non-optimal“ shape, having

melted, can immediately crystallize into a more
”
refractory“

energy optimal shape.

As can be seen from Figure 7, b the baric dependences of

the functions T ′

m(P) for cube macro- and nanocrystal inter-

sect at the point: Px = 13.63GPa, T ′

m(P)x = 34.75K/GPa.

This means that at low pressures T ′

m(P) increases, and at

P > Px T ′

m(P) decreases upon isomorphic-isobaric decrease

in the nanocrystal size. However, as can be seen from

Figure 7, the dependence of the function T ′

m(P) on size

and shape is insignificant. This indicates that, with
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constant N− f -arguments the baric dependences Tm(P,∞)
and Tm(P, N, f ) are practically parallel.

Note that the dependences of the melting point on size

and shape at various pressures were also studied by the

analytical method from (1)−(20) for Si in [14,30], for

FCC-Au in [34], for BCC-Nb in [35], and for BCC-Mo

in [70]. However, in these papers a simplified formula

was used to calculate the dependence Tm(P, N), which we

described in detail in Ref. [56]. Therefore, the agreement

with the experimental data for macrocrystal in these papers

was worse than that shown in Figure 7.

The experimental and theoretical determination of the

dependence Tm(N) even at P = 0 is a very difficult

task [64–69]. Therefore, in the literature there are many

different dependencies Tm(P = 0, N), which lie in a wide

range of values [34,64–69]. For example, according

to estimates from [64] (Figure 2), for a spherical Au

nanoparticle with a radius of 1.1 nm (i. e. of N = 309

atoms)
”
surface melting temperature“ lies in the range:

Tm(P = 0, N = 309)surf = 473−873K, and
”
core melting

temperature“ of nanoparticles is by 200−250K higher.

Thus, the entire Au nanocrystal of 309 atoms will melt

after 1073−1123K. In our calculations for homogeneous

nanocrystal with geometric Gibbs surface, we obtained

(Figure 7, a):
for cube shape:

Tm(P = 0, N = 306, f = 1) = 1111.34K,

for rod-like shape:

Tm(P = 0, N = 306, f = 8) = 1004.58K.

So, the obtained value of Tm(P = 0, N = 306, f = 1)
is in good agreement with the melting point of the

entire nanocrystal of 309 atoms, obtained in Ref. [64].
This confirms not only the calculation method for size

dependence of the melting point, but also the used here

method of dependence calculation of all lattice properties

of the nanocrystal both on its size, and shape of its surface.

4. Discussion of results

For almost all metals the energy of a pair interatomic

bond is much greater than the energy of
”
zero“ vibrations

of atoms, i. e., the condition is satisfied:

8D
kBAw(kn, c)ξ2

≫ 1.

Then formula (4) can be simplified to form:

2(kn, c) ∼=

[

8DAw(kn, c)

kB

]1/2

=

[

5~
2Dknab(b + 1)

18k2
Bmr2o(b − a)

( ro
c

)b+2
]1/2

,

2∗ =
2(N, R)

2(∞, 1)
∼= (k∗

n)
1/2R(b+2)/2. (34)

For the function: Xw = Awξ/2, which is included in (8),
we can easily obtain:

Xw(N, R) =
Aw(N, R)ξ

2(N, R)
∼= Xw(∞, 1) · (k∗

n)
1/2R(b+2)/2,

where designation are introduced:

Xw(∞, 1) =
Aw(∞, 1)ξ

2(∞, 1)
∼=

[

ξ2kBAw(∞, 1)

8D

]1/2

≪ 1.

Then for the first, second and third Grüneisen parameters

we can obtain:

γ(N, R) ∼=
b + 2

6

[

1 + Xw(∞, 1) · (k∗

n)
1/2R(b+2)/2

]

−1
,

q(N, R) ∼= γXw(N, R) ∼= q(∞, 1) · (k∗

n)
1/2R(b+2)/2,

z (N, R) = −
( ∂ ln q
∂ ln v

)

T
=

(b + 2)

6

(1 + 3Xw)

(1 + Xw)2

∼=
(b + 2)

6

[

1 + Xw(∞, 1) · (k∗

n)
1/2R(b+2)/2

]

,

(35)
where: q(∞, 1) ∼= γ(∞, 1)Xw(∞, 1).
Figure 8 shows the isochoric (at R = 1) dependences

of normalized (to values for macrocrystal) functions: k∗

n
from (11), A∗

w from (3), 2∗ from (2), γ∗, q∗ from (8)
and z ∗ from (35) of argument 1/N1/3. Solid symbols

connected by solid lines are obtained for cube shape,

i. e. at f = 1. Open symbols connected by dashed

lines were obtained for rod-like shape at f = 8. Here,

F∗ = F(N, R)/F(N = ∞, R = 1). Symbols on isomorphs

indicate position of permitted (at given f ) number of atoms

in nanocrystal: N = f N3
po/α, where Npo = 2, 3, 4, . . . —

number of atoms on edge of square base of parallelepiped.

Calculations are made for FCC-Au nanocrystal with po-

tential parameters from (22). From Figure 8 we see

that if crystal shape deviates from energy optimal shape

(for RP-model this is cube) the size dependences amplify.

At that, for the first and third Grüneisen parameters the

size dependences are insignificant as compared to other

functions.

Function k∗

n from (11) decreasing results in inclination

decreasing of function P(v/vo) from (5), and function

2∗ from (2) decreasing results in v(P = 0)/vo increasing,

see Figure 1. That’s why for nanocrystal value of P = 0

is reached at higher specific volume, i. e. relationship is

satisfied:

(v(P = 0)

vo

)

Nano
>

(v(P = 0)

vo

)

Macro
.

This inequality agrees with the results of experimental and

theoretical papers [39,71–75].
Such change of function P(v/vo) results in decrease

in isothermal elastic modulus BT from (6), see Figu-

re 2. Decrease in elastic modulus during isothermal

decrease in nanocrystal size was also obtained in theoretical
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and experimental papers of other authors (for example,

in [43,44,47,71,75–79]). At the same time in some papers

(see summary in [11]) were observed the increase in elastic

modulus BT during the nanocrystal size decreasing. It

was shown in Ref. [11] that this is associated with methods

used in these papers for experimental or theoretical study

of nanocrystals.

For example, in Ref. [80] by Raman spectrum study

were detected the elastic modulus increasing of nano-

diamond when its size increases. However, this was due to

Hall−Petch effect for sample of pressed 2−5 nm diamond

particles obtained by detonation method. Besides, BT (N)
increasing can be attributed to the fact that nanopowder

of diamond before pressing was additionally mechanically

activated in a planetary ball mill. This resulted in significant

change in surface properties of diamond nanogranules.

Compression and mechanical activation of the diamond

nanopowder resulted in BT rise in near surface region of

the nanocrystals. And as with nanocrystal size decreasing

the contribution of the near-surface region increases, this

resulted to increase in BT (N) — elastic modulus of the

entire nanocrystal upon decrease in size of nano-diamond

identified in Ref. [80]. This statement is also confirmed

by the fact that diamond nanopowder prepared without

compression and mechanical activation in Ref. [75] showed
decrease in the elastic modulus with decrease in size of the

diamond nanogranules.

For better understanding of effect of size and shape

of nanocrystal on the thermal expansion coefficient and

specific thermal capacity let’s present the Helmholtz specific

free energy of nanocrystal with Gibbs surface from Eq. (4)
as sum of volume ( f Hin) and surface contributions as

follows:

f H = f Hin + σ
(6

N

)

.

If number of atoms in system is constant: dN = 0,

then specific (per atom) entropy (s) and isochoric thermal

capacity (cv) of such system are determined by expressions

of the following form [14,45,81]:

s = −

(

∂ f Hin

∂T

)

v,N

−

[

∂(σ6/N)

∂T

]

v,N

= s in −

[

(6

N

)(∂σ

∂T

)

v,N
+ σ

(∂(6/N)

∂T

)

v,N

]

,

cv = T

(

∂s
∂T

)

v,N

= cv in − T

{

(6

N

)(∂2σ

∂T 2

)

v,N

+ 2
(∂(6/N)

∂T

)

v,N

(∂σ

∂T

)

v,N
+ σ

(∂2(6/N)

∂T 2

)

v,N

}

.

(36)

If the specific surface 6/N does not change with temper-

ature at constant values of v and N, then for functions s
and cv from (36), and also for product αpBT we will obtain

the expressions:

s = s in −
(6

N

)(∂σ

∂T

)

v,N
, cv = cv in −

(6

N

)

T
(∂2σ

∂T 2

)

v,N
,

(37)

αpBT =
( ∂s
∂v

)

T
= (αpBT )in

−

{

(∂σ

∂T

)

v,N

[

∂(6/N)

∂v

]

T,N

+
(6

N

)

[

∂(∂σ/∂T )v,N
∂v

]

T,N

}

.

(38)

As it was shown within RP-model [14,45,81], for specific
values of volume, surface area and isochoric derivative of

specific surface energy with respect to temperature we can

obtain expressions:

v = αc3,

6/N = 6c2αs (α
2/N)1/3Zs( f )

= 6αs c2(1− k∗

n) = 6v2/3(1− k∗

n),
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(∂σ

∂T

)

v,N
= −

(σ ′

∞

k∗

n

)

FE(y) < 0, (39)

σ ′

∞
= − lim

T→∞

N→∞

(∂σ

∂T

)

v,N

∼=
kB

4αs c2

=
kB

4v2/3
=

3kB

2

(1− k∗

n

6/N

)

. (40)

Then from (39) and (40) we get the expressions:

T
(∂2σ

∂T 2

)

v,N
= −

[ σ ′

∞

k∗

n(N, f )

]

GE(y),

[

∂(∂σ )/∂T )v,N
∂v

]

T,N

=

(

σ ′

∞

vk∗

n

)[

2

3
FE(y) − γGE(y)

]

,

(41)
where function is introduced:

GE(y)=−y

[

∂FE(y)

∂y

]

=FE(y)

{

y

[

exp(y) + 1

exp(y) − 1

]

− 2

}

≥ 0.

(42)

Using (39)−(42), Eqs. (37) and (38) can be converted to

form:

s = s in −
(6

N

)(∂σ

∂T

)

v,N
= s in +

(6

N

)(σ ′

∞

k∗

n

)

FE(y)

= s in +
3kB

2

(1− k∗

n

k∗

n

)

FE(y), (43)

cv = cv in −
6

N
T

(∂2σ

∂T 2

)

v,N
= cv in +

3kB

2

(1− k∗

n

k∗

n

)

GE(y),

(44)

αpBT = (αpBT )in +
3kB

2v
γ
(1− k∗

n

k∗

n

)

GE(y), (45)

In
”
thermodynamic limit“ (i. e. when N → ∞

and V → ∞ at v = V/N = const) from (11) we ob-

tain k∗

n(N → ∞) → 1. Then surface contributions in

Eqs. (43)−(45) disappear. We see from (39) and (41) that

at T = 0K they satisfy the conditions (24), i. e. the third law

of thermodynamics is satisfied at any size of nanocrystal.

Figure 9 shows the dependence of functions Ew(y)
and FE(y) from (7), and GE(y) from (42) on nor-

malized temperature 1/y = T/2E(N, f ). As can be

seen from (42) and Figure 9 that function GE(y) satis-

fies the conditions: GE(1/y = 0) = 0, GE(1/y = ∞) = 0,

and at 1/y = T/2E(N, f ) = 0.286 reaches maximum:

MAX[GE(y)] = 0.676. The following conclusions may be

drawn from these results:

1) At T = 0K surface contributions to the specific en-

tropy, thermal capacity, to product of αpBT and to thermal

expansion coefficient disappear, not violating the third law

of thermodynamics.

2) At T/2E = ∞ surface contributions in specific iso-

choric thermal capacity from (44) and to product of αpBT

from (45) disappear, not violating the law of classic statisti-
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Figure 9. Functions Ew(y), FE(y) and GE(y) vs. argument

1/y = T/2E(N, f ).

cal physics on equidistribution of kinetic energy among the

degrees of freedom of the system, the consequence of which

is the Dulong−Petit law.

3) At Tmax(N, f ) = 0.2145 ·2(N, f ) surface contribu-

tions in specific thermal capacity from (44) and in product

of αpBT from (45) reach maximum.

4) During isomorphic-isothermal-isobaric decrease in

nanocrystal size the maximum increases, and Tmax de-

creases.

5) During isomorphic-isomeric-isothermal compression

of nanocrystal the values of 2 and Tmax increase.

Note that maximum of function 1cv(T ) = cv(T )Nano
− cv(T )Macro at low temperatures and P = 0 is identified

also in papers of other authors (for example, in [82–87]).
Maximum presence in function 1αp(T ) = αp(T )Nano
− αp(T )Macro at low temperatures and P = 0 leads to

increase in function αp(T )Nano in range of low temper-

atures, see Figure 3. That’s why if macrocrystal at

low temperatures has negative thermal expansion coeffi-

cient (diamond, silicon etc.), the crystal transformation

into nanoscale state can ensure isothermal increase in

αp(T ≪ 2), up to positive value, as it was specified in

Refs. [14,81].

We see from (43)−(45), that surface contributions

in entropy, thermal capacity and in thermal expansion

coefficient are positive. However, thermal variation of

surface shape of the nanocrystal can provide definite

contribution into both entropy, and thermal capacity of

nanocrystal. If during isochoric heating the function

6/N changes, then from (36) we see that additional

(as compared to (37)) terms can result in some ef-

fects determined by only thermal variation of nanocrystal

shape. If in formula for entropy in (36) the inequality
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is met:

(

∂ ln(6/N)

∂T

)

v,N

=

=

(

∂ ln(ZS( f ))

∂T

)

v,N

> −

(

∂ ln(σ )

∂T

)

v,N

> 0, (46)

i. e. if specific surface during constant-volume heating

increases greater then surface energy decreases, then surface

contribution in the specific entropy of nanocrystal will be

negative: s s f = s − s in < 0.

If in Eq. (36) for thermal capacity the condition is met:

(

6

N

)(

∂2σ

∂T 2

)

v,N

+ 2

(

∂(6/N)

∂T

)

v,N

(

∂σ

∂T

)

v,N

+ σ

(

∂2(6/N)

∂T 2

)

v,N

> 0, (47)

then surface contribution into the specific thermal capacity

of nanocrystal will be negative: cvs f = cv − cvin < 0. Such

situation is possible for the nanocrystal with nonequilibrium

morphology. For example, if during heating of
”
noncubic“

(plate, rod-like or
”
fractal“) nanocrystal its shape will go

to energy optimal shape, and its specific surface area

will decrease (at constant values of v and N), then the

released in such way surface energy will decrease the

specific thermal capacity of the nanocrystal. However,

such relaxation processes shall not lead to breaching of

the stability condition of thermodynamic equilibrium of the

system [15]: cv > 0 and c p > 0. That’s why, the realization

of state with negative thermal capacity in the nanocrystal is

impossible, as it was indicated in the Ref. [88].
The specific surface energy decreasing during isothermal

decrease in the nanocrystal size was stated in many papers

(see for example, [7,9,40,49,56]). From Eq. (13) we see

that function σ (N) decreasing during isomorphic-isobaric-

isothermal decrease in N is due to both c/ro increasing,

and function 2(kn, c) decreasing. At the same time there

are papers, where function σ (N) increasing was obtained

during isomorphic-isothermal decrease in N (for example

see [8]). We showed in Refs. [10,32], that nanocrystal

was compressed by surface pressure, which increases upon

isomorphic-isothermal decrease in N. Such compression

resulted in these calculations to rise in function σ (N) during
isomorphic-isothermal decrease in nanocrystal size.

It was shown in Ref. [11], that functions BT (N) and σ (N)
decreasing during isomorphic-isobaric-isothermal decrease

in N results in increase in Poisson’s ratio µp(N). At that

the normalized (to value for macrocrystal) dependence for

elastic modulus (B∗), Young’s modulus (Y ∗) and shear

modulus (G∗) comply with the inequality:

B∗ > Y∗ > G∗ > k∗

n . (48)

The Poisson’s ratio increasing upon thickness decreasing

of nanoplate or nanorod was obtained both experimentally

for diamond in [75] and gold in [89], and theoretically

for W in [90], and for Cu and Ta in [91]. All these

results confirm the correctness of our calculation method

for functions σ (T, v, N) and P(T, v, N), that are basis of

both temperature, and baric changes of all lattice properties

of nanocrystal.

Note that for calculation of lattice and surface properties

of single-component crystals we used model of Einstein

crystal, i. e. model of independent harmonic oscillators. At

that, see Eqs. [19,32,60,62], we obtained good agreement

with experiment. This means that anharmonicity of atoms

oscillations makes small contribution both into thermal

expansion coefficient, and thermal capacity, and into surface

properties and melting point of the crystal. This statement

is in agreement with results of papers [54,59,92–96],
in which show that effect of anharmonicity of atoms

oscillation on properties of both classic [54,59,92–94], and
quantum [59,95,96] single-component crystals is insignifi-

cant. We showed that melting is due to delocalization

of definite portion of atoms of both macro- [61], and

nanocrystal [31,97].
Also note that in the Eqs. (4)−(20), also as in our

papers [10–14,16,19,32], the contribution of electronic sub-

system into the thermodynamic parameters is not consid-

ered. This is due to the fact that potential (1), by definition,

describes the pair interaction of electrically neutral atoms.

In addition, as was shown in Refs. [98–101], the errors

that arise in the lattice properties calculation due to the

exclusion of the electronic subsystem from consideration are

negligibly small. For example, as indicated in [98], for gold
macrocrystal the contribution of the electronic subsystem to

the pressure is 0.01 and 0.5 GPa at 1000K and 5000K,

respectively. This contribution is much smaller than the

error in pressure measurements at these temperatures.

5. Conclusion

Thus, by analytical method, that uses Mie−Lennard-

Jones pair 4-parameter potential of interatomic interaction,

the changes in equation of state and baric dependences of

various properties of gold were studied during transition

from macrocrystal to nanocrystal of cube or rod-like shape

comprising N = 306 atoms.

It is shown that at P = 0 the specific (per atom) volume

for nanocrystal is larger than in macrocrystal. At that the

difference is larger the higher temperature is or the more

nanocrystal shape deviates from the energy optimum one

(cube for the RP model).
At any pressure and temperature during isothermal-

isobaric decrease in N the following functions decrease: 2,

q, BT , Tm. At that values of following properties increase:

2′(P), γ , αp, |α
′

p(P)|, C i(P), |C′

i(P)|, |σ ′(T )i |. It is shown

that such properties as: αp · BT , B ′(P), σ , σ ′(P), T ′

m(P),
can change their size dependence if P−T -conditions change.
It is shown that at any pressure the melting point

Tm(P, N, f ) decreases both with isomorphic-isobaric de-
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crease in the number of atoms N and with isomer-isobaric

deviation of the nanocrystal shape from the energy optimal

shape (for RP-models it is cube). It is shown that

the value of the baric derivative of the melting point

T ′

m(P) for nanocrystal at low pressures is greater, and

at high pressures it is less than the value T ′

m(P) for a

macrocrystal. In this case, the dependence of the function

T ′

m(P) on the size of the nanocrystal is insignificant, i. e., for

constant N− f -arguments the baric dependences Tm(P,∞)
and Tm(P, N, f ) are practically parallel.

It is shown that during isothermal-isobaric decrease in N
functions kn, 2 and σ (N) decrease more noticeable the

larger the nanocrystal shape deviates from most energy

optimal shape. This results in that upon the nanocrystal

shape deviation from the energy optimal shape the size

changes of baric dependences of nanocrystal properties

increase.
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