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1. Introduction

During last decade extensive attention is drawn to

magnetic materials, which ground state is a helical structure.

In crystals without the inversion center the helical ordering

is frequently associated with Dzyaloshinskii–Moriya interac-

tion, which is theoretically described by Lifshitz invariants

in the free energy expansion [1–4]. Dzyaloshinskii–Moriya

interaction competes with exchange interaction and turns

spins relatively to each other by small angle. Many papers

(see for example [5–11]) relate to study of the physical

properties of materials with helicoidal structure. Detail

summary of theory of uniaxial ferromagnets with helicoidal

ground state is provided in paper [12].

When switching on external magnetic field perpendicular

to axis of the helicoidal structure the magnetic spiral with

constant pitch is converted into one-dimensional lattice of

extended domains. Inside each of them the magnetization

distribution is close to homogeneous. The neighboring do-

mains are separated by narrow domain walls — topological

solitons, where helical turn of magnetization is localized.

The solitons comprising the lattice due to their mobility

and magnetoresistive properties are promising for use in

spintronics devices. Study of movement and stability of the

soliton lattice and the single domain walls under the action

of electric field is of great interest [13–16].

The helical ordering is implemented in rare-earth metals,

in large class of conductive cubic magnetics without inver-

sion center and in some other compounds. Among the

known uniaxial helimagnets (CrNb3S6, CrTaS6, CuB2O4,

CuCsCl3, Yb(Ni1−xCux)3Al9, Ba2CuGe2O7) [17–22],
CrNb3S6 is more extensively studied. The lattice of chiral

solitons in it was observed in experiments [23].
The chiral multisolitons build into the helicoidal struc-

ture of the ferromagnets have useful technological prop-
erties [12,24]. But their analytical description is very
complicated due to nonlinearity of the basic equations of

the theory, and due to heterogeneity of helical ordering
of the environment. Here we are taking about the study

the collective particle-like excitations of helicoidal structure,
which in the magnetic field orthogonal to the axis of

magnetic spiral itself represents essentially nonlinear lattice
of solitons. So far, there is a little number of studies
relating this theme. The problem can be solved with use

of simplified models, which correctly consider the basic
interactions, and at the same time allow exact solutions.

One of the models is a popular quasi-one-dimensional sine-
Gordon equation. For infinite medium with homogeneous

ground state it is completely integrable by the most effective
method of nonlinear physics — by the method of inverse
scattering problem. Presence of the non-trivial ground state

complicates the construction particle like excitations even in
the case of infinite medium. The simple chiral solitons in the

lattice of solitons were obtained by Bäcklund transformation
in the work [25]. The complete study of the multisolitons

and spin waves in the helicoidal structure based on the
method of inverse scattering problem in the framework of
the sine–Gordon model is presented in the book [26] (see
also [27,28]).
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Another effective model of a chiral ferromagnet is associ-

ated with quasi-one-dimensional Landau–Lifshitz equations

if the magnetic field is absent. Recall that during analysis of

small amplitude wave spectrum in Heisenberg ferromagnet

with Dzyaloshinskii interaction and the helical magnetic

ordering with constant pitch the Landau−Lifshitz equation

is frequently written in local benchmark, that shifts along

the spiral axis (see, for example, [12] and works cited

in it). Then in new reference frame the helical ordering

corresponds to homogeneous distribution of magnetiza-

tion, whereas the spin wave dynamics is described by

linearized Landau−Lifshitz equation for a ferromagnet with

exchange interaction without Dzyaloshinskii interaction, but

with additional anisotropy of the
”
easy-plane“ type. The

works [5,26,29] established a deep relationship between

exact solutions of significantly nonlinear Landau−Lifshitz

model for a ferromagnet with the helicoidal structure taking

into account the exchange energy, Dzyaloshinskii interaction

and energy of quadratic in magnetization uniaxial anisotropy

(the anisotropy axis is parallel to Dzyaloshinski vector), and
the solutions of equivalent model of uniaxial ferromagnets

without Dzyaloshinski interaction. The found relationship

permits the use of soliton solutions of completely integrable

equations of unbounded uniaxial ferromagnet with homo-

geneous ground state to construct and analyze the spin

waves and non-trivial multisolitons (moving or in rest) in

the ferromagnet with helicoidal structure. In general case,

the presence of magnetization easy axis coinciding with the

direction of Dzyaloshinskii vector suppresses the helicoidal

ordering and keeps the metastable turn of magnetization in

localized regions inside the sample only. For non-integrable

one-dimensional Landau−Lifshitz equations this statement

is justified by approximate methods in the works [15,16].
For integrable models of easy axis ferromagnets the for-

mation of nuclei of chiral phase on the background of

homogeneous distribution of magnetization is analytically

described in [5,29]. On the contrary, the quadratic in

magnetization easy-plane anisotropy (basis plane is parallel

to plane of spin turn) keeps the helicoidal structure along

full length of the sample. The particle-like solitons on the

background of unbounded magnetic spiral are found and

analyzed in [5,29].
The real samples have boundaries. Consideration of

boundary conditions results in change of configuration of

the helicoidal structure [12,30], and occurrence of important

for applications features of dynamics of magnetic solitons

and spin waves, which are absent in infinite medium.

Besides, generalization of the method of inverse spectral

transform on the samples with finite size faces to serious

problems due to absence of simple mapping of the initial

boundary conditions for Landau−Lifshitz models into the

scattering data. Such representation is possible under special

(integrable) boundary conditions only [31,32].
For finite ferromagnets without Dzyaloshinskii interac-

tion the physically meaningful integrable conditions were

established quite a while [33]. But nonlinear dynamics of

finite samples, even without helicoidal structure till now

is not studied because there is no effective scheme of

inverse spectral transform for the finite systems. In the

works [34,35] this problem was solved for the nonlinear

Schrödinger equation by combination of the method of

inverse scattering problem with
”
method of images“, which

is used in electrostatics when solving linear boundary prob-

lems with certain spatial symmetry. In the works [36–39]
we used a scheme [34,35] to study solitons in the semi-

infinite samples of Heisenberg ferromagnet and uniaxial

ferromagnets with homogeneous ground state. In the

present work we use these results for analytical description

of the spin waves and solitons in the helicoidal structure of

semi-infinite ferromagnet.

We succeeded generalize transformation of the

works [5,29] and to establish relationship between solutions

of the Landau−Lifshitz model for the semi-infinite uniaxial

ferromagnet without Dzyaloshinskii interaction and the

solutions of Landau−Lifshitz equations for the semi-infinite

chiral ferromagnet at the boundary conditions correspond-

ing to the partial pinning of spins at the boundary of

sample. In combination with the method of integration

of Landau−Lifshitz equations of semi-infinite ferromagnets

with homogeneous ground state [37–39] the obtained

transformation provides full analytical description of the

multisolitons and dispersive waves in semi-infinite chiral

ferromagnet with uniaxial magnetic anisotropy. Here we

will discuss only the ferromagnet with anisotropy of the

”
easy-plane“ type. Such type of the uniaxial anisotropy does

not suppress the quasi-one-dimensional helicoidal structure

in the sample bulk and results in non-trivial particle-like

excitations on the background of magnetic spiral.

2. Semi-infinite ferromagnet
with homogeneous ground state

Let’s provide basic formulas for the semi-infinite ferro-

magnet with homogeneous ground state and homogeneous

distribution of magnetization in sample depth [38,39], which

are further used for the analytical description of solitons and

waves in the helicoidal structure on half-axis 0 ≤ z < ∞.

Energy of such ferromagnet with anisotropy of the
”
easy-

plane“ type (plane Oxy) looks as follows [1]

E =
1

2

∞
∫

0

dz
[

α(∂zM)2 + K(M · e3)2
]

+ H(M · e1)|z=0,

where M(z , t) — is the magnetization per unit of length

along axis Oz (M2 = M2
0 = const), z and t — are the spatial

coordinate and time, α > 0 and K > 0 — are the constants

of exchange interaction and anisotropy. Parameter H charac-

terizes the effective field of unidirectional surface anisotropy

H = E0/M0 caused by deposing the ferromagnetic layer on

the surface of ferromagnetic sample [40–42]. Here E0 —
is the exchange energy per unit of surface of the sample.

Its values for wide class of two-layer antiferromagnet–
ferromagnet structures are given in [43]. Single vectors

e1 = (1, 0, 0) and e3 = (0, 0, 1) specify the directions of the

surface field and
”
hard axis“ of magnetization, respectively.

7∗ Physics of the Solid State, 2024, Vol. 66, No. 10



1668 V.V. Kiselev, A.A. Raskovalov

In the dimensionless variables:

m = −M/M0, z ′ = z
√

K/α,

t′ = γM0Kt, h′ = HM−1
0 /

√
αK, (1)

where γ — is magnetomechanical ratio, system energy is

E ′ =
E

M2
0

√
αK

=
1

2

∞
∫

0

dz ′[(∂z ′m)2 + m2
3] − h′m1|z=0.

Possible nonlinear excitations in semi-infinite sample

correspond to the solutions of the Landau–Lifshitz equa-

tion [26,44,45]:

∂t′m = [m× ∂2z ′m] − (e3 ·m)[m× e3],

m2 = 1, 0 ≤ z < ∞, (2)

with integrable boundary conditions

[m× (∂z ′m + e1h′)]|z=0 = 0, (3)

m → (1, 0, 0), ∂z ′m → 0 at z ′ → +∞ (4)

and initial distribution of magnetization

m(z ′, t′ = 0) = m0(z
′). (5)

Selection of asymptotic boundary condition (4) cor-

responds to minimum of density of medium energy at

z ′ ≫ 1. Initial perturbation (5) is in agreement with

conditions (3), (4).
”
Primes“ above the dimensionless

variables are further omitted.

The mixed boundary condition (3) at h → 0 transforms

into the boundary condition of the problem with free surface

spins [45]:
[m× ∂zm]|z=0 = 0.

In limit |h| → ∞ it comes down to the condition of full

pinning of spins at the sample boundary:

m1|z=0 = ±1. (6)

Sign selection in the right-hand part of (6) depends on the

type of the solitons [38,39]. It will be clarified during further

analysis.

The soliton evolution near the sample boundary can be

formally treated as a result of interaction between the real

soliton inside the sample and the fictive soliton of image

outside the sample. During interaction with the sample

surface in the soliton localization region the magnetization

shifts and turns occur by the value of about saturation

magnetization. Scenarios of solitons reflection depend on

the degree of pinning of boundary spins. After reflection

from the sample surface and by movement into the medium

all solitons restore stationary shape, typical for solitons of

the infinite medium.

In the works [38,39] it is shown that solitons of the

semi-infinite easy-plane ferromagnet are divided into two

classes. The first class includes the solitons which cores

upon movement away from the sample boundary undertake

the shape of waves of stationary profile without internal

oscillations of magnetization. Such solitons can not be

motionless. The magnetization distribution in the simplest

of them looks like

m1 = −1 + 2 tanh 2ρ(1− n1n2)
2d−1,

m2 = −2 tanh 2ρ(n1 + n2)(1 − n1n2)d
−1,

m3 = 2 sinh ρ(n2 − n1)(1− n1n2)/(d cosh2 ρ),

d = (n1 − n2)
2 + (1 + n1n2)

2 tanh 2ρ,

n1 = c0 exp

(

− z
coshρ

+
sinh ρ

cosh2 ρ
t

)

,

n2 =
f

c0

exp

(

− z
coshρ

− sinh ρ

cosh2 ρ
t

)

, f =
h coshρ + 1

h coshρ − 1
,

(7)
where c0 — is real constant of integration,

−∞ < ρ < ∞ — solution parameter. Next, for certainty,

we consider ρ > 0. As befits, the solution (7) meets the

boundary conditions (3), (4).
In weak surface fields |h| < cosh−1

ρ the parameter

f < 0, and, vice versa, f > 0 at |h| > cosh−1
ρ. It is

manifested in various scenarios of deformation of soliton

core (7) during interaction with the sample boundary, and

results in differences in its steady profile in sample depth

before and after reflection from surface. In both cases all

spins inside the soliton are inclined to the sample boundary

at c0 > 0 or into the medium at c0 < 0.

Let’s explain the statement on the example of weak fields

|h| < cosh−1 ρ. Then, the detailed form of the solution (7):

m1 = −1 +
2

τ
tanh 2ρ cosh2 y, y =

z
cosh ρ

− 1

2
log | f |,

m2 = −2 sgn c0

τ
tanh 2ρ sinh s cosh y,

s =
sinh ρ

cosh2 ρ
(t − t0), t0 =

cosh2 ρ

2 sinh ρ
log

| f |
c2
0

,

m3 = − 2 sgn c0

τ cosh2 ρ
sinh ρ cosh s cosh y,

τ = cosh2 s + tanh 2ρ sinh2 y (8)

immediately shows that at the moment t0 of soliton (8)
collission with boundary of sample all spins in the soli-

ton localization region lay into the plane Oxz . The

magnetization distribution in the plane Oxz depends on

the sign of h. In negative fields − cosh−1 ρ < h < 0

the magnetization component m1(z , t = t0) monotonically

increases with movement away from the edge z = 0 into the

sample. In point z = 0 at rather high values ρ > Arcsinh 1

the projection m1(z = 0, t = t0) is positive. In this case

the component m3(z , t = t0) along full length of the sample

also behaves monotonically, and magnetization in the soliton

at the moment of collision with the boundary turns in

the plane Oxz by angle lower than 90◦ (see Figure 1, a).
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Figure 1. Magnetization components m1(z , t0) (solid line), m3(z , t0) (dashed line) of soliton (8) and spins distribution at time moment

t = t0 at values a) − cosh−1 ρ < h < 0, ρ > Arcsinh1; b) − cosh−1 ρ < h < 0, ρ < Arcsinh1; c) 0 < h < cosh−1 ρ, ρ > Arcsinh1;

d) 0 < h < cosh−1 ρ
√

1− sinh2 ρ, ρ < Arcsinh1; e) cosh−1 ρ
√

1− sinh2 ρ < h < cosh−1 ρ, ρ < Arcsinh1. In all cases c0 > 0 was

selected.

At relatively low values of ρ < Arcsinh1 the projection

m1(z , t = t0) changes sign from minus to plus when cross-

ing the point determined by the condition cosh y sinh ρ = 1,

whereas the component m3(z , t = t0) at this point has

absolute minimum: m3 = −1 (Figure 1, b).
In positive fields 0 < h < cosh−1

ρ near the sample

boundary at the point z 0 = cosh ρ log | f |/2 > 0

partial remagnetization of the medium occurs:

m(0)
1 = −1 + 2 tanh 2ρ. The component m1(z , t = t0)

has a single minimum at the point z 0. As for the

component m3(z , t = t0), depending on ratio of values of

parameter ρ and value of surface field it can have only one

(z = z 0), two (z = z 0 and z = z 1), or even three points

of extremum (z = z 0 and z = z 1,2). Appropriate cases

are shown in Figure 1, c−e. Additional points z 1,2 — are
zeros of function m1(z , t = t0), determined by equality
cosh[y(z 1,2)] sinh ρ = 1.
Far from sample surface at z ≫ 1 in limit t → ±∞ the

solution (8) undertakes shape of wave of stationary profile:

m1 = tanh ξ±, m2 = ∓sgn c0

tanh ρ

cosh ξ±
,

m3 = − sgn c0

cosh ρ cosh ξ±
,

ξ± = (z ∓Vt − z±)/l0; z + = coshρ log(|c0|/ tanh ρ),

z− = − cosh ρ log(|c0| tanh ρ/| f |), (9)

which is localized in region with width l0 = cosh ρ > 1 and
moves with speed V = tanh ρ > 0 inside the sample or

Physics of the Solid State, 2024, Vol. 66, No. 10
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Figure 2. Magnetization component m1(z , t0) of soliton (7) and distribution of spins at time moment t = t0 at field values

a) h < −

√

2 cosh−1 ρ and b) h >
√

2 cosh−1 ρ; in both cases c0 > 0 was selected.

towards its surface, parameters z± determine the coordinate

of the wave center in co-moving reference frame, where

z ∓Vt = 0. This is the typical soliton of infinite easy-

plane ferromagnet known as turning wave of magnetiza-

tion [46,26]. The name is associated with that in wave

localization region the magnetization turns by 180◦ from

the position m = (−1, 0, 0) in soliton tail where ξ± ≪ −1,

to the position m = (1, 0, 0) in its head, where ξ± ≫ 1.

At that in the soliton localization region the projection of

vector m on plane Oyz forms the constant angle with axis

Oz . The magnetization orientation in the center of the

turning wave after and before the reflection is determined

by the formulas

m = (0, sin δ±, cos δ±), sin δ± = ∓sgn c0 tanh ρ,

cos δ± = −sgn c0/ cosh ρ.

As a result of the turning wave reflection from sample

edge its center position shifts by the value 1z :

1z = z + − z− = cosh ρ log(c2
0/| f |). (10)

From here we find the time of interaction of soliton (8) and

sample surface: |t − t0| ≤ 1z/V . Besides, the magnetization

in the center of the soliton (8) after its collision with the

boundary turns by angle

δ+ − δ− = 2 arg[1 + i sinh ρ] = 2 arctan sinh ρ. (11)

In strong fields at |h| > cosh−1 ρ the soliton (7) is

described by the expression obtained from (8) by formal

replacements:

| f | → f > 0, cosh y ↔ sinh y, sinh s ↔ cosh s .

The expressions for y , s stay the same. Taking into

account this remark, it is easy to establish that in strong

fields the soliton (7) reflection from the sample edge occurs

in another plane Oxy . At negative fields h < − cosh−1 ρ

at the moment t = t0 of collision with sample boun-

dary the component m1 of magnetization while moving

into the sample steadily increases. At sample boundary

z = 0 the projection m1(z = 0, t = t0) is positive at values

of field −
√
2 cosh−1 ρ < h < − cosh−1 ρ and negative at

h < −
√
2 cosh−1 ρ. The last case is shown in Figure 2, a.

At positive values of h > cosh−1 ρ in the point

z 0 = cosh ρ(log f )/2, opposite to the case of small

fields (8), complete remagnetization of medium is observed:

m1 = −1. The projection m1(z = 0, t = t0) at the sample

boundary is negative at h >
√
2 cosh−1 ρ (Figure 2, b) and

positive at cosh−1 ρ < h <
√
2 cosh−1 ρ.

In Figure 2, a, b c0 > 0 is selected. At c0 < 0 direction

of magnetization turning in plane Oxy will be inverse.

At h > cosh−1 ρ far away the sample boundary at z ≫ 1,

t → ±∞ the soliton (7) converts into the turning wave

similar to (9):

m1 = tanh ξ±, m2 = −sgn c0

tanh ρ

cosh ξ±
,

m3 = ∓ sgn c0

cosh ρ cosh ξ±
,

ξ± = [z ∓Vt − z±]/l0, z + = cosh ρ log(|c0|/ tanh ρ),

z− = − coshρ log(|c0| tanh ρ/ f ). (12)

Comparison of formulas (9) and (12) leads to the

conclusion that in strong fields h the magnetization in center

of soliton (7) after its collision with the sample boundary

tuns in the plane Oyz by another angle:

δ+ − δ− = π + 2 arctan sinh ρ, (13)

which differs from previous angle (11) by π. Shift in soliton

position is determined by the previous formula (10).

Physics of the Solid State, 2024, Vol. 66, No. 10
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So, phase change of the complex field m3 + im2 in

center of the turning wave after its reflection from the

sample edge in the case of weak |h| < cosh−1 ρ and strong

|h| > cosh−1
ρ surface fields is similar to the phase change

of light wave during its reflection from the boundary with

less and more optically dense medium. In next Section

we show that changes of soliton cores (7) after their

reflection from the sample boundary which have a threshold

by amplitude of field h, are also take place for the chiral

turning waves in the helicoidal structure. Features of

medium remagnetization during chiral waves collision with

the sample edge differ from those discussed here in only

additional helical rotation of spins in region of soliton cores.

The second class of possible nonlinear excitations in

the system represents pulsing solitons — breathers [38,39].
Inside the sample they elastically collide with each other

and with turning waves of magnetization. The breathers

reflection from the sample boundary is also elastic and

accompanied by strong deformation of the soliton cores. At

far distance from sample surface (at z ≫ 1, t → ±∞) the

breather oscillations become regular, and it is converted into

the precessing breather of the infinite medium [26]:

m1 = 1− 2

τ±

[

cos2 s± +
cos2 ϕ

| sinh µ|2
]

;

m2 = ± cotϕ

τ±| sinh µ|2

×
[

cos s± cosh y± sinh 2ρ − sin s± sinh y± sin(2ϕ)
]

,

m3 =
2 cotϕ

τ±| sinh µ|2
[

sinh ρ cosϕ cosh y± sin s±

+ cosh ρ sinϕ sinh y± cos s±
]

, (14)

where

y± = [z ∓Vt − z (0)
± ]/l0, s± = kz ∓ ωt + s (0)

± ,

τ± = cos2 s± + cot 2ϕ cosh2 y±.

The soliton (14) is parametrized by complex value

µ = ρ + iϕ; −∞ < ρ < ∞, 0 < ϕ < π. Values

l0 =

(

cosh ρ sinϕ

| sinhµ|2
)−1

> 0, V =
tanh ρ(cosh2 ρ + cos2 ϕ)

| sinh µ|2 ,

ω =
cosh ρ cosϕ

| sinh µ|4 (sinh2 ρ − sin2 ϕ), k =
sinh ρ cosϕ

| sinh µ|2

respectively determine the thickness of walls limiting the

breather core, movement speed of soliton center, frequency

and wave number of oscillations in its core. Within soliton

core (14) the magnetization performs inhomogeneous ellip-

tical precessing with frequency ω around the axis Ox . The
precession ellipse is elongated along the easy-plane Oxy .
The precession cone pulses with frequency 2ω. This results

in longitudinal oscillations of soliton size. The only result

of the breather (14) reflection from the sample boundary is
shift of its center

z (0)
+ = l0 log

∣

∣

∣

∣

κ

tanh ρ cothµ

∣

∣

∣

∣

, z (0)
− = l0 log

∣

∣

∣

∣

f
κ tanh ρ coth µ

∣

∣

∣

∣

,

f =
ih sinhµ + 1

ih sinhµ − 1

and change of initial phase of its precession:

s (0)
+ = arg

[

tanhρ coth µ κ−1
]

, s (0)
− = arg

[

κ tanh ρ coth µ f −1
]

.

Unlike the case of infinite medium, the breather on half-

axis, like the turning wave, can not be motionless (ρ 6= 0,
V 6= 0).

We have shown that in limit |h| → ∞ the solution of
initial boundary value problem (2), (3) for the semi-infinite

sample, comprising N turning waves of magnetization and
arbitrary number of breathers and dispersive spin wave

packets, transforms into the solution of the same model at

the boundary conditions

m(z = 0, t) → (−1)Ne1; m(z , t) → e1;

∂zm(z , t) → 0 at z → +∞.

At positive (negative) finite values of the surface field the

formation on the half-axis of even (odd) number of turning

waves is more beneficial by the energy. It follows from
this that formation of odd or even number of waves in the

system can be regulated changing nature of spins pinning
at the boundary. This conclusion is true also for the chiral

turning waves.

At weak external influences in the sample only dispersive
waves without solitons are formed. In case of small

amplitude spin waves the magnetization in semi-infinite
sample is described by the expressions [38,39]:

m3 = − 2

π
Im

[ +∞
∫

0

dξ
b0(ξ)

sinh ξ
exp

(

it cosh ξ

sinh2 ξ

)

× Re

(

exp(iz sinh−1 ξ)

sinh−1 ξ + ih

)

]

, m1 ≈ 1;

m2 =
2

π
Re

[ +∞
∫

0

dξb0(ξ) coth ξ exp

(

it cosh ξ

sinh2 ξ

)

× Re

(

exp(iz sinh−1 ξ)

sinh−1 ξ + ih

)

]

. (15)

where b0 is the inverse scattering problem coefficient

corresponding to presence of dispersive waves [26].
By direct check we easily make sure that (15) is the

solution of the linearized Landau−Lifshitz equation (2):

∂tm2 + ∂2z m3 − m3 = 0, ∂tm3 − ∂2z m2 = 0,

|m2,3| ≪ 1, 0 < z < +∞
with linearized boundary conditions (3), (4):

(∂z m2,3 − h m2,3)|z=0 = 0, m2,3 → 0 at z → +∞.
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3. Solitons of semi-infinite ferromagnet
with helicoidal structure

Let’s consider quasi-one-dimensional ferromagnetic crys-

tal without inversion center with energy density:

w =
α

2
(∂zM)2 +

KM2
3

2
− κ(M1∂z M2 − M2∂z M1).

Here we use previous marks for medium magnetization

M(z , t) (M2 = M2
0 = const), spatial coordinate 0 < z < ∞,

time t, constants of exchange interaction α > 0 and

easy-plane anisotropy K > 0. Besides, we consider the

Dzyaloshinskii interaction, to which Lifshitz invariant cor-

responds

−κ(M1∂z M2 − M2∂z M1),

compatible with the uniaxial symmetry of the magnetic

crystal without the inversion center. The constant κ can

have any sign.

Now, the conditions α > 0, K > 0 do not ensure stability

of the homogeneous state of medium in sample depth

(at z ≫ 1). The most stable turns out to be inhomogeneous

distribution of magnetization, that is, the helicoidal structure:

M = −M0(cos(pz ), sin(pz ), 0), (16)

where p = κ/α. Period of magnetic spiral 2π/|p| is much

more than the crystallographic periods a : 2πα/|κ| ≫ a and

usually incommensurable with them.

Let, as previously, along the boundary z = 0 of the

sample we have the effective field of unidirectional surface

anisotropy H = He1, where e1 = (1, 0, 0). The helical

ordering corresponds to energy density −M2
0κ

2/(2α). We

will take the system energy from the helicoidal ground state

of the medium at z ≫ 1. Then total energy of the sample

will be written as follows

E =
1

2

∞
∫

0

dz
[

α(∂zM)2 + KM2
3 +

M0κ
2

α

− 2κ(M1∂z M2 − M2∂z M1)
]

+ HM1|z=0. (17)

Let’s go to dimensionless variables:

m = −M/M0, z̃ = z

[

1

α

(

K +
κ2

α

)

]1/2

,

t̃ = γM0t

(

K +
κ2

α

)

, h̃ =
H

M0

[

α

(

K +
κ2

α

)

]−1/2

,

which coincide with previous (1) at κ = 0. In new variables

the system energy looks like

Ẽ =
E

M2
0

[

α

(

K +
κ2

α

)

]−1/2

=
1

2

∞
∫

0

dz̃ [(∂z̃m)2+(1− q2)m2
3

− 2q(m1∂z̃ m2 − m2∂z̃ m1) + q2] − h̃ m1|z̃=0.

Helical structure (16) corresponds field distribution m:

m = (cos(qz̃ ), sin(qz̃ ), 0), (18)

where q = κ/[α(K + κ2/α)].
Possible nonlinear excitations of the helicoidal structure of

semi-infinite ferromagnetic sample correspond to solutions

of Landau–Lifshitz equation:

∂t̃m = [m× ∂2z̃ m] − (1− q2)(e3 ·m)[m× e3]

+ 2q(e3 ·m)∂z̃m, (19)

where m2 = 1, 0 < z̃ < ∞, with boundary conditions:

[m× (∂z̃m + q[m× e3] + h̃ e1)]|z̃=0 = 0,

m → (cos(qz̃ ), sin(qz̃ ), 0) at z̃ → +∞ (20)

and a given initial perturbation of the helical structure:

m(z̃ , t̃ = 0) = m0(z̃ ), (21)

which is compatible with conditions (20). Vector

e3 = (0, 0, 1), like previously, specifies the direction of the

”
hard-axis“ of magnetization.

To determine relationship between the problems (2)−(5)
and (19)−(21) we will use parameterization of the norma-

lized magnetization by angles 2 and 8:

m = (cos2 cos8, cos2 sin8, sin2).

Landau−Lifshitz equation (19) together with the boun-

dary conditions (20) follows from Hamilton variation prin-

ciple for action functional:

S =

∞
∫

0

dz̃
(

sin2∂ t̃ 8− 1

2
[(∂z̃2)2 + cos2 2(∂z̃8− q)2

+ sin22]
)

+ h̃ cos2 cos8|z=0. (22)

The initial boundary value problem (2)−(5) for the

easy-plane ferromagnet with homogeneous ground state

is described by action that follows from (22) at q = 0.

From here the important statement follows, which repre-

sents generalization of established in [26,29] for infinite

medium. If we know solution 2(l)(z , t, h), 8(l)(z , t, h) of

Landau−Lifshitz equation (2) with boundary conditions (3)
and (4), then the solution 2(g)(z̃ , t̃, h̃, q), 8(g)(z̃ , t̃, h̃, q) of

model (19), (20) of chiral ferromagnet is determined by

formulas

8(g)(z̃ , t̃, h̃, q) = 8(l)(z = z̃ , t = t̃, h = h̃) + qz̃ ,

2(g)(z̃ , t̃, h̃, q) = 2(l)(z = z̃ , t = t̃, h = h̃).

After shown transformation the action functional of one

problem transits into the functional of another problem. This

justifies equivalence of not only equations, but also the initial

boundary value conditions for two problems. Distributions
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of magnetization m(l)(z , t, h) and m(g)(z̃ , t̃, h̃, q) of these

problems are related to each other:

m(g)
+ (z̃ , t̃, h̃, q) = m(l)

+ (z = z̃ , t = t̃, h = h̃) eiqz̃ ,

m(g)
3 (z̃ , t̃, h̃, q) = m(l)

3 (z = z̃ , t = t̃, h = h̃), (23)

where m+ = m1 + im2. When comparing solutions (23) the

interaction constants also change.

In particular, small-amplitude spin wave field in semi-

infinite sample of the chiral ferromagnet looks like

m(g) = n +
(

m(l)
2 [e3 × n] + m(l)

3 e3

)

|z=z̃ ,t=t̃,h=h̃,

n = (cos(qz̃ ), sin(qz̃ ), 0), (24)

where functions m(l)
2,3 are determined by formulas (23). By

direct check we can easily make sure that expression (24)
satisfies the linearized Landau−Lifshitz equation (19) with

linearized boundary condition (20).
The turning wave (7) of the ferromagnet with homoge-

neous ground state after transformation (23) converts into

the chiral turning wave in semi-infinite ferromagnet with

same in the helical structure:

m(g)
1 = m(l)

1 cos(qz̃ ) − m(l)
2 sin(qz̃ ),

m(g)
2 = m(l)

1 sin(qz̃ ) + m(l)
2 cos(qz̃ ), m(g)

3 = m(l)
3 , (25)

where expressions m(l)
j are determined by formulas (7)

after the replacements z → z̃ , t → t̃, h → h̃. At large

distances from the sample edge the solution (25) describes

the simplest soliton of infinite medium [26,29]. The

magnetization in such soliton can be twisted either to the

direction or against the direction of turning of magnetic

spiral (18), which, respectively, results in decreasing or

increasing the spiral pitch. Both are accompanied by exit

of the magnetic moments from the plane Oxy .
Near the sample surface the core of the chiral soliton (25)

strongly deforms, after this it elastically reflects from the

sample boundary and restores its stationary shape. As result

of reflection the center of chiral wave shifts by value

1z (10).
The chiral solitons inherit basic dynamic properties of

solitons of Section 2.

Let’s specify the made general remarks. We will suppose

that the parameter ρ > 0. To simplify the analysis we

assume that presence of soliton does not change direction

of turning of spiral (18), and results only in decreasing or

increasing its pitch. Then in case of weak surface anisotropy

|h| < cosh−1
ρ at the value of integration constant c0 > 0

(c0 < 0) before the collision with the sample boundary

in the localization region of soliton (25) the spiral pitch

decreases (increases), and after collision — increases

(decreases). At that along full length of sample at c0 > 0 the

spins are inclined towards the boundary, and at c0 < 0 —
from the boundary. During soliton reflection from the

sample edge in its center the projection of magnetization

z

x
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y

z

x

z = 0

y

z

x

z = 0

y

z

x

z = 0

y

z

x

z = 0

y

z1

z0

z0

z1z2

z0

a

b

c

d

e

Figure 3. Spins location in soliton (25) at moment

t = t0 of collision with sample boundary at values

a) − cosh−1 ρ < h < 0, ρ > Arcsinh1; b) − cosh−1 ρ < h < 0,

ρ < Arcsinh1; c) 0 < h < cosh−1 ρ, ρ > Arcsinh1;

d) 0 < h < cosh−1 ρ
√

1− sinh2 ρ, ρ < Arcsinh1;

e) cosh−1 ρ
√

1− sinh2 ρ < h < cosh−1 ρ, ρ < Arcsinh1. In all

cases c0 > 0 was selected.

m(g)
3 on the spiral axis does not change (see formulas (9)

and (25)). At the moment t = t0 (see (8)) of soliton (25)
collision with the sample boundary the spiral pitch and

phase of spins turning within soliton exactly coincide with

same in the helical structure helical structure (18), and

soliton presence in the structure could be seen only by spins

exit from the turning plane Oxy .
In weak negative fields − cosh−1 ρ < h < 0 at rather high

large values of ρ > Arcsinh1 the magnetization component

m3(z , t0) is monotonous while moving into the sample.

This means that in this case the envelope of the soliton at

t = t0 is most narrow in point z = 0 at the boundary of the
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z

x

z = 0

y

a

b

z0

z

x

z = 0

y

z0

Figure 4. Spins location in soliton (25) in case of large

positive fields h > cosh−1 ρ directly a) before and b) after collision
with sample boundary; c0 > 0 was selected. At the moment of

collision the spins along the entire sample lay in plane Oxy .

sample (Figure 3, a). At relatively small ρ < Arcsinh1 the

projection m(g)
3 reaches absolute minimum −1 in the point

determined by the condition cosh y sinh ρ = 1 (Figure 3, b).
In positive fields 0 < h < cosh−1

ρ at rather large values

ρ > Arcsinh1 the magnetization component m(g)
3 (z , t0) has

only one point of extremum z 0 = coshρ log | f |/2 > 0 near

the boundary (Figure 3, c). The soliton envelope is

compressed in the point z = z 0, and extends at both sides

from the point z 0, gradually reaching the limiting value

corresponding to the helicoidal structure (18). At relatively
small ρ < Arcsinh1 depending on values of field h the

component m(g)
3 (z , t0) obtains one more or two additional

points of absolute minimum z 1,2, determined by the

condition cosh[y(z 1,2)] sinh ρ = 1 (Figure 3, d and e). In

these points the magnetization is parallel to the
”
hard-axis“

of the bulk anisotropy: m(g) = (0, 0,−1).
Cases in Figure 3, a−e are similar to those in Figu-

re 1, a−e. Ranges of values of the surface field, given

in text to Figure 3, a−e, exactly coincide with the same

in Figure 1, a−e.

At strong surface anisotropy |h| > cosh−1 ρ the compo-

nent m(g)
3 in the center of soliton after the reflection changes

the sign (see (12), (25)). This means that as results of

a

b

zz0

z0 z

Figure 5. Spins location in pulsing soliton — breather — on background of helical structure (18) far from the sample boundary at time

moments a) t = 0 and b) t = T/2, where T — is the period of pulsations.

interaction of soliton (25) with the sample boundary the

tilt of spins towards the boundary or from the boundary

changes to opposite (Figure 4, a and b). Just at the

moment t = t0 of soliton collision with the sample surface

the magnetization component m(g)
3 = 0, and, hence, spins

in the entire sample lay in plane Oxy . In soliton, built

into the helical structure, the spins inclination (towards
the sample boundary or from it) depends on sign of the

parameters h and c0 like in
”
seed“ soliton in a ferromagnet

with homogeneous ground state.

Note that unlike the case of small fields |h| < cosh−1 ρ,

in strong fields |h| > cosh−1 ρ the twisting direction of

soliton (25) during reflection from the sample boundary

does not change. In localization region of soliton the

spiral pitch (18) at c0 > 0 (c0 < 0) both before, and after

soliton collision with the sample boundary is increased

(decreased) as compared to pitch of the helical structure

(compare formulas (12), (18)).
As a conclusion let’s discuss the chiral breather. The

breather solution of the easy-plane ferromagnet [38,39] by

means of transformation (25) transits into pulsing soliton

on the background of helical structure (18). Figure 5, a

and b schematically shows such soliton far from sample

edge (at z ≫ 1) at time moments t = 0 and t = T/2, where

T = 2π/ω — is the period of pulsations. In center of

soliton — point z 0 — the magnetization component m(g)
3

reaches the extreme value, and the vector m(g)(z , t) periodi-
cally changes inclination from the direction towards the sam-

ple boundary to the direction into the sample. In the soliton

the stretching regions of the helical structure alternate with

compression regions. In Figure 5, a at t = 0 to the right of

the center of soliton (in region z > z 0) the helical structure

is stretched, and to the left of the center (in region z < z 0) it
is compressed. After half-period of oscillations, at t = T/2
(Figure 5, b) the spiral stretching at right of the center of

soliton changes by its compression, and compression of spi-

ral to the left of the center of soliton changes by stretching.

At that the projection m(g)
3 both to the right, and to the left

of the center periodically changes the sign to opposite.

Besides, heterogeneity of the precession of magnetization

and pulsations in the breather core result in small longitudi-

nal oscillations of soliton along the axis of magnetic spiral.

They are not shown in Figure 5.
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4. Conclusion

Method of inverse scattering problem in combination

with the special transformation of solutions of model of

semi-infinite ferromagnet with the homogeneous ground

state used to construct and analyze the new class of

explicit solutions of Landau−Lifshitz equation describing

spreading of dispersive waves and solitons along the

helicoidal structure of the semi-infinite ferromagnet with

anisotropy of the
”
easy-plane“ type. At sample boundary

the boundary condition was considered, that corresponds

to partial pinning of the helicoidal structure. Its limiting

cases correspond to free edge spins and complete pinning

of magnetization at the sample boundary. Soliton-like nuclei

of the helicoidal phase on the background of homogeneous

distribution of magnetization in the semi-infinite ferromag-

net with anisotropy of
”
easy axis“ type can also be studied

using the suggested approach. For this it is sufficient to

use formulas of the work [37] for solitons in semi-infinite

easy-axis ferromagnet with homogeneous ground state.

If Dzyaloshinskii interaction is absent the easy-plane

ferromagnet has two classes of solitons. One of them

comprises turning waves of magnetization, which remind

the moving 180◦-domain walls. Second type of solitons —
pulsing solitons with magnetization precession near the

”
easy-plane“. Dzyaloshinskii interaction ensures the forma-

tion of the helicoidal structure and built-in solitons. It is

important that chiral solitons are inseparable from the helical

structure. They inherit some features of solitons of the

ferromagnet with homogeneous ground state and obtain

new features. The turning waves with different turning

of magnetization on the background of homogeneous state

of medium have same energy, but corresponding to them

chiral turning waves significantly differ in core structure,

and hence, in energy. The energy of the magnetic soliton in

the helicoidal structure shall mean the difference between

the energy of system with soliton in it and energy of

helicoidal ground state of medium without soliton. The

correct calculation of such energy is a theme of separate

study. Dependence of energy of chiral solitons on the

parameters of the helicoidal structure and surface anisotropy

shall be considered, for example, when describing the

thermodynamic properties of solitons system in semi-infinite

sample.

It is establshed that structure of chiral turning

waves (7), (25) after reflection from the sample surface

depends in threshold manner on the amplitude of the

surface field h. Besides,
”
deformation“ of soliton core at the

moment of the collision with the sample surface significantly

depends on sign of h. The chiral breathers, unlike the

chiral turning waves, have characteristic frequencies of

internal pulsations. So, the breathers can be detected by

the resonance absorption of energy at frequencies of their

oscillations.

All types of solitons in the helicoidal structure are moving

particle-like objects. The experimental confirmation of

peculiarities of their elastic reflection from sample boundary

obtained during study is actual.

Collision of chiral solitons with sample surface is ac-

companied by significant change in their internal structure

and dynamic properties, and also by processes of medium

remagnetization by the value about saturation magnetiza-

tion. So, the chiral solitons in semi-infinite sample can

not be described by the traditional method of perturbation

theory for infinite medium. This theory supposes sufficient

”
hardness“ of soliton cores and small changes of their

properties under influences of perturbations.

The study results shall be considered during modeling

of soliton processes near surface of real ferromagnets with

helicoidal structure. The obtained analytical solutions are

useful for numerical calculations verification.
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