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1. Introduction

Studies of the mechanical, vibrational and thermally

conductive properties of various amorphous materials with

significant disorder at the molecular level have become in-

creasingly important in recent years. Such materials include

both glasses and amorphous semiconductors and polymers,

as well as nanocomposites based on them. The disordered

arrangement of atoms in such materials significantly affects

both the behavior of amorphous bodies at nanometer

scales and their macroscopic properties. Macroscopic

deformations of an amorphous body result in heteroge-

neous local deformations with characteristic lengthscale of

tens of interatomic distances [1,2]. Such inhomogeneous

deformations are called non-affine deformations since they

cannot be described by a combination of local extensions

or shears. Non-affine deformations have been observed

in many disordered solids: metallic glasses [3], polymeric

hydrogels [4], supercooled liquids [5], Lennard−Jones

glasess [6], quartz glasses [7]. The origin of non-affine

displacements is directly related to structural disorder [4,8],
however, this issue requires comprehensive study. In this

regard, the description of non-affine deformations and their

correlation properties is one of the important tasks of

physics of disordered systems, which can shed light on the

nature of the amorphous state of matter.

The anomalous mechanical, thermal and acoustic pro-

perties observed in amorphous solids are presumably

attributable to the presence of spatially inhomogeneous

elastic modulus [9]. Due to non-affinity, local bulk and

shear moduli exhibit large fluctuations and have distinc-

tive correlation properties [10], which affects the macro-

scopic elasticity of heterogeneous materials and polymer

nanocomposites [11–16]. For example, recent molecular

dynamic calculations have directly shown an increase in the

local elastic modulus of polystyrene near silica nanoinclu-

sions [12], which is explained by the influence of non-affine

deformations.

The amorphous structure becomes metastable due to

cooling. This state is characterized by a significant

correlation of the force constants of the bonds [17,18].
This results in specific correlations between atomic dis-

placements and inhomogeneous deformations caused by

homogeneous mechanical stresses. At the same time,

correlations can manifest themselves on large scales, much

larger interatomic distances [1,6,19]. The spatial behavior of

such correlations can be studied using molecular dynamics

calculations, which note the long-range correlation of the

non-affine displacement components [1,6,20]. However, the
theoretical description of the correlation properties of non-

affine deformations is still quite an urgent task.

There are a number of papers devoted to the description

of the correlation properties of non-affine deformations.

Numerical modeling of a three-dimensional amorphous

body was used in Ref. [1] which made it possible to

demonstrate the dependence of the correlation of non-affine

displacements on distance. The established dependence

is decreasing, and there is a range of distances at which

correlations have negative values (anticorrelation). The

random arrangement of atoms in an amorphous body is

taken into account in Ref. [19] for which a function of

non-affine displacements and their correlations depending
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on the distance between the studied points of the system

was obtained in the continuum model. However, additional

study is needed to identify the relationship between the

non-affinity lengthscale and the degree of disorder of the

structure.

We applied a model of random correlated matrices

in this paper to determine the correlation properties of

non-affine deformations. This model made it possible to

describe the elastic and vibrational properties of amorphous

solids, based on the most general assumptions about the

properties of a disordered medium near a stable equilibrium

position [11,13,21,22]. The random matrix approach was

successfully applied to describe the boson peak and the

Ioffe−Regel transition between phonons and the diffusion

type of vibrations in systems with different short-range order

and different dimensions [21,22]. In particular, the existence

of a boson peak in two-dimensional materials was predicted

using this approach which was subsequently experimentally

confirmed in Ref. [23]. The theory of random matrices made

it possible to explain in Ref. [11,13] the appearance of an

elastic shell around nanoparticles on the scale of non-affine

deformations.

2. Non-affine deformations

Atomic displacements u occur as a response to homo-

geneous effect when it is applied to the system f , which

is described in a linear approximation by the equation of

motion [13]:

N
∑

j=1

(

8i j − ω2mi j
)

u j = f i , (1)

where m̂ — the mass matrix, ω — the vibration frequency

of the system, 8̂ — the force-constants matrix, the elements

of which 8i j are determined by mixed derivatives of poten-

tial energy U(x1, x2, . . . , xN) according to the coordinates

of degrees of freedom x i and x j :

8i j =
∂2U

∂x i∂x j
. (2)

A scalar approximation is used to simplify the work in

which the atomic displacements represent a scalar. This

model has already been successfully applied in a number

of studies [11,22]. Therefore, the number of degrees of

freedom N coincides with the number of atoms of the

system, and the indices i and j number the atoms of the

system.

The displacement of the i-th atom can be expressed in

terms of a resolvent in the following form based on the

formula (1)

ui = −
N

∑

j=1

Gi j f j , (3)

where Ĝ — the resolvent of the matrix 8̂:

Ĝ =
1

ω2m̂ − 8̂
. (4)

The resolvent Ĝ plays an important role in describing the

dynamic properties of amorphous materials. The specific

equilibrium coordinates x1, x2, . . . , xN depend on the coo-

ling process of the melts forming the amorphous material.

Therefore, the components of the force-constants matrix

and its resolvents depend on the particular system under

consideration, and can vary in a broad range [17,18,24].
As a result, the components of atomic displacements also

vary, and fluctuations in atomic displacements depend on

the strength of disorder in disordered systems.

Let us define the non-affine (fluctuation) component

of the displacement una as the difference between the

displacements themselves and their average values:

una
i = ui − 〈ui〉, (5)

where the brackets 〈. . .〉 mean averaging over an en-

semble of different realizations of the system in question.

The averaged displacement component 〈u〉 determines the

macroscopic response of a substance to external action

(macroscopic deformation), and with constant exposure f
is expressed in terms of the averaged resolvent:

〈ui〉 = −
N

∑

j=1

〈Gi j〉 f j . (6)

The study of spatial correlation features of non-affine de-

formations has been of great interest for many years [6,20].
The metastable state in which the amorphous system is

located has a significant correlation of force constants,

which results in a correlation of non-affine displacement

components. This paper considers paired correlations of

non-affine components of displacements Rna
i j = 〈una

i una
j 〉 for

studying this issue, which, as follows from equation (5),
can be expressed in terms of the resolvent Ĝ in the

following form

R
na
i j =

N
∑

i′, j′=1

(〈Gii′G j j′〉 − 〈Gii′〉〈G j j′〉) f i′ f j′ . (7)

As follows from the entry (7), the presence of non-zero

correlations between non-affine deformations is directly

related to the existence of paired covariances between the

elements of the resolvent 〈Gii′G j j′〉. In other words, it

is necessary to average the resolvent 〈Ĝ〉 and study the

paired covariances of its elements 〈Gii′G j j′〉 to study the

correlator of non-affine deformations Rna
i j . The paper uses a

theory based on the use of random correlated matrices for

achieving this.
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3. Random correlated matrices

The interaction energy Uk , corresponding to the energy

of the k-th bond near a stable equilibrium position in the

harmonic approximation can be represented as a sum of

quadratic forms by atomic displacements:

Uk =
1

2

( N
∑

i=1

Aikui

)2

, (8)

where Aik — some numbers, the index k numbers the

quadratic forms, which are interpreted as bonds with

energy Uk in this paper. Each row of the matrix Â
corresponds to the degree of freedom of the system, and

each column corresponds to the relationship between the

degrees of freedom. The total potential energy of the

interaction

U =

K
∑

k=1

Uk , (9)

where K is the number of bonds of the system. Then,

the force-constants matrix 8̂ is expressed in terms of the

matrix Â based on equation (2):

8̂ = ÂÂT . (10)

The matrix of force constants has a certain form wen the

properties of a particular system are described. However,

the theory of random matrices is applicable to describe

the general universal properties of amorphous systems

independent of averaging. As follows from the formula (10),
the force-constants matrix is represented in the most general

form as an ensemble ÂÂT with some matrix Â. At the same

time, the matrix Â has certain properties that follow from the

general properties of amorphous disordered systems [24].
The elements Aik are random in nature due to the disorder,

and can be considered as random numbers with a given

distribution. In the case when the elements of the matrix Â
have a Gaussian distribution, the ensemble ÂÂT is called the

Wishart ensemble of random matrices [25].
However, it is necessary to consider a correlated Wishart

ensemble of random matrices to describe the glassy state,

that is, the case when the elements of the matrix Â are

correlated with each other [22]. In general, the paired

covariances between the elements of the matrix Â are

given as

〈AikA jl〉 = C
kl
i j , (11)

where the matrix of paired covariances Ĉ has 4 indices:

the lower indices i and j number the degrees of freedom

of the system, and the upper indices k and l number

the bonds. Accounting for correlations results in specific

frequency statistics of the amorphous system, which is the

subject of many studies [7,22]. The matrix Â has a sparse

appearance due to the short-range interaction between the

atoms of the system, characteristic of the amorphous state

of matter, which is taken into account in the structure of the

correlation matrix Ĉ , which is also sparse. Consideration of

the statistical properties of the correlated Wishart ensemble

helped to describe the well-known vibration phenomena

of amorphous solids, such as the boson peak and the

Ioffe−Regel transition during the transformation of phonons

into the diffusion type of vibrations [21,22].

As it was shown in Ref. [13] using diagram technique,

a system of equations is obtained as a result of averaging

over various realizations that links the averaged resolvent

〈Ĝ〉 with the covariance matrix Ĉ:

〈Ĝ〉 =
1

ω2 ÎN − 6̂
, 6i j =

K
∑

k,l=1

C
kl
i j〈G⋆

kl〉,

〈Ĝ⋆〉 =
1

ÎK − 6̂⋆
, 6⋆

kl =
N

∑

i, j=1

C
kl
i j〈Gi j〉, (12)

where Ĝ⋆ — additional resolvent of size K × K, 6̂ and

6̂⋆ — matrices of size N × N and K × K respectively,

each of which is known in diagram technique as the

self−energy part [26], ÎN and ÎK — unit matrices of size

N × N and K × K respectively. Knowing the properties

or type of the covariance matrix Ĉ , the properties of

the averaged resolvent 〈Ĝ〉 can be analyzed from the

system of equations (12), which makes it possible to

study the general vibrational and mechanical features of the

disordered medium [22].

4. Correlation properties of non-affine
deformations

The following physical cases are considered in the

paper for studying the correlation properties of non-affine

deformations, which make it possible to simplify the system

of equations (12):

(i) The properties of the disordered system are studied at

zero frequency, ω = 0. This further simplifies the system of

equations (12). The frequency-dependent properties of non-
affine deformations will be the subject of further studies.

(ii) A system is considered in which all its bonds are inde-

pendent (uncorrelated with each other). This corresponds to
the fact that different columns of the matrix Â representing

different bonds have their own correlation matrices:

C
kl
i j = Ck

i jδkl, (13)

where δkl — Kronecker symbol, Ĉk — a matrix describing

covariances between degrees of freedom involved in the

bonds with the number k . Hereafter, Ĉk denotes a square

matrix of size N × N, the elements of which are indexed as

Ck
i j . As follows from the system of equations (12), such

consideration results in the diagonal appearance of matrices

6̂⋆ and 〈Ĝ⋆〉.
(iii) A homogeneous medium is considered in which all

bonds are statistically indistinguishable. In this case, the

Physics of the Solid State, 2024, Vol. 66, No. 10
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matrix 〈Ĝ⋆〉, responsible for describing the bonds of the

system, has the following form

〈Ĝ⋆〉 = κ ÎK, (14)

where κ = 1− N/K. The relative increase of the number

of bonds K over the number of degrees of freedom N is

a key parameter in the applied random matrix approach

as demonstrated in Ref. [13,21,22], which characterizes

the degree of disorder of the system. The parameter

̹ = K/N − 1 was used in these studies. The case ̹ ≫ 1

corresponds to weak fluctuations of the matrix 8̂, and

̹ ≪ 1 describes the case of a highly disordered system,

the most interesting for consideration.

Taking into account the described properties, using the

developed diagram technique described in Ref. [13], we

performed averaging over various realizations of the system

and obtained an expression for the correlator (7) in the

following matrix form:

R
na
i j = κ2

K
∑

k,l=1

Dkl
N

∑

i′, j′=1

Lkl
i ji′ j′〈ui′〉〈u j′〉. (15)

Here the matrix D̂ of size K × K is given by the expression

D̂ =
1

ÎK − κ2T̂
, (16)

in which the matrix T̂ has the size K × K and is expressed

in terms of the averaged resolvent 〈Ĝ〉 and the covariance

matrix Ĉ :

T kl = Tr
(

〈Ĝ〉Ĉk〈Ĝ〉Ĉ l
)

. (17)

The matrix L̂ has 6 indices and is also expressed in terms

of the averaged resolvent 〈Ĝ〉 and the covariance matrix Ĉ :

Lkl
i ji′ j′ =

(

〈Ĝ〉Ĉk〈Ĝ〉
)

i j
C l

i′ j′ +
(

〈Ĝ〉Ĉk
)

ii′

(

〈Ĝ〉Ĉ l
)

j j′
.

(18)
Here and further, the matrices 〈Ĝ〉 and Ĉ are multiplied

by the lower indices numbering the degrees of freedom, in

accordance with the definition of matrix multiplication, and

Tr(. . .) means tracing of the matrix by its lower indices. The

presence of two terms in the expression (18) is attributable

to the fact that two types were identified when analyzing

diagrams that make the greatest contribution among all

possible diagrams that appear as a result of averaging the

paired products of the elements of the resolvent 〈Gii′G j j′〉.
It is convenient to use the continuous limit to analyze the

spatial properties of the found expression for the correlator

of non-affine deformations(15). To do this, let us use

vector ri let’s instead of index i that corresponds to the

coordinate of the i-th atom. Then the displacements of

the atoms u(r) and the studied correlator R
na(r, r′) are

continuous functions depending on the coordinates of the

atoms. The action of the matrix Ĉk at the location rk of the

bond k on a smooth function depending on the coordinates

of atoms is characterized by taking the gradient of this

function along the coordinate rk as shown in Appendix 1 to

this paper. Coordinates with upper indices (rk , rl) denote

the coordinates of bonds, and coordinates with lower indices

(ri, r j) denote coordinates of atoms.

Taking into account the replacement of summation over

bonds with spatial integration in equation (15), the correla-

tor Rna(ri, r j) in continuous form has the following form:

R
na(ri , r j) =

κ2χ2

V 2

x
D(rk , rl)L(ri , r j, r

k, rl)drkdrl.

(19)
Here V is the normalization volume, and the constant

χ = 1
3K

∑

i, j,k ri · r jCk
i j contains the scalar product of vec-

tors (·). Since
∑

i Ck
i j =

∑

j Ck
i j = 0, the value of χ does

not depend on the choice of the origin of the coordinate

system for the vectors r i and r j and is proportional to

the square of the characteristic size of the bond. The

function L is a continuous coordinate function and has the

following form

L(ri , r j , r
k , rl) = ∇rk G(rk , ri) · ∇rk G(rk , r j)

(

∇rl 〈u(rl)〉
)2

+
(

∇rk G(rk , ri) · ∇rk 〈u(rk)〉
) (

∇rl G(rl, r j) · ∇rl 〈u(rl)〉
)

,

(20)
where the operation ∇rk in the Cartesian coordinate system

{ex , ey , ez} means taking a gradient along the coordinate rk :

∇rk =
∂

∂rk
x
ex +

∂

∂rk
y
ey +

∂

∂rk
z
ez . (21)

The macroscopic response of the system to external

action occurs when deformation is applied to the system. At

the same time, in accordance with the macroscopic theory

of elasticity, the relative deformation ε, which is a vector

in the scalar displacement model, is associated with the

gradient of averaged displacements 〈u〉:

∇r〈u(r)〉 = ε, (22)

where the relative strain vector ε = {εx , εy , εz} means the

stretching of the system along spatial axes. A displacement

along the axis z in the direction of which an external de-

formation will be applied can be considered a displacement

in the scalar model. The function L (20) has the following

form taking into account that the system is homogeneous

and isotropic:

L(ri , r j, r
k , rl) = ε2∇rk G(rk , ri) · ∇rk G(rk, r j)

+
(

∇rk G(rk , ri) · ε
) (

∇rl G(rl, r j) · ε
)

.

(23)
The form G and D were found as continuous functions

in Appendix 2 to this paper. At the same time, it is shown

that these functions are differential, that is, depend on the

difference of spatial coordinates:

G(|rk − ri |) = − 1

4πκχ|rk − ri |
, (24)

12∗ Physics of the Solid State, 2024, Vol. 66, No. 10
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D(|rk − rl|) =
e−|rk−rl|/ξ

4πκξ2|rk − rl| . (25)

The parameter ξ defines a certain spatial scale and is set by

the expression

ξ =

√

κ

6K

∑

m,l

T ml(rm − rl)2. (26)

The expression (26) coincides with the parameter of the

heterogeneity scale of an amorphous medium obtained

in the work [13]. At the same time, as it was shown

in Appendix 2, for κ ≪ 1, the scale ratio ξ ∝ κ−1/2 is met,

which is characteristic of the non-affinity scale [13] and of

the Ioffe−Regel length lengthscale lIR, which is the free path

length of phonons near the Ioffe−Regel frequency [22]. In
other words, the parameter ξ (26) corresponds to the scale

of heterogeneity (non-affinity) of an amorphous system and

is associated with the strength of disorder.

Taking into account the found ratios (20)−(26), the

displacement correlator (19) has the following form:

R
na(|r − r|) = − ε2

4πκ|r − r|

+
x (

(rk − ri) · ε
) (

(rl − r j) · ε
)

e−|rk−rl |/ξ

(4π)3κV 2ξ2|rk − ri |3|rl − r j |3|rk − rl| drkdrl.

(27)
The first term in the expression (27) gives the main

contribution to the considered correlations and does not

contain characteristic spatial scales. This result is consistent

with the results provided in Ref. [19], according to which

the correlation of non-affine deformations 〈una(r)una(r′)〉
at points located at a distance r = |r− r′| from each

other has a spatial dependence 〈una(r)una(0)〉 ∝ C − Dr−1,

where C and D — positive constants. At the same

time, the first term does not contain a characteristic scale

of ξ and cannot fully describe the correlation properties

of non-affine deformations of an amorphous body. The

characteristic heterogeneity lengthscale of the medium ξ

in expression (27) is a part of the second term which was

obtained for the first time.

The found correlator of non-affine deformations (27) has

a long-range character, which is attributable to the fact that

the local deformation of matter is determined not only by

the field of non-affine displacements una(r) itself, but also

by its spatial derivatives. We considered correlations of gra-

dients of non-affine displacements 〈∇ri u
na(ri) · ∇r j u

na(r j)〉
for the scalar displacement model used. Consideration of

such correlations simplifies the found expression (27) for

R
na:

∇ri · ∇r jR
na(|ri − r j |)=

ε2

κ
δ(ri − r j) −

ε2

4πκξ2
e−|ri−r j |/ξ

|ri − r j |
.

(28)
The first term is different from zero only if ri and r j (delta-
correlated component) coincide as can be seen from equa-

tion (28). The second term decreases exponentially with

the distance r = |ri − r j | on the non-affinity lengthscale ξ ,

that is, it expresses a long-range correlation.

5. Discussion of results

Elastic properties of amorphous solids substan-

tially depend on microscopic non-affine deformations.

The spatial correlations of non-affine deformations

〈una(r)una(r′)〉 = R
na(|r− r′|) are studied using the random

matrix model and their analytical expressions are obtained.

An important result of the study is the found expres-

sion (28) for correlations between spatial derivatives of non-

affine deformations, which from a physical point of view

can be compared to correlations between local variations in

the density of the substance of the system. In general, it

was found that the correlations 〈∇una(r) · ∇una(r′)〉 rapidly
decrease in space and depend on the distance r = |r− r′|
in the following form

〈∇una(r) · ∇una(0)〉 = Aδ(r) − B
e−r/ξ

r
. (29)

The resulting correlator consists of a delta-correlated com-

ponent corresponding to white noise statistics and an

exponentially decreasing contribution, expressing long-range

correlation decreasing on the non-affinity lengthscale ξ .

Such exponential behavior of correlations on the hetero-

geneity lengthscale ξ was not been observed in the studies

of other scientific groups known to us and was obtained for

the first time in this work.

The paper shows that the developed theory of random

matrices is a good theoretical tool for studying various uni-

versal features of amorphous systems with varying degrees

of disorder at the molecular level. Previously, the random

matrix approach was applied to the theoretical description

of the boson peak and the Ioffe−Regel transition between

phonons and the diffusion type of vibrations in systems of a

random topology and dimension [21,22,24]. The theoretical

results obtained helped to substantiate the experimental

dependences previously found, including in the study of

the boson peak in two-dimensional systems [23,27]. At

the same time, it was found that the frequencies of the

Ioffe−Regel crossover and boson peak have similar values,

and the corresponding spatial scale lIR, usually amounting

to several nanometers, is associated with the strength of

disorder in such systems and depends on the system

parameter lIR ∝ κ−1/2. It is this lengthscale that determines

the magnitude of non-affine deformations in amorphous

systems. The scale ratio ξ ∝ κ−1/2 obtained in this

study suggests that ξ corresponds to the heterogeneity

lengthscale of the medium under study (the non-affinity

lengthscale). The classical (continuum) theory of elasticity

becomes inapplicable at such scales, since it is impossible to

determine a smooth dependence of a displacement on the

coordinate. In other words, the non-affinity lengthscale ξ

and the Ioffe−Regel length lIR have the same order of

magnitude and separate macroscopic scales, to which the

Physics of the Solid State, 2024, Vol. 66, No. 10
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classical (continuum) theory of elasticity is applicable, and

microscopic scales, on which the disorder of the system

plays an essential role, which is consistent with the results

of the paper [11,13,22]:

ξ ∼ lIR ∝ κ−1/2. (30)

The results of this study are of great importance for

the physics of nanocomposites. It was previously shown

that in a highly disordered medium with rigid inclusions of

nanometer sizes, an effective rigid shell is formed around

such nanoclusions, for which the values of elastic modules

exceed the values of volumetric elastic modules and depend

on the degree of disorder [12,13]. For example, calculations

using the method of molecular dynamics of polystyrene

with a nanoparticle SiO2 show an increase of stiffness at

a distance of about 1.4 nm around the nanoparticle [12].
At the same time, the scale that determines the thickness

of such a shell exactly corresponds to the non-affinity

lengthscale ξ obtained in this study. This results in the

increase of the effective volume of nanoparticles and in the

increase of their effect on the macroscopic elastic properties

of nanocomposites, which is especially noticeable with

similar values of the linear sizes of nanoparticles and the

heterogeneity scale ξ . At the same time, an exponential

decrease of elastic modules near a rigid nanoparticle is

observed, depending on the distance to it. This fact

highlights the relationship between local elastic properties

and non-affine deformations in systems with strong disorder.

A similar behavior of elastic modules is observed near

the transition between amorphous and crystalline layered

structures [11]. The presence of transitional phases between

structurally different regions is a manifestation of the

heterogeneity of local deformations and is directly related

to the disorder in such structures.

The original results obtained in this study of spatial

correlations of non-affine deformations can be confirmed

by molecular dynamic calculations. Molecular dynamic

modeling allows considering various amorphous and poly-

mer systems, each of which can be characterized by its

ownnon-affinity lengthscale ξ . The non-affinity radius for

other amorphous substances was estimated to be about

ten typical interatomic or intermolecular distances [1,7].
The dependence of correlations of non-affine deformations

can be compared with the theoretical dependence for the

obtained molecular dynamics data (29). However, it is

worth taking into account the vector nature of the displace-

ments and considering the divergence and rotor correlators

of the field of non-affine displacements. The former of

them corresponds to the correlation between variations

in the density of matter arising during deformation, and

the latter corresponds to the correlation between local

rotations of matter. It is expected that such correlators will

qualitatively have the found dependence (29) for the scalar

displacement model. At the same time, A, B and ξ are fitting

parameters. It is possible to estimate the heterogeneity

lengthscale of the structure ξ from the comparison of the

results. We are actively working in this field, and the results

of this work will be reviewed by us in the near future.

The relations obtained within the framework of the

theory of random matrices can help to study the correlation

properties of non-affine deformations at a nonzero frequency

ω 6= 0. This is especially relevant in the study of viscoelastic

vibrational properties of amorphous systems. It is also of

interest to study the correlation properties of non-affine

deformations near the boundaries between media with

different values of volumetric elastic modulus, which is

especially important for nanocomposite amorphous systems.

At the same time, each k-th bond of the system should

be characterized by its own parameter γk for a correct

description of the features of such systems in accordance

with the paper [13]. The obtained ratios can also help in

solving this problem.

6. Conclusion

The correlation properties of non-affine deformations in

amorphous solids were studied in this paper. Analytical

expressions were obtained using the random matrix model

and the developed diagrammatic technique for the paired

correlator of non-affine displacements in the approximation

of zero frequencies and a homogeneous isotropic disordered

system far from its boundaries. The obtained matrix

relations were analyzed in the continuous limit, where each

atom or bond is characterized by its positions in space, and

the functions acting on them are smooth and continuous.

It was shown that the correlator of non-affine displace-

ment gradients consists of a delta-correlated component

(white noise) and an exponentially decreasing long-range

correlations. The characteristic scale ξ , standing in the

exponent, describes the heterogeneity lengthscale of the

medium under study and is associated with the disorder

parameter κ by the lengthscale ratio ξ ∝ κ−1/2. The results

obtained play an important role in studying the viscoelastic

properties of amorphous bodies.
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Appendix 1

Let us consider the action of the matrix Ĉk at the location

rk of the bond k on some smooth function h(ri), which

depends on the coordinate of the i-th atom ri . Let us

decompose h(ri) near the point k for this purpose:

h(ri) ≃ h(rk) +
∑

α={x ,y,z}

∂h(rk)

∂α
(ri − rk)α, (A.31)
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where the index α numbers the spatial Cartesian coordinates

and denotes the projection of the vector.

Let us take into account an important property of

translational invariance, which imposes a restriction on the

form of the force-constants matrix in the form of the sum

rule
∑

i 8i j =
∑

j 8i j = 0. This rule follows from the fact

that the potential energy of the system associated with

the 8̂ ratio (2) does not change when the system is shifted

as a whole, i. e. it is invariant when ui is replaced by

ui + const. This leads to the fact that the rule of sum is

superimposed on the covariance matrix as follows from the

formulas (10)−(11):

N
∑

i=1

Ck
i j =

N
∑

j=1

Ck
i j = 0. (A.32)

Then, taking into account the ratios (A.31)−(A.32), the
action of the matrix Ĉ(k) at the location rk of the bond k on

h(ri) can be written as

∑

i

Ck
i j h(ri) =

∑

α

∂h(rk)

∂α

∑

i

r iαCk
i j . (A.33)

Similarly, considering two smooth coordinate functions

h1(ri) and h2(r j), the following relation can be obtained:

∑

i, j

Ck
i j h1(ri)h2(r j) =

∑

α,β

∂h1(r
k)

∂α

∂h2(r
k)

∂β
χk
αβ . (A.34)

in which

χk
αβ =

∑

i, j

r iαr jβCk
i j (A.35)

it is a tensor of the second rank. In the case of an isotropic

medium, the tensor χk
αβ is diagonal with equal components.

In addition, when considering a homogeneous medium,

when the bonds do not differ from each other, the tensor

χk
αβ does not depend on the number of bond k :

χk
αβ = χδαβ , χ =

1

3K

∑

i jk

ri · r jC
k
i j , (A.36)

where (·) denotes the scalar product of vectors. Thus, taking
into account the expression (A.36), the equation (A.34) can

be presented in the following form:

∑

i, j

Ck
i j h1(ri)h2(r j) = χ∇rk h1(r

k) · ∇rk h2(r
k), (A.37)

where the operation ∇rk in the Cartesian coordinate

system {ex , ey , ez} means taking a gradient along the

coordinate rk :

∇rk =
∂

∂rk
x
ex +

∂

∂rk
y
ey +

∂

∂rk
z
ez . (A.38)

The found ratio (A.37) also occurs when considering the

action of the matrix Ĉk at the location rk of the bond k on

a smooth spatial function h(ri, r j), which depends on two

coordinates of atoms i and j :

∑

i j

Ck
i j h(ri , r j) = χ∇ri · ∇r j h(ri , r j)

∣

∣

∣

ri =r j =rk
. (A.39)

The relations obtained in this Section allow moving to the

continuous limit and analyzing the spatial properties of the

correlator of non-affine deformations Rna.

Appendix 2

Based on equation (16), D̂ is the resolvent for the matrix

κ2T̂ , and the elements Dkl satisfy the following equation:

Dkl − κ2
∑

m

T mlDkm = δkl, (A.40)

where δkl is the Kronecker symbol.

Let us decompose D(rk , rm) near the bond l to find the

function D(rk, rl) acting in a continuous representation and

depending on the two coordinates of the bonds rk and rl :

D(rk , rm) ≃ D(rk , rl) +
∑

α

D(0,1)
α (rk , rl)(rm − rl)α

+
∑

α,β

D(0,2)
αβ (rk , rl)

2
(rm − rl)α (rm − rl)β ,

(A.41)
where the entry (0,1) and (0,2) denotes taking the first and

second derivatives of the corresponding variable. Then

∑

m

T mlD(rk , rm)=D(rk , rl)
∑

m

T ml +
∑

α,β

D(0,2)
αβ (rk, rl)g l

αβ,

(A.42)
where the symmetric form of the matrix T̂ was taken into

account, which follows from its definition (17), resulting in
∑

m(rm − rl)αT ml = 0. The tensor g l
αβ is defined as

g l
αβ =

1

2

∑

m

(rm − rl)α(r
m − rl)βT ml (A.43)

and is a tensor of the second rank. The tensor g l
αβ is

diagonal with equal components in case of an isotropic

medium. In addition, when considering a homogeneous

medium, when the bonds do not differ from each other, the

tensor g l
αβ does not depend on the number of bond l :

g l
αβ = gδαβ , g =

1

6K

∑

m,l

T ml(rm − rl)2. (A.44)

As follows from the relations (12)−(14),

∑

m

T ml =
∑

l

T ml =
1− κ

κ2
, (A.45)

therefore, we have the ratio g ∝ κ−2 for κ ≪ 1.
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Thus, taking into account the expressions (A.44)
and (A.45) obtained, the equation (A.42) is represented as

∑

m

T mlD(rk , rm) =
(1− κ)

κ2
D(rk , rl) + g1rl D(rk , rl),

(A.46)
where 1rl means the Laplace operator acting on the

coordinate rl of the bond location l, which in the Cartesian

coordinate system {ex , ey , ez} has the form

1rl = ∇rl · ∇rl =
∂2

∂(r l
x )

2
ex +

∂2

∂(r l
y )

2
ey +

∂2

∂(r l
z )

2
ez .

(A.47)
Taking into account the found expression (A.46), the

equation (A.40) in the continuous limit has the following

form:

κD(rk , rl) − gκ21rl D(rk , rl) = δ(rk − rl), (A.48)

where δ(r) corresponds to the Dirac delta function. This

equation for the function D(rk , rl) has the form of the

Helmholtz equation, the solution of which for a three-

dimensional system is the following function depending on

the coordinate difference |rk − rl|:

D(|rk − rl|) =
e−|rk−rl |/ξ

4πκξ2|rk − rl| , (A.49)

where the parameter ξ =
√

gκ defines some spatial scale.

Since g ∝ κ−2 for κ ≪ 1, then ξ ∝ κ−1/2.

Similarly, the resolvent G(ri , r j) is found in a continuous

representation as a function of two coordinates of atoms by

solving the Poisson equation

1G(ri , r j) =
1

κχ
δ(ri − r j). (A.50)

The following function is the solution to this equation for

a three-dimensional system, depending on the difference of

coordinates |ri − r j |:

G(|ri − r j |) = − 1

4πκχ|ri − r j |
. (A.51)
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