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Collapse of an ellipsoidal cavity attached to a flat wall
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A numerical model of the collapse of a gas cavity in the form of a semi-ellipsoid of rotation adjacent to a solid

flat wall in a liquid is constructed. Calculations were compared with experiments in which nontrivial dynamics of

such a cavity was observed, leading to the formation of a cumulative jet directed from the wall. The hydrodynamic

mechanism of the cumulative jet formation has been established, and the main factors leading to the collapse

dynamics observed in experiments have been identified. According to the model, these are the shape of the cavity,

the proximity of the cavity to the surface and the pressure drops..
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The study of bubble dynamics in liquids in the vicinity of

solid surfaces has remained an important research topic for

many years. The work of Rayleigh [1], who was the first to

study the spontaneous formation and collapse of bubbles

in liquid in an effort to explain the damage to driving

propellers, may be regarded as a pioneering study into

cavitating cavities in liquid. With the advent of numerical

methods, the influence of non-spherical deviations on the

evolution of a bubble in the vicinity of a rigid wall was

analyzed by the boundary element method, which is a

convenient tool in ideal liquid models [2–4]. This method

was used in [5] to study the influence of deviation of the

initial shape of a bubble from the spherical one and the

thickness of the liquid layer between it and the wall on

the dynamics of collapse. The authors of [6] have also

attempted to factor in the non-sphericity of a bubble in a

viscous liquid. In the case of an initially spherical bubble,

models were refined through the introduction of additional

parameters, such as surface tension [7], wall curvature [8],
etc., into the physical model of the phenomenon. All these

diverse examples are tied by a common pattern of formation

of a cumulative jet as a result of collapse of a bubble: this

jet is oriented toward the solid wall in the vicinity of which

the bubble was located. However, a different scenario of

bubble collapse was discovered in experiments [9] in the

process of combustion of a stoichiometric propane-oxygen

mixture in a bubble in water on a rigid wall in the form of

a flat disk. The burnt gas bubble first expanded to a certain

limit, assuming a shape close to a semi-ellipsoid of rotation,

and then collapsed. A cumulative jet formed in the process

of collapse near the axis of symmetry and then transformed

into a vortex ring. The novel feature here is the orientation

of this cumulative jet, which was directed away from the

wall to which the bubble was adjacent. The phenomenon

resembles the formation of a vortex ring when thermals

rise, but gravity in these experiments is co-directional with

propagation of the forming jet, which excludes a baroclinic

mechanism. Thus, a qualitatively new scenario of collapse

of a gas cavity near a wall leading to the formation of a jet

and a vortex ring was discovered.

The aim of the present study is to construct a relevant

numerical model and clarify the mechanism of formation

of a cumulative liquid jet directed away from the wall

during the collapse of a gas cavity attached to this wall.

The collapse stage, which is crucial to understanding the

mechanism of formation of a cumulative jet, is analyzed in

the model. The model is tested by comparing the results

of calculations and experiments on combustion of 3 cm3 of

a stoichiometric propane-oxygen mixture performed under

the conditions probed in [9].

Half-space z < 0 filled with liquid and bounded by a

rigid flat wall at z = 0 is considered. A gas cavity in

the form of a semi-ellipsoid of rotation about the z axis

is positioned on the wall. The liquid is assumed to be ideal

and incompressible, the motion is potential, and the force

of gravity and surface tension are neglected. Numerical

calculations and the comparison with experimental data

start from the moment of maximum expansion of the

cavity, which is taken as the initial time. Under the

assumptions made above, the wall may be regarded as

a symmetry plane, and the original problem is reduced

to the problem of collapse of an ellipsoidal bubble in

an infinite liquid. This problem is axisymmetric and is

solved in cylindrical variables (r , ϕ, z ). Equations are

written in a dimensionless form. Length, time, potential,

pressure, and density are made nondimensional with a ,
[ρa2/(P∞ − P i)]

1/2, [a2(P∞ − P i)/ρ]1/2, (P∞ − P i), and
ρ, respectively. Here, a is the semi-axis perpendicular

to axis z , P i is the pressure in the bubble at the initial

time, P∞ is the pressure at infinity, and ρ is the liquid

density. The liquid at infinity is assumed to be at rest, and

the gas pressure inside the bubble is uniform and equal to

the pressure in liquid at the bubble boundary. A system

of equations, which includes the Laplace equation for the
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Figure 1. Calculated bubble contours in the axial plane (dashed lines) superimposed onto the shadow images obtained 0 (a), 3 (b), and
3.8ms (c) after the onset of collapse.

velocity potential in liquid and the equation of state of gas in

the bubble and is supplemented by kinematic and dynamic

(Cauchy−Lagrange integral) conditions at the boundary, is

solved to determine the dynamics of the cavity boundary:

∇2φ = 0, pcv
γ
c = pi,

dr
dt

= ∇φ,

∂φ

∂t
+

1

2
|∇φ|2 + p − 1 = 0,

r is the dimensionless radius vector of boundary points;

∇φ values are taken at the bubble boundary; p = pc − pi ;

pi and pc are the dimensionless initial and current gas

pressures in the bubble; vc = Vc/Vi ; Vi , Vc are the initial and

current volumes of the ellipsoid, which are equal to twice

the volume of the bubble; and γ is the adiabatic index.

The cavity surface deformation and the characteristics

of liquid at the surface are calculated using the boundary

element method detailed in [2,3]. This approach is

applicable only up to the moment of collision of the cavity

surface elements with each other, but provides the means to

obtain detailed data characterizing the dynamics of cavity

boundaries in the process of collapse. The potential of

motion satisfies the Laplace equation within a certain region

� (occupied by liquid) with piecewise-smooth boundary S
(the bubble surface) and is considered to be a sufficiently

smooth function. Since the symmetry plane is inside

the bubble (and not between two bubbles as in [5]), the

boundary integral equation takes the form

c(q)φ(q) +

∫

S

φ(q′)
∂

∂n

(

1

|q − q′|

)

dS

=

∫

S

∂

∂n

(

φ(q′)
) 1

|q − q′|
dS,

where point q ∈ �, q′ ∈ S, ∂
∂n is a derivative along the

normal to S, c(q) = 4π if q ∈ �, and c(q) = 2π if q ∈ S.
Choosing point q on bubble surface S, one may obtain equa-

tions for determining the potential if its normal derivative

(the velocity of the boundary) is known, and vice versa.

The computational problem is simplified in axisymmetric

formulations, since the potential and its derivative do not

depend on angle ϕ and integration over this variable may

be performed analytically. The two-dimensional boundary in

variables (r, z ) is replaced by a set of segments; quadratic

approximation was used in calculations both for these
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Figure 2. Temporal variation of experimental (1) and calculated

(2) values of bubble boundary radius rb near the wall.

segments and for the functions of potential and its normal

derivative.

The following strategy was used to determine the evolu-

tion of the boundary shape: since the initial shape of the

bubble surface and the potential at the surface are known,

we may resolve the discretized form of the boundary

integral to find the normal velocity at the bubble surface.

Knowing the potential, we may also calculate the tangential

velocity at the surface and thus obtain the total gradient of

potential at the surface or, in other words, the magnitude

and direction of the boundary element velocity. This allows

us to calculate the shape of the bubble boundary at the

next time step and subsequently calculate a new potential

distribution using the dynamic condition.

The value of a is determined directly from a shadow

image, and Vi is derived in MatLab from a shadow image

under the assumption of its axial symmetry. Uncontrolled

heat losses in the process of expansion of a burnt gas

charge [10] make it impossible to determine P i . Therefore,

P i is varied, and its value is chosen so as to match

the calculations with experimental data. The dimensional

parameters of the problem are as follows: a = 3.88 cm,

ρ = 1 g/cm3, P∞ = 105 Pa, P i = 0.11P∞, Vi = 146.3 cm3,

and γ = 1.24 [10].

Figure 1 presents the calculated bubble contours in the

axial plane (dashed lines) superimposed onto the shadow

images obtained 0, 3, and 3.8ms after the onset of collapse.
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Figure 3. Experimental (1) and calculated (2) velocities

ub = 1rb/1t of the bubble boundary near the wall at different

moments in time with intervals 1t = 0.2ms between them.

The temporal variation of experimental and calculated

values of bubble boundary radius rb near the wall is

illustrated in Fig. 2. Figure 3 shows experimental and

calculated velocities ub of the bubble boundary near the

wall at different moments in time with intervals 1t = 0.2ms

between them: ub = 1rb/1t . It follows from Fig. 1 that the

experimental and calculated boundaries agree qualitatively

(specifically, in terms of the formation of a mushroom-

shaped structure at the end of collapse). Figures 2 and 3

reveal a quantitative agreement between the experimental

and calculated parameters characterizing the collapse of

the bubble boundary near the wall. This qualitative and

quantitative agreement between the results of calculations

and experiments indicates that the constructed model is

adequate to the observed process of cavity collapse.

The constructed model provides an opportunity to estab-

lish the mechanism of formation of a cumulative jet directed

away from the wall. The formation of a mushroom-shaped

structure implies that the boundaries of a bubble near the

wall converge at an accelerated rate; i.e., the emergence of

an annular jet several millimeters in thickness converging

toward the axis is observed. According to the data in Fig. 3,

the rate of jet convergence increases with time, eventually

reaching ∼ 20m/s; thus, a significant kinetic energy is stored

in it. When the annular jet converges, it slows down,

inducing an increase in pressure on the wall surface in the

vicinity of the symmetry axis. The pressure force imparts

momentum to the liquid perpendicular to the surface, thus

forming a cumulative jet with its kinetic energy borrowed

from the energy of the converging annular jet. Thus,

the cumulative jet directed away from the wall is formed

from the annular jet converging toward the symmetry axis

near the wall. In addition to clarifying the mechanism of

formation of the cumulative jet, the model suggests that the

key factors leading to its emergence are the geometric shape

of a gas cavity, its proximity to the wall, and the pressure

drop.
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