# 06 Исследование продуктов гидротермальной обработки растворов олигохитозана

© Е.Р. Гасилова,¶ А.О. Ситникова, Н.Н. Сапрыкина, Е.Н. Власова, Ю.А. Скорик, А.В. Якиманский

Филиал федерального государственного бюджетного учреждения "Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт" — Институт высокомолекулярных соединений,

199004 Санкт-Петербург, Россия

<sup>¶</sup>e-mail: Katja.Gasilova@gmail.com

Поступило в Редакцию 18 октября 2024 г. В окончательной редакции 18 октября 2024 г. Принято к публикации18 октября 2024 г.

Исследовано фазовое разделение полисахаридов при их гидротермальном синтезе на пористые углеродные сферы размером от десятков до тысяч нанометров и люминесцентные углеродные наноточки размером менее 10 nm. Фазы получены из разбавленных растворов олигомера хитозана. Исследованы спектры поглощения и люминесценции углеродных наноточек, а углеродные сферы охарактеризованы методами светорассеяния и сканирующей электронной микроскопии. Показано, что рост продолжительности синтеза приводит к увеличению степени карбонизации обоих компонентов, а также к росту размеров углеродных сфер. Впервые показано, что квантовый выход и ширина линии люминесценции хитозанных углеродных наноточек зависят от степени заполнения автоклава исходным раствором.

Ключевые слова: углеродные наноточки, углеродные сферы, гидротермальный синтез, светорассеяние, люминесценция.

DOI: 10.61011/JTF.2025.02.59729.232-24

#### Введение

Гидротермальной обработке растворов органических соединений стали уделять внимание как дешевому методу переработки органических отходов в связи с нарастающими экологическими проблемами. При гидротермальной обработке происходит ряд реакций, включающих гидролиз, изомеризацию, дегидратацию, конденсационную полимеризацию и ароматизацию [1]. Интерес представляют и образующиеся в результате карбонизации сферические пористые углеродные частицы размером от 50 nm до нескольких микрометров, так называемые углеродные сферы (УС). УС имеют перспективы применений в различных областях (в качестве суперконденсаторов, в катализе и биомедицине) [2]. Кроме того, при гидротермальной обработке растворов органических соединений также могут быть получены и люминесцентные наночастицы размером меньше 20 nm, так называемые углеродные наноточки (УНТ). УНТ новый класс люминесцирующих наноразмерных структур, открытых в 2004 г. при анализе продуктов синтеза углеродных нанотрубок [3]. УНТ содержат взаимно упорядоченные включения сопряженных ароматических -С=С-доменов, диспергированные в аморфной углеродной матрице. Поверхность УНТ содержит различные группы (-С=О, -СООН, -NH<sub>2</sub>, -ОН и др.). Заряженные поверхностные группы отвечают за стабильность дисперсий С-точек в воде. Преимущество УНТ для биомедицины по сравнению с квантовыми точками из полупроводников и перовскитов, а также с органическими красителями, состоит в нетоксичности, большей стабильности и диспергируемости УНТ в воде [4]. Бурное развитие исследований люминесцентных свойств и способов получения УНТ было вызвано перспективой их применений в различных областях — биомедицине, фотокатализе и солнечной энергетике. Наличие потенциальных атомов-допантов (азота, серы, фосфора и бора) в исходных веществах приводит к включению этих атомов в состав УНТ и к изменению их спектров люминесценции. Нуклеация и рост зародышей упорядоченных кластеров УНТ в процессе обработки исходных растворов изучены менее всего [5], а разделение реакционной среды на УНТ и УС фактически не изучали. Оптические свойства УНТ достаточно сложны для интерпретации из-за сложной структуры УНТ, включающей различные поверхностные функциональные группы, атомы углерода с sp<sup>2</sup>- и sp<sup>3</sup>-гибридизацией, наличие вкраплений локально упорядоченных ароматических углеродных участков в аморфной матрице. К настоящему времени накоплено большое разнообразие УНТ, полученных из разных молекул и макромолекул различными методами. Люминесценцию УНТ трактуют по аналогии с квантовыми точками, зависящими от квантово-размерных эффектов и поверхностных дефектов, или по аналогии с люминесцентными свойствами графенов, эмиссия которых вызвана краевыми и внутренними состояниями [6]. Моделирование УНТ включением ароматических соединений в матрицу нелюминесцирующего аморфного полимера успешно воспроизвело черты люминесценции УНТ [7]. Многие придерживаются модели экситонов Френкеля, эмиссия которых вызвана рекомбинацией пар электрон-дырка на локализованных дефектах или на поверхностных состояниях [8]. Некоторые авторы считают источником люминесценции УНТ низкомолекулярные ароматические соединения [9]. Поскольку трудно сопоставлять свойства УНТ, полученных в различных работах, использующих различные условия синтеза и исходные вещества, наиболее интересны работы, в которых изучено влияние параметров синтеза на люминесцентные свойства УНТ. Подобные фундаментальные исследования велись для УНТ, полученных из концентрированных растворов низкомолекулярных соединений. Например, для гидротермальных УНТ были исследованы: влияние объема заполнения автоклава ( $\Delta V$ ) на размеры УНТ, полученных из растворов сахарозы [10]; влияние времени гидротермальной обработки ( $\Delta t$ ) на люминесцентные свойства УНТ, полученных из водных растворов глюкозы [11]; влияние температуры реакции (Т) на квантовый выход УНТ, полученный из бинарных растворов лимонной кислоты и мочевины (источнике азота) [12]. Однако следует иметь в виду, что в результате синтеза УНТ из концентрированных растворов низкомолекулярных соединений большая часть вновь образовавшихся соединений уходит в осадок.

Наибольший практический интерес в виду экологичности гидротермального синтеза и дешевизны сырья представляют УНТ, полученные гидротермальной обработкой растворов природных полисахаридов. Перспективным сырьем для получения УНТ с наибольшим квантовым выходом считаются азотсодержащие природные соединения, наиболее известным представителем которых является хитозан [13,14].

В задачу настоящей работы входило исследование влияния параметров гидротермального синтеза (длительности, температуры и степени заполнения автоклава) водных растворов хитозана на люминесцентные свойства УНТ. Поскольку олигомеры в отличие от высокомолекулярных хитозанов, могут быть диспергированы даже в воде [15], для получения УНТ и УС был проведен гидротермальный синтез водных растворов олигомера хитозана (OCS). Как оказалось, водные растворы OCS не были молекулярно-дисперсными, они содержали субмикронные коллоидные частицы. Поскольку локальная концентрация в исходных субмикронных частицах OCS была высока, мы вели гидротермальный синтез УНТ при концентрациях исходного вещества на один-два порядка меньших, чем в большинстве работ по гидротермальному синтезу низкомолекулярных соединений. При этом осадка почти не было, а получающиеся дисперсии содержали две фракции — люминесцирующих УНТ и крупных УС, размер которых в растворе анализировали с помощью светорассеяния, а высушенном состоянии с помощью сканирующей электронной микроскопии. Задача состояла в исследовании влияния параметров гидротермального синтеза (времени выдержки  $\Delta t$ , температуры T и объема заполнения автоклава  $\Delta V$ ) водных дисперсий OCS на характеристики обеих фракций

Условия гидротермальной обработки водных растворов олигохитозана

| <i>T</i> , °C                             | $\Delta t$ , h | $\Delta V$ , ml | QY, % |
|-------------------------------------------|----------------|-----------------|-------|
| От времени выдержки $\Delta t$            |                |                 |       |
| 180                                       | 6              | 20              | 3.4   |
| 180                                       | 16             | 20              | 3.4   |
| 180                                       | 18             | 20              | 9.0   |
| 180                                       | 24             | 20              | 9.3   |
| От объема заполнения автоклава $\Delta V$ |                |                 |       |
| 180                                       | 24             | 5               | 1.8   |
| 180                                       | 24             | 16              | 5.2   |
| 180                                       | 24             | 35              | 6.6   |

Примечание. QY — квантовый выход люминесценции.

(УНТ и УС). С помощью ИК спектров анализировали изменение химической структуры в результате гидротермальной обработки.

# 1. Методика эксперимента

Использован олигомер хитозана (Віоргодгезs, Russia) (молекулярной массы  $1.5 \cdot 10^4$ , степени дезацетилирования 97%) [16]. Разбавленные растворы (концентрация c = 0.5 mg/ml) обрабатывали гидротермальным синтезом в автоклаве с тефлоновым вкладышем на 50 ml. Параметры синтеза приведены в таблице. Условия синтеза далее будут обозначены в следующем порядке:  $T/\Delta t/\Delta V$  (T — температура синтеза,  $\Delta t$  — длительность синтеза,  $\Delta V$  — объем раствора олигохитозана в автоклаве).

Динамическое (ДРС) и статическое (СРС) рассеяние света исходных дисперсий OCS и продуктов гидротермального синтеза были измерены на установке Фотокор FC. Источником света являлся гелий-неоновый лазер ( $\lambda = 632.8 \text{ nm}$ ) мощностью 20 mW. Температура ванны с декалином была  $25 \pm 0.1^{\circ}$ С. Угол рассеяния  $\theta$  изменяли автоматически от 40 до 130° и затем обратно до 40° с шагом 10°. При каждом угле рассеяния сигнал накапливали в течение 80 s. Автокорреляционные функции интенсивности рассеянного (ACF) света анализировали, используя программу DynaLS, позволяющую определить гидродинамический радиус эквивалентный сферы  $R_h$ , рассчитанный по уравнению Стокса-Эйнштейна в предположении о том, что частицы представляют собой сферы. Кажущееся значение гидродинамического радиуса определяли при каждом угле  $R_h(\theta) = kT/(6\pi\eta_s D)$ , где k — константа Больцмана,  $\eta_s$  — вязкость растворителя, *D* — коэффициент взаимной диффузии, определяемый по скорости затухания ACF:  $D = \langle \Gamma \rangle / q^2$ , где  $q = 4\pi n \sin(\theta/2)/\lambda$  — волновой вектор, (n — показатель преломления растворителя),  $\langle \Gamma \rangle$  — скорость затухания АСF.  $R_h$  определяли, экстраполируя  $R_h(\theta) \kappa \theta \to 0$ .

Радиус инерции дисперсий  $R_g = (\langle R_g^2 \rangle)^{1/2}$  был определен с помощью уравнения Берри [17], описывающего угловую зависимость избыточной интенсивности рассеянного света, равной интенсивности рассеяния раствора (*I*) минус интенсивность рассеяния растворителя (*I*<sub>s</sub>):

$$\frac{1}{\sqrt{P(\theta)}} = 1 + q^2 \langle R_g^2 \rangle / 6, \tag{1}$$

где  $\langle R_g^2 \rangle$  — среднеквадратичный радиус инерции,  $P(\theta) = [I(\theta) - I_s(\theta)] / [I(0) - I_s(0)]$  — форм-фактор.

Электростатический потенциал был определен с помощью установки по электрофоретическому ДРС (ЭДРС), Фотокор-компакт-Z (лазер мощностью 25 mW с длиной волны 638 nm). Электрофоретическая подвижность в приложенном электрическом поле определяется как  $\mu_E = v/E$ , где v — скорость, измеряемая методом ЭДРС. Поверхностный электростатический потенциал ( $\xi$ ) определяли с помощью уравнения Смолуховского  $\mu_E = \varepsilon_0 \xi/\eta_s$ , где  $\varepsilon$  и  $\varepsilon_0$  — диэлектрические проницаемости растворителя и вакуума соответственно.

Спектры поглощения измеряли на установках UV-1600 и UV-1800 (Shimadzu). Спектры флуоресценции на установках RF-3600 и RF-5301(Shimadzu), использующих ксеноновые лампы в качестве источников света. Для измерения люминесценции дисперсии УНТ разбавляли в 10 раз и фильтровали через шприцевые мембранные нейлоновые фильтры с порами 0.1 и 0.22  $\mu$ m. Диализ дисперсий проводили через диализные мембраны, отсекающие молекулы с массой  $\leq$  1000 Da.

Квантовый выход люминесценции (QY) определяли по формуле

$$QY = 0.54 \frac{L_x}{A_x} \frac{A_{st}}{L_{st}} \frac{n_x^2}{n_{st}^2},$$
 (2)

где 0.54 — квантовый выход люминесценции сульфата хинина в 0.1 N  $H_2SO_4$ ; A — амплитуда абсорбции на длине волны возбуждения; L — интеграл под максимумом люминесценции в области перекрывания спектров люминесценции эталона и исследуемого вещества. Индексы *st* и *x* относятся к эталону (раствору хинин сульфата) и исследуемому раствору соответственно.

ИК спектры были получены с помощью спектрометра Vertex-70 (Bruker), оснащенного сменным Zn–Seкристаллом с фиксированным углом отражения (PIKE Technologies).

Сканирующая электронная микроскопия (СЭМ) была выполнена на микроскопе Jeol GSM-35CF. Использовали напряжение 5 kV, детектор SE2. Исследовали высушенные на алюминиевой подложке при комнатной температуре разбавленные водные диализованные растворы исходного OCS и его дисперсий, полученные в ходе гидротермального синтеза.

# 2. Результаты

## 2.1. Оценка размеров наночастиц олигохитозана

На рис. 1 приведена микрофотография высушенных образцов OCS, полученная методом электронной микроскопии.

ОСЅ образует сферические наночастицы среднего диаметра 90 nm, морфология которых напоминает сферолиты. Методами динамического и статического рассеяния света были определены радиус инерции и гидродинамический радиус ОСЅ в водных растворах  $R_g \approx 200$  nm,  $R_h = 159$  nm (растворы были центрифугированы 10 min при 8000 грm). Отличие размеров сферических наночастиц в растворе и в твердом состоянии свидетельствует о существенном набухание частиц ОСЅ в растворе.  $\xi$ -потенциал ОСЅ в водном растворе был положителен  $\xi = 23$  mV, что указывало на присутствие положительно заряженных NH<sub>3</sub><sup>+</sup>-групп на поверхности наночастиц [18].



**Рис. 1.** Микрофотография СЭМ частиц OCS, (масштаб 200 nm), и гистограмма распределения их диаметров.



**Рис. 2.** *а* — зависимость размеров субмикронных частиц в дисперсиях, полученных гидротермальным синтезом растворов OCS, от  $\Delta t$  для серии 180/ $\Delta t/20$ ; *b* — безразмерная угловая зависимость приведенного форм-фактора от приведенного радиуса инерции для дисперсии 180/16/20. Пунктирная кривая рассчитана по уравнению (3) для линейных макромолекул, сплошная кривая — для наногелей. Точки соответствуют приведенным значениям концентрации в g/l.

# 2.2. Бимодальное распределение размеров продуктов гидротермального синтеза

В нефильтрованных образцах светорассеяние было обусловлено существованием субмикронных коллоидов, размер которых повышался с ростом продолжительности синтеза (рис. 2, *a*).

Близость значений  $R_g$  и  $R_h$  указывает на сферическую форму субмикронных частиц. Субмикронные частицы представляют собой наногели, как следует из сопоставления угловой зависимость интенсивности рассеянного света в координатах Кратки (рис. 2, *b*) с аналитическими кривыми, рассчитанными для форм-фактора линейных полимеров (C=1) и наногелей (C=0) [19]:

$$P(q) = \frac{1 + Cu^2/3}{\left(1 + \frac{(1+C)u^2}{6}\right)^2}.$$
(3)

Субмикронные наногели эффективно удалялись фильтрацией дисперсий через фильтр с порами 0.1 и  $0.22 \,\mu$ m, о чем свидетельствовало резкое уменьшение интенсивности рассеяния до уровня, превышающего интенсивности рассеяния растворителя (воды) в 3–4 раза.  $R_h$  мелкой фракции не удалось оценить, поскольку он был меньше 2 nm, однако мелкая фракция давала существенный вклад в люминесценцию (рис. 3, *a*). В результате диализа через поры с диаметром 1000 Da субмикронные наногели оставались в растворе (по данным светорассеяния), однако они слабо люминесцировали (рис. 3, *a*). При фильтрации люминесцирующие частицы остались в растворе.

На рис. 3, *b* продемонстрированы типичные спектры поглощения исходной, диализованной и фильтрованной дисперсии 180/6/20. На спектре поглощения нефильтрованной исходной дисперсии наблюдается плечо при 200 nm, отнесенное к sp<sup>2</sup>-гибридизации угле-

родных атомов -C=C-, и максимум поглощения в районе 280 nm, вызванный sp<sup>3</sup>-гибридизацией связей C-O, C-N [18].

Кроме того, наблюдается монотонно спадающий вплоть до видимой области хвост поглощения слабой интенсивности. Для диализованного образца видна в основном спадающая часть, свидетельствующая о вкладе рассеяния от субмикронных сфер в спектры экстинкции. При фильтрации субмикронные наногели были удалены и соответственно исчезла часть хвоста, ответственная за их вклад в экстинкцию. Оставшийся хвост поглощения, по-видимому, связан с поверхностными группами или дефектами УНТ, в то время как коротковолновые плечо и максимум поглощения следует отнести к сопряженным ароматическим фрагментам в ядре УНТ. Необходимо отметить, что данная картина характерна для большинства спектров поглощения УНТ, причем именно в области хвоста поглощения и возбуждается максимальная люминесценция УНТ.

Таким образом, в результате гидротермальной обработки разбавленных растворов OCS произошло фазовое разделение на нелюминесцирующие сферические субмикронные коллоидные наногели (УС) и низкомолекулярную люминесцирующую фазу УНТ.

#### 2.3. Микрофотографии высушенных диализованных дисперсий УНТ

На рис. 4 приведены микрофотографии диализованных высушенных дисперсий 180/6/20 (слева) и 180/16/20 (справа).

При шестичасовом синтезе, по-видимому, остались линейные фрагменты олигомерных молекул, которые образовали игольчатые кристаллы. Кроме того, видны сферические УС (их средний диаметр 30 nm), вкраплен-



**Рис. 3.** Спектры люминесценции (*a*) и поглощения (*b*) дисперсии 180/6/20. Обозначения кривых: диализованный (*1*), исходный (*2*) и фильтрованный (*3*). Длина волны возбуждения — 340 nm. Спектры поглощения исходного и фильтрованного растворов нормированы на амплитуду максимума. Спектр поглощения диализованного раствора совмещен с хвостом спектра исходной дисперсии.



**Рис. 4.** Микрофотографии СЭМ высушенных диализованных дисперсий: 180/6/20 (масштаб 1µm) (*a*) и 180/16/20 (масштаб 300 nm) (*c*). Гистограммы диаметров УС 180/6/20 (*b*) и 180/16/20 (*d*).

ные в аморфную гелеобразную матрицу. При шестнадцатичасовом синтезе линейных фрагментов не осталось, размер УС вырос до 100 nm, они по-прежнему вкраплены в аморфную матрицу, напоминающую гель.



**Рис. 5.** ИК спектры исходного OCS (№ 1) и лиофилизованных дисперсий 180/6/20 (№ 2) и 180/16/20 (№ 3).

Таким образом, размер высохших УС увеличивается с ростом  $\Delta t$  аналогично росту размеров коллоидов УС. При высушивании размер УС сильно уменьшается по сравнению с размером набухших коллоидных сферических наногелей. Самоорганизующаяся при высыхании на подложке аморфная часть явно принадлежит низкомолекулярным фрагментам, молекулярный вес которых превышал размер пор диализной мембраны (1000 Da).

#### 2.4. ИК спектры олигохитозана до и после гидротермальной обработки

ИК спектры до и после гидротермальной обработки представлены на рис. 5. В результате гидротермальной обработки в спектре появляются полосы 3120,  $3040 \,\mathrm{cm}^{-1}$ , которые могут быть отнесены к колебаниям различных соединений, содержащих CR<sup>1</sup>R<sup>2</sup>=CHR<sup>3</sup> группы. Полоса 1402 ст<sup>-1</sup> в гидротермально обработанных образцах может быть связана с третичными спиртами. Возникшая в результате гидротермальной обработки полоса 1615 ст<sup>-1</sup> свидетельствует об образовании С=Ссвязей. Полоса 1702 ст<sup>-1</sup> в образцах, прошедших гидротермальную обработку, свидетельствует о появлении колебаний С=О-групп карбоновых кислот. Образование -СОО--групп в процессе синтеза УНТ подтверждается также изменением знака ζ-потенциала с положительного для растворов OCS (+20 mV) до отрицательного  $(-9\,\mathrm{mV})$  для образца 180/6/20. По мере увеличения  $\Delta t$ интенсивность полосы 1702 ст-1 возрастает, что указывает на увеличение содержания кислотных остатков. Одновременно с этим происходит дальнейшее разрушение гликозидных связей, о чем свидетельствует уменьшение интенсивности поглощения в области 1100-1000 cm<sup>-1</sup>. Вместо полосы OH-групп OCS (3400 cm<sup>-1</sup>) возникают полосы 3120,  $3040 \text{ cm}^{-1}$ , которые могут быть отнесены к возникновению более сильных водородных связей кислотных групп.

### 2.5. Влияние продолжительности гидротермального синтеза на спектры поглощения продуктов гидротермального синтеза

На рис. 6 приведены спектры поглощения нефильтрованных продуктов гидротермального синтеза (серия  $180/\Delta t/20$  при  $\Delta t = 6$ , 16 и 24 h). Для всех спектров характерно плечо в районе ~ 220 nm (sp<sup>2</sup>-гибридизация), максимум в районе  $\sim 280 \, \mathrm{nm} \, (\mathrm{sp}^3$ -гибридизация) и медленно спадающий малоинтенсивный хвост поглощения, который тянется вплоть до видимой области. Спектры нормированы на высоту sp<sup>3</sup>-максимума. Видно, что увеличение  $\Delta t$  приводит к относительному возрастанию интенсивности плеча поглощения, т.е. к росту доли двойных связей. Спадающие хвосты поглощения становятся более протяженными и вносят больший вклад в поглощение с увеличением  $\Delta t$ . Видно, что при  $6 \le \Delta t \le 18$  основной максимум люминесценции расположен при 423 nm, и лишь при наибольшем  $\Delta t = 24 \, \text{h}$ наблюдается батохромный сдвиг до 433 nm. При температуре 200°С батохромный сдвиг наблюдался уже при  $\Delta t = 12$  h. У всех кривых есть дополнительный максимум при 386 nm. Ширина линии на половине высоты (FWHM) pactet c  $\Delta t$ .

# 2.6. Зависимость люминесценции от объема заполнения автоклава и продолжительности гидротермальной обработки

На рис. 7 слева представлены зависимости от  $\Delta V$  спектров люминесценции, нормированных на амплитуду поглощения при длине волны возбуждения. Видно, что амплитуда спектров существенно увеличивается с  $\Delta V$ . В средней части рис. 7 представлены зависимости ширины линии на половине высоты (FWHM) от  $\Delta V$ . Эта зависимость имеет минимум.

Из-за того что зависимости амплитуды спектров и FWHM от  $\Delta V$  в основном разнонаправлены, зависимость QY (площади поглощения) от  $\Delta V$  менее ярко выражена. Тем не менее максимальный QY соответствует приблизительно наполовину заполненному автоклаву. Влияние  $\Delta t$  на QY можно оценить из данных, приведенных в таблице. При  $T = 180^{\circ}$ C QY растет с  $\Delta t$ , однако дальнейшая карбонизация при повышении температуры до 200°C понижает QY.

# Выводы

Исследованы исходные дисперсии водорастворимого олигомера хитозана и продукты его гидротермального синтеза методами светорассеяния, сканирующей электронной микроскопии и ИК спектроскопии. Изучены зависимости спектров люминесценции и поглощения от продолжительности и температуры гидротермального синтеза, а также от степени заполнения автоклава.



**Рис. 6.** Влияние продолжительности синтеза на спектры поглощения (слева) и ширину линии люминесценции на половине высоты (справа) серии УНТ\_180/ $\Delta t/20$ . Вставка показывает зависимость ширины линии на половине высоты (FWHM) от времени синтеза. Кривые обозначены временем синтеза в часах. Дисперсии УНТ разбавлены в 10 раз.



**Рис. 7.** Спектры люминесценции серии УНТ\_180/24/ $\Delta V$ , нормированные на амплитуду поглощения при длине волны возбуждения (слева); зависимости FWHM (в центре) и QY (справа) от  $\Delta V$ . Кривые обозначены объемом заполнения автоклава в миллилитрах.



Рис. 8. Схема синтеза.

Показано, что высушенные растворы исходного олигхитозана представляют собой сферолиты, которые сильно набухают в водных растворах. Дисперсии, получившиеся в результате гидротермального синтеза разбавленных растворов олигохитозана, двухфазны (рис. 8).

Дисперсии содержат мелкую люминесцирующую фракцию УНТ размером меньше 2 nm и слаболюминесцирующие УС субмикронных размеров. С помощью анализа угловых зависимостей светорассеяния показано, что УС представляют собой наногели. Квантовый выход люминесценции мелкой фракции меняется от 2 до 9% при увеличении времени обработки при 180°С. Минимальное время (шестичасовая обработка) недостаточно для разрушения всех гликозидных связей хитозана, и оставшиеся линейные фрагменты макромолекул хитозана кристаллизуются, как видно на микрофотографиях СЭМ. ИК спектры также показывают неполное уничтожение областей поглощения гликозидных связей при минимальном времени  $\Delta t = 6$  h. При увеличении времени гидротермальной обработки происходит дальнейшая карбонизация, которую демонстрирует рост вклада двойных связей в спектрах поглощения, а также изменения в ИК спектрах. С помощью светорассеяния установлено, что размер коллоидных УС растет с карбонизацией. Коллоидную устойчивость УС обеспечивают отрицательные заряды карбоксильных групп, появившихся в результате гидролиза хитозана. Квантовый выход УНТ растет с продолжительностью синтеза от 6 до 24 h в серии 180/Дt/20. Впервые обнаружен экстремальный характер зависимости люминесценции УНТ от степени заполнения автоклава раствором хитозана. При наполовину заполненном автоклаве ширина спектров люминесценции УНТ минимальна, а квантовый выход люминесценции максимален.

#### Благодарности

Благодарим Д.Н. Пошину и Т.Г. Чулкову (ИВС РАН) за помощь в работе.

#### Финансирование работы

Работа поддержана грантом РНФ и СПбНФ № 23-23-10005.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

#### Список литературы

- M.H. Marzbali, S. Kundu, P. Halder, S. Patel, I.G. Hakeem, J. Paz-Ferreiro, S. Madapusi, A. Surapaneni, K. Shah. Chemosphere, **279**, 130557 (2021). DOI: 10.1016/j.chemosphere.2021.130557
- [2] K.L.A. Cao, F. Iskandar, E. Tanabe, T. Ogi. KONA Powder Part. J., 2023, 197 (2023). DOI: 10.14356/kona.2023016
- [3] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens. J. Am. Chem. Soc., **126**, 12736 (2004). DOI: 10.1021/ja040082h
- [4] B. Wang, S. Lu. Matter., 5, 110 (2022).DOI: 10.1016/j.matt.2021.10.016
- [5] C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang. Adv. Sci., 6 (23), 1901316 (2019). DOI: 10.1002/advs.201901316
- [6] C. Kang, S. Tao, F. Yang, B. Yang. Aggregate, 3, 1 (2022). DOI: 10.1002/agt2.169
- [7] M. Fu, F. Ehrat, Y. Wang, K.Z. Milowska, C. Reckmeier, A.L. Rogach, J.K. Stolarczyk A.S. Urban, J. Feldmann. Nano Lett., 15 (9), 6030 (2015). DOI: 10.1021/acs.nanolett.5b02215
- [8] A. Demchenko. J. Carbon Res., 5, 71 (2019).
   DOI: 10.3390/c5040071

- [9] M. Righetto, F. Carraro, A. Privitera, G. Marafon, A. Moretto, C. Ferrante. J. Phys. Chem. C, **124**, 22314 (2020). DOI: 10.1021/acs.jpcc.0c06996
- N. Nammahachak, K.K. Aup-Ngoen, P. Asanithi, M. Horpratum, S. Chuangchote, S. Ratanaphan, W. Surareungchai. RSC Adv., 12, 31729 (2022). DOI: 10.1039/d2ra05989d
- [11] Z. Gan, X. Wu, Y. Hao. Cryst. Eng. Com., 16 (23), 4981 (2014). DOI: 10.1039/c4ce00200h
- Y. Zhang, Y. Wang, X. Feng, F. Zhang, Y. Yang, X. Liu. Appl. Surf. Sci., 387, 1236 (2016).
   DOI: 10.1016/j.apsusc.2016.07.048
- [13] H. Ababneh, B.H. Hameed. Int. J. Biol. Macromol., 186, 314 (2021). DOI: 10.1016/j.ijbiomac.2021.06.161
- [14] A.M. Villalba-Rodríguez, R.B. González-González, M. Martínez-Ruiz, E.A. Flores-Contreras, M.F. Cárdenas-Alcaide, H.M.N. Iqbal, R. Parra-Saldívar. Mar. Drugs., 20, 1 (2022). DOI: 10.3390/md20120782
- [15] M. Tian, H. Tan, H. Li, C. You. RSC Adv., 5, 69445 (2015).
   DOI: 10.1039/c5ra08358c
- [16] E.R. Gasilova, D.N. Poshina, A.O. Sitnikova, N.N. Saprykina, Y.A. Skorik. Chinese J. Polym. Sci. (English Ed.), 42, 468 (2024). DOI: 10.1007/s10118-024-3069-9
- [17] В.Е. Эскин. *Рассеяние света растворами полимеров* (Наука, Л., 1986)
- [18] E.R. Gasilova, D.N. Poshina, A.O. Sitnikova, Y.A. Skorik. Proceedings of International Conference on electrical engineering and photonics EExPolytech (Saint Petersburg, Russia, 2023), p. 19–20. DOI: 10.1109/EExPolytech58658.2023.10318796
- [19] W. Burchard. Macromolecules, 10, 919 (1977). DOI: 10.1021/ma60059a008