
Technical Physics, 2024, Vol. 69, No. 11

01

Fundamental and regular transport solutions of Maxwell’s equations and
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wave propagation in a medium and coinciding with it, which is called the light velocity. Their regular integral

representations are given in analytical form. Construction of solutions for arbitrary moving sources is based on the
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shock electromagnetic waves arise at such velocities. Using the method of generalized functions, conditions are
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tangent bundle to the shock wave front.
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Introduction

Maxwell’s Equations (ME) linking the vectors of electric

and magnetic intensity with electric currents and charges

constitute the basis of the modern electrodynamics and

allow determining the electromagnetic (EM) field at known

charges and currents, and vice versa. Many scientists

have been solving various tasks for them since the second

half of the 19th century. The bibliography in this area

is extensive and there is a lot of educational literature

on electromagnetism [1–7].

Movable sources mounted on platforms of different

vehicles are the most common existing sources of EM waves

emission. It is evident that the travel velocity significantly

impacts the processes of EM wave propagation in the media

with different electrical conductivity and permeability, as

well as the shape of the source itself and the nature of its

operation. The studies in this area are not that abundant,

and these are related to certain type of the emission

source [8–14].

Previously, we constructed fundamental and generalized

transport solutions of the ME system under the action of

movable EM wave sources moving in a fixed direction at

a constant velocity, which is lower than the velocity of

propagation of EM waves in the medium called light [15].
Formulas were obtained for calculating EM fields for

moving emitters of various types and arbitrary shapes,

useful for radio engineering applications.

Here we construct fundamental and generalized solutions

to the problem of motion at velocities exceeding the light

in the considered electromagnetic medium and coinciding

with it. Regular integral representations are constructed in

an analytical form.

At light and superlight velocities the system of transport

ME becomes strictly hyperbolic, its solutions describe shock

EM waves, at the fronts of which the electric and magnetic

field intensity vectors are discontinuous. The methods of

the theory of generalized functions were used to obtain

the conditions at the shock wave fronts which confirm the

known properties of the transversity of EM waves and the

orthogonality of the electric and magnetic field strength

vectors at their fronts and phase surfaces.

1. Transport ME. Mach number

Let us consider the ME system:

rotE + µµ0
∂H

∂t
= jm(x1, x2, x3, t),

rotH− εε0
∂E

∂t
= je(x1, x2, x3, t), (1)

divH = 0, divD = ρe .

where jm [V/m2] is the magnetic current density vector,

je [A/m2] is the electric current density vector, E [V/m] is the
electric field strength vector, H(x , t) [A/m] is the magnetic
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field strength vector, ρe [C/m3] is the volumetric density of

electric charge.

Material ratios:

B = µµ0H, D = εε0E, (2)

where µ is the magnetic permeability of the medium, ε is

the electrical conductivity of the medium, B(x1, x2, x3, t) is

the magnetic field induction vector, D(x1, x2, x3, t) is

the electric field induction vector.

Magnetic currents jm(x1, x2, x3, t) are introduced in the

equations (1). jm = 0 in the ME. Next, let us remove this

constraint.

Let us consider mobile transport sources of EM waves

that move at a constant velocity V in a certain direction (ez ).
They can be described by currents of the form jm(x1, x2, z ),
z = x3 + Vt . In the moving coordinate system (x1, x2, z ):

∂

∂t
= V

∂

∂z

and the vector ME will have the following form:

∂Ez

∂x2

− ∂E2

∂z
+ Vµµ0

∂

∂z
H1 = jm

1 (x1, x2, z ),

∂E1

∂z
− ∂Ez

∂x1

+ Vµµ0
∂

∂z
H2 = jm

2 (x1, x2, z ),

∂E2

∂x1

− ∂E1

∂x2

+ Vµµ0
∂

∂z
Hz = jm

z (x1, x2, z ),

∂Hz

∂x2

− ∂H2

∂z
−V εε0

∂

∂z
E1 = je

1(x1, x2, z ),

∂H1

∂z
− ∂Hz

∂x1

−V εε0
∂

∂z
E2 = je

2(x1, x2, z ),

∂H2

∂x1

− ∂H1

∂x2

−V εε0
∂

∂z
Ez = je

z (x1, x2, z ). (3)

Two scalar equations (1) do not change their form. Let

us call this system transport ME. Let us write it in matrix

form [15]:

M(∂1, ∂2, ∂z )u = J, eqno(4)

where ∂ j = ∂
∂x j

, j = 1, 2, z ; M(∂1, ∂2, ∂z ) — Maxwell’s

transport differential operator, which has the following form:

M =




















0 −∂z ∂2 Vµµ0∂z 0 0

∂z 0 −∂1 0 Vµµ0∂z 0

−∂2 ∂1 0 0 0 Vµµ0∂z

−V εε0∂z 0 0 0 −∂z ∂2
0 −V εε0∂z 0 ∂z 0 −∂1
0 0 −V εε0∂z −∂2 ∂1 0





















;

u =

(

E(x1, x2, z )

H(x1, x2, z )

)

, J =

(

jm(x1, x2, z )

je(x1, x2, z )

)

.

Next, let us use the following notations: c = 1√
µµ0εε0

—

the propagation velocity of EM waves in the considered

medium. Let us call it light.

Let us call the ratio M = V
c as the Mach number

like the ratio of the velocity of motion of the source of

disturbance in the medium with respect to the velocity of

wave propagation in the medium is called in the continuum

mechanics.

There are three possible cases of motion that change

the type of equations (4) and the type of its solu-

tions: sublight M < 1, light M = 1 and superlight M > 1.

We built and studied ME transport solutions at sublight

velocities earlier in Ref. [15]. We have elliptic type

equations in this case. Here we consider two other

cases that lead to systems of strictly hyperbolic and

parabolic type, respectively, of the velocity of motion,

which significantly affects the type of solution and its

properties.

2. The Green tensor of transport ME
at superlight velocities

Definition. The Green ME tensor is a matrix of

fundamental solutions of equations (4) at

J = δ(x1)δ(x2)δ(z ){δi j}6×6,

satisfying the emission conditions, which describe waves

propagating from a movable wave source and attenuating

in the infinity.

The Green tensor satisfies the equation

M(∂1, ∂2, ∂z )U(x1, x2, z ) = δ(x1)δ(x2)δ(z ){δi j}6×6, (5)

and where δi j — Kronecker symbol, δ(...) — Dirac delta

function. We use Fourier transform in the space of slow-

growth generalized functions to build it [{]16,17}.
The relation with the original coordinates have the

following form in the transformation space (k1, k2, k3)

(x1, x2, z ) ↔ (k1, k2, k3).

The Fourier transform has the following form for regular

functions:

F[ f (x1, x2, z )] = f̄ (k1, k2, k3) =

∫

R3

f (x1, x2, z )

× ei(x1k1+x2k2+z k3)dx1dx2dz ,

Inverse Fourier transform:

F−1[ f̄ (k1, k2, k3)] = f (x1, x2, z )

=
1

(2π)3

∫

R3

f̄ (k1, k2, k3)e
−i(x1k1+x2k2+z k3)dk1dk2dk3. (6)
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Using the property of Fourier transform of the derivative:

∂ j ⇔ −ik j , and delta functions: F [δ(x1)δ(x2)δ(z )] = 1, we

obtain a system of linear algebraic equations for determining

the components of the Green tensor transform:

M(−ik1,−ik2,−ikz )Ū(k1, k2, k3) = {δi j}6×6. (7)

Here M(−ik1,−ik2,−ikz ) — the Fourier transform of the
Maxwell transport differential operator:

M(−ik1,−ik2,−ikz ) =

















0 ik3 −ik2 −ik3Vµµ0 0 0

−ik3 0 ik1 0 −ik3Vµµ0 0

ik2 −ik1 0 0 0 −ik3Vµµ0

ik3Vεε0 0 0 0 ik3 −ik2

0 ik3Vεε0 0 −ik3 0 ik1

0 0 ik3Vεε0 ik2 −ik1 0

















.

(8)

The solution of equations (7) has the form of an inverse

matrix:

Ū(k1, k2, k3) =
(

M(−ik1,−ik2,−ikz )
)−1

, (9)

the columns of which are components of the Green tensor

at superlight velocities presented below:

{Ūm1}=









































0

−ik3

k2
1
+k2

2
−k2

3
m2

ik2

k2
1
+k2

2
−k2

3
m2

ik2
1−ik2

3M2

Vεε0k3(k2
1
+k2

2
−k2

3
m2)

ik1k2

Vεε0k3(k2
1
+k2

2
−k2

3
m2)

ik1

Vεε0(k2
1
+k2

2
−k2

3
m2)









































, {Ūm2}=











































ik3

k2
1
+k2

2
−k2

3
m2

0

−ik1

k2
1
+k2

2
−k2

3
m2

ik1k2

Vεε0k3(k2
1
+k2

2
−k2

3
m2)

ik2
2−ik2

3M2

Vεε0k3(k2
1
+k2

2
−k2

3
m2)

ik2

Vεε0(k2
1
+k2

2
−k2

3
m2)











































,

{Ūm3}=











































−ik2

k2
1
+k2

2
−k2

3
m2

ik1

k2
1
+k2

2
−k2

3
m2

0

ik1

Vεε0(k2
1
+k2

2
−k2

3
m2)

ik2

Vεε0(k2
1
+k2

2
−k2

3
m2)

−ik3m2

Vεε0(k2
1
+k2

2
−k2

3
m2)











































, {Ūm4}=











































− ik2
1−ik2

3M2

Vµµ0k3(k2
1
+k2

2
−k2

3
m2)

− ik2k1

Vµµ0k3(k2
1
+k2

2
−k2

3
m2)

− ik1

Vµµ0(k2
1
+k2

2
−k2

3
m2)

0

−ik3

k2
1
+k2

2
−k2

3
m2

ik2

k2
1
+k2

2
−k2

3
m2











































,

{Ūm5}=











































−ik2k1

Vµµ0k3(k2
1
+k2

2
−k2

3
m2)

−ik2
2−ik2

3M2

Vµµ0k3(k2
1
+k2

2
−k2

3
m2)

−ik2

Vµµ0(k2
1
+k2

2
−k2

3
m2)

ik3

k2
1
+k2

2
−k2

3
m2

0

− ik1

k2
1
+k2

2
−k2

3
m2











































, {Ūm6}=











































ik1

Vµµ0(k2
1
+k2

2
−k2

3
m2)

ik2

Vµµ0(k2
1
+k2

2
−k2

3
m2)

−ik3m2

Vµµ0(k2
1
+k2

2
−k2

3
m2)

−ik2

k2
1
+k2

2
−k2

3
m2

ik1

k2
1
+k2

2
−k2

3
m2

0











































.

We obtain the following in denominators using similar terms

at M > 1, since 1− M2 < 0

k2
1 + k2

2 + k2
3 − M2k2

3 = k2
1 + k2

2 − m2k2
3, m =

√

M2 − 1.

It should be noted that the components of the Green tensor

are expressed in terms of the following basic functions and

their originals:

f̄ 0(k1, k2, k3) =
1

k2
1 + k2

2 − m2k2
3

⇔ f 0(x1, x2, z ), (10)

f̄ 1(k1, k2, k3) = − 1

ik3

f̄ 0(k1, k2, k3) ⇔ f 0(x1, x2, z )

= ∂z f 1(x1, x2, z ).
(11)

By using them, the properties of the Fourier transform of

derivatives the original U(x1, x2, z ) is represented through

these basic functions:

{Ūm1} =







































0

−ik3 f̄ 0(k1, k2, k3)

ik2 f̄ 0(k1, k2, k3)

ik2
1−ik2

3M2

εε0V
f̄ 1(k1, k2, k3)

k1k2

εε0V
f̄ 1(k1, k2, k3)

ik1

εε0V
f̄ 0(k1, k2, k3)







































⇒

⇒ {Um1} =





































0

∂z f 0(x1, x2, z )

−∂2 f 0(x1, x2, z )

1
εε0V

(∂21 − M2∂2z ) f 1(x1, x2, z )

1
εε0V

∂1∂2 f 1(x1, x2, z )

− 1
εε0V

∂1 f 0(x1, x2, z )





































,
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{Ūm2} =





























ik3 f̄ 0(k1, k2, k3)

0

−ik1 f̄ 0(k1, k2, k3)

k1k2

εε0V
f̄ 1(k1, k2, k3)

ik2
2−ik2

3M2

εε0V
f̄ 1(k1, k2, k3)

ik2

εε0V
f̄ 0(k1, k2, k3)





























⇒ {Um2} =





























−∂z f 0(x1, x2, z )

0

∂1 f 0(x1, x2, z )

− 1
εε0V

∂1∂2 f 1(x1, x2, z )

− 1
εε0V

(∂22 − M2∂2z ) f 1(x1, x2, z )

− 1
εε0V

∂2 f 0(x1, x2, z )





























,

{Ūm3}=





























−ik2 f̄ 0(k1, k2, k3)

ik1 f̄ 0(k1, k2, k3)

0

− ik1

εε0V
f̄ 0(k1, k2, k3)

− ik2

εε0V
f̄ 0(k1, k2, k3)

ik3m2

εε0V
f̄ 0(k1, k2, k3)





























⇒ {Um3} =





























∂2 f 0(x1, x2, z )

−∂1 f 0(x1, x2, z )

0

1
εε0V

∂1 f 0(x1, x2, z )

1
εε0V

∂2 f 0(x1, x2, z )

m2

εε0V
∂z f 0(x1, x2, z )





























,

{Ūm4} =





























ik2
1−ik2

3M2

µµ0V
f̄ 1(k1, k2, k3)

k1k2

µµ0V
f̄ 1(k1, k2, k3)

ik1

µµ0V
f̄ 0(k1, k2, k3)

0

−ik3 f̄ 0(k1, k2, k3)

ik2 f̄ 0(k1, k2, k3)





























⇒ {Um4} =





























1
µµ0V

(∂21 − M2∂2z ) f 1(x1, x2, z )

1
µµ0V

∂1∂2 f 1(x1, x2, z )

− 1
µµ0V

∂1 f 0(x1, x2, z )

0

∂z f 0(x1, x2, z )

−∂2 f 0(x1, x2, z )





























,

{Ūm5} =





























k1k2

µµ0V
f̄ 1(k1, k2, k3)

−ik2
3M2+ik2

2

µµ0V
f̄ 1(k1, k2, k3)

ik2

µµ0V
f̄ 0(k1, k2, k3)

ik3 f̄ 0(k1, k2, k3)

0

−ik1 f̄ 0(k1, k2, k3)





























⇒ {Um5} =





























1
µµ0V

∂1∂2 f 1(x1, x2, z )

−1
µµ0V

(M2∂2z − ∂22 ) f 1(x1, x2, z )

−1
µµ0V

∂2 f 0(x1, x2, z )

−∂z f 0(x1, x2, z )

0

∂1 f 0(x1, x2, z )





























,

{Ūm6} =





























−ik1

µµ0V
f̄ 0(k1, k2, k3)

−ik2

µµ0V
f̄ 0(k1, k2, k3)

−ik3m2

µµ0V
f̄ 0(k1, k2, k3)

−ik2 f̄ 0(k1, k2, k3)

ik1 f̄ 0(k1, k2, k3)

0





























⇒ {Um6} =





























1
µµ0V

∂1 f 0(x1, x2, z )

1
µµ0V

∂2 f 0(x1, x2, z )

m2

µµ0V
∂3 f 0(x1, x2, z )

∂2 f 0(x1, x2, z )

−∂1 f 0(x1, x2, z )

0





























. (12)
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Hence, the Green tensor components are defined through

the original basic functions. Let us build them.

3. Building original basic functions at
M > 1

Let us consider the Fourier transform of the basis

function:

f̄ 0(k1, k2, k3) =
1

k2
1 + k2

2 − m2k2
3

, (13)

which is the Fourier transform of the fundamental solution

of the equation:

∂2 f 0

∂x2
1

+
∂2 f 0

∂x2
2

− m2 ∂
2 f 0

∂x2
3

= δ(x1)δ(x2)δ(x3). (14)

This is a hyperbolic wave equation. We use the fundamental

solution of the wave equation in 2Dspace to build its

solution [16,17]:

(

∂29

∂x2
1

+
∂29

∂x2
2

)

− a−2 ∂
29

∂t2
= δ(x1)δ(x2)δ(t), (15)

9(x1, x2, t) = − aH(at − r)

2π
√

a2t2 − r2
, r =

√

x2
1 + x2

2, (16)

which satisfies the radiation conditions

9(x1, x2, t) = 0 for t < 0 and r > at. (17)

We obtain the original of the first basic function comparing

with (14):

f 0(x1, x2, z ) = − H(z − mr)

2π
√

z 2 − m2r2
. (18)

Here H(z ) — Heaviside function.

Next, let us find f 1(x1, x2, z ) using convolution (∗) with

the Heaviside function. By virtue of (11) and the properties

of H ′(z ) = δ(z ):

f 1(x1, x2, z ) = f 0(x1, x2, z )z ∗ H(z )

= − 1

2π

∞
∫

−∞

H(ζ − mr)
√

ζ 2 − m2r2
H(z − ζ )dζ

= −H(z )

2π

z
∫

mr

1
√

ζ 2 − m2r2
dζ

= −H(z − mr)

2π
ln

(

z +
√

z 2 − m2r2

mr

)

.

(19)
The basic functions are built. It should be noted that

their carrier is the interior of the cone: z > mr , outside of

which U(x1, x2, z ) = 0. That is, the surface of the Mach

cone z = mr is the front of the shock EM wave on which

the components of the Green tensor are singular, since

f 0(x1, x2, z ) → ∞ at r → z
m .

So, all components of the Green tensor are built. Let us

build solutions to these equations for an arbitrary right-hand

side using the property of the Green tensor.

4. Building transport solutions of ME
at M > 1

The solution, up to the solution of a homogeneous system

of equations, has the form of a tensor-functional convolution

of the right side of the equations (4) with the Green tensor:

u(x , z ) = U(x , z ) ∗ J(x , z ), (20)

(

E(x , z )

H(x , z )

)

= U(x , z ) ∗
(

jm(x , z )

je(x , z )

)

,

or component-by-component

ui(x , z ) =

6
∑

k=1

Uik(x , z ) ∗ jk(x , z ), i = 1, . . . , 6. (21)

The formula (20) contains convolutions of basic functions

and their derivatives with current components of the

following form:

u1(x , z ) = f k ∗ g(x , z ), k = 0, 1,

u2(x , z ) = ∂ j f k ∗ g(x , z ), j = 1, 2, z ,

u3(x , z ) = ∂ j∂m f k ∗ g(x , z ), m = 1, 2, z .

Here, using g(x1, x2, z ) , we conditionally designate

the components of the currents jk(x1, x2, z ), where

k = 1, . . . , 6.

Since

∂z H(z − mr) = δ(z − mr),

∂ j H(z − mr) = −mr , jδ(z − mr),

where δ(z − mr) — a simple layer on a light cone which is

a singular generalized function, so the derivatives of the

basis functions are also singular:

∂z f 0 =
H(z − mr)

2π
√

z 2 − m2r2
= − z H(z − mr)

2π
(√

z 2 − m2r2
)3

− 1

2π
√

z 2 − m2r2
δ(z − mr),

∂ j f 0 =
H(z − mr)

2π
√

z 2 − m2r2
=

m2x j H(z − mr)

2π
(√

z 2 − m2r2
)3

+
mr, j

2π
√

z 2 − m2r2
δ(z − mr).

Here and further r, j = ∂r/∂x j =
x j

r .
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As you can see, here the density of the simple layer

on the cone is equal to infinity, which does not allow

direct differentiation of the basic functions. Therefore, the

convolution differentiation property should be used when

calculating convolutions [16,17]:

u2(x , z ) = ∂ j
(

f k ∗ g(x , z )
)

=
(

f k ∗ ∂ j g(x , z )
)

= ∂ j f k ∗ g(x , z ),

u3(x , z ) = ∂ j∂m f k ∗ g(x , z ) = ∂ j∂m
(

f k ∗ g(x , z )
)

. (22)

That is, the solutions of ME (21), for which

jm(x , z ) = (0, 0, 0), have the form

Ex =
1

ǫǫ0V

{

(∂21 − M2∂23 )( f 1 ∗ je
1) + ∂1∂2( f 1 ∗ je

2)

− ∂1( f 0 ∗ je
z )
}

,

Ey = − 1

ǫǫ0V

{

∂1∂2( f 1 ∗ je
1) + (∂21 − M2∂23 )( f 1 ∗ je

2)

+ ∂2( f 0 ∗ je
z )
}

,

Ez =
1

ǫǫ0V

{

∂1( f 0∗ je
1) + ∂2( f 0∗ je

2)−(1−M2)∂3( f 0∗ je
z )
}

,

(23)
Hx = ∂3( f 0 ∗ je

2) − ∂2( f 0 ∗ je
z ),

Hy = −∂3( f 0 ∗ je
1) + ∂1( f 0 ∗ je

z ),

Hz = ∂2( f 0 ∗ je
1) − ∂1( f 0 ∗ je

2). (24)

If je(x , z ) — regular functions, then the solution can be

represented in integral form using the integral representation

of convolutions (22):

u1(x , z ) =
(

f k ∗ g(x , z )
)

= H(z )

∫

r≤ z
m

(

z
∫

mr(x ,y)

f k(x − y, ζ )g(y, z − ζ ) dζ

)

dy1 dy2,

u2(x , z ) = ∂ j
(

f k ∗ g(x , z )
)

= H(z )∂ j

∫

r≤z /m

(

z
∫

mr(x ,y)

f k(x−y, ζ )g(y, z −ζ )dζ

)

dy1dy2,

u3(x , z ) = ∂i∂ j
(

f k ∗ g(x , z )
)

= H(z )∂i∂ j

∫

r≤z /m

(

z
∫

mr(x ,y)

f k(x−y, ζ )g(y, z−ζ )dζ

)

dy1dy2,

where

x = (x1, x2), y = (y1, y2), r(x , y) = ‖x − y‖.

Here the external integral over the domain y∈R
2:

r(x , y)≤ z
m is a circle of radius z/m centered at point x .

The introduction of the derivative under the sign of the

integral depends on the differentiability properties of the

components of the electric current density je(x , z ).
If the currents are differentiable, then convolutions (22)

should be calculated using formulas

u2(x , z ) = ∂ j f k ∗ g(x , z ) = f k ∗ ∂ j g(x , z ),

u3(x , z ) = ∂ j∂m f k ∗ g(x , z ) = f k ∗ ∂ j∂mg(x , z ). (25)

Then not g(x , z ), but their derivatives are used in the inte-

gral representation of these convolutions. If the components

are singular generalized functions, then the convolutions

in solution (21) should be taken according to the definition

of convolutions in the space of generalized functions [16,17].
It should be noted also that the formulas (23), (24), in ad-

dition to currents distributed in the 3D-space, allow building

solutions of transport systems for EM wave emitters, whose

carriers are concentrated at points, on filaments or surfaces

of arbitrary shapes, which can be modeled by singular

generalized functions of simple and multidimensional layer

type and surfaces of different dimensions, as shown by us

for sublight velocities in Ref. [15].

5. Shock EM waves as generalized
solutions of ME. Conditions on fronts

The transportation system is strictly hyperbolic at su-

perlight velocities. Therefore, it can have non-differentiable

solutions that are discontinuous on characteristic surfaces in

addition to smooth differentiable solutions.

Let’s consider such solutions that describe shock EM

waves, on the fronts of which solutions and their derivatives

experience jumps. Let us use the Method of Generalized

Functions to determine the conditions at the shock wave

fronts [18–20]. To do this let us consider a system of ME in

the space of generalized vector functions, the components

of which belong to the class of generalized functions

D′(R3) [16,17]:

M(∂1, ∂2, ∂z )

(

Ê

Ĥ

)

= M(∂1, ∂2, ∂z )

(

E

H

)

+ M(n1, n2, nz )

[(

E

H

)]

F

δF(x2, z )

= ĵ(x , z ) + M(n1, n2, nz )

[(

E(x , z )
H(x , z )

)]

F

δF(x2, z ), (26)

where

M(n1, n2, nz ) =

















0 −nz n2 Vµµ0nz 0 0

nz 0 −n1 0 Vµµ0nz 0

−n2 n1 0 0 0 Vµµ0nz

−V εε0nz 0 0 0 −nz n2

0 −V εε0nz 0 nz 0 −n1

0 0 −V εε0nz −n2 n1 0

















.
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Here, the cap on top denotes a generalized vector function.

Using the property of differentiating discontinuous regular

functions in D′(R3), we obtain the right part (26) which

has a simple layer on the surface F which is the front of the

shock EM wave:

M(n1, n2, nz )

[(

E(x , z )
H(x , z )

)]

F

δF(x2, z ),

the density of which is determined by a surge of the

electric and magnetic field strength vectors on F . For

Ê(x , z ), Ĥ(x , z ) to be a generalized solution of ME (4),
its density should be zero:

M(n1, n2, nz )

[(

E(x , z )
H(x , z )

)]

F

= 0. (27)

This leads to conditions for surges of E(x , z ),H(x , z )
components at the front of the shock EM wave:

−nz [E2] + n2[E3] + Vµµ0nz [H1] = 0,

−V ǫǫ0nz [E1] − nz [H2] + n2[Hz ] = 0,

nz [E1] − n1[E3] + Vµµ0nz [H2] = 0,

−V ǫǫ0nz [E2] + nz [H1] − n1[Hz ] = 0,

−n2[E1] + n1[E2] + Vµµ0nz [H3] = 0,

−V ǫǫ0nz [E3] − n2[H1] + n1[H2] = 0. (28)

It is convenient to represent the equations (28) in vector

form:

Vµµ0[H(x , z )] = [[E]F , n(x , z )],

V ǫǫ0[E(x , z )]F = [[H]F , n(x , z )], (29)

where the vector products of the surge of the intensity

vector at the wave front to the normal to the front are on

the right in the equations . It follows that the electric field

and magnetic field strength jumps are orthogonal to each

other and orthogonal to the normal to the wave front. If the

medium is undisturbed in front of the wave front, then it

follows from (29) that:

Vµµ0H(x , z )|F = [EF , n(x , z )],

V ǫǫ0 E(x , z )|F = [HF , n(x , z )]. (30)

Here E(x , z )|F = EF , HF = H(x , z )|F — the value of the

stresses at the front of the shock EM wave.

As follows from these relations, EM shock waves are

transverse and the vectors of electric and magnetic intensity

at the front of the shock wave are orthogonal to each other

and lie in a tangent bundle to it.

This fact is well known for phase surfaces of electric and

magnetic intensity of EM waves [1–7]. We showed this in

Ref. [20] for ME discontinuous solutions that describe shock

EM waves. Here this property of EM waves is proved for

supersonic transport solutions of ME equations.

6. The Green tensor at the light velocity
of the radiation source

For V = c , M = 1. In formulas (9) m = 0. The Fourier

transform of the basis function

f (k1, k2, k3) =
1

k2
1 + k2

2

(31)

is the Fourier transform of the fundamental solution of the

Laplace equation:

∂2 f 0

∂x2
1

+
∂2 f 0

∂x2
2

= δ(x)δ(z ). (32)

Its solution has the form

f 0(x1, x2, z ) = − ln r
2π

δ(z ), (33)

f 1(x1, x2, z ) = f 0(x1, x2, z )z ∗ H(z ) = − 1

2π
H(z ) ln r.

(34)
It should be noted that a half-space is the support of these

functions: z > 0 — outside of which U(x1, x2, z ) = 0. That

is, the plane z = 0 is the front of an electromagnetic shock

wave on which the components of the Green tensor are

discontinuous. The solution of the ME will have a similar

form (20), (23) and (24), only the functions should be

taken as basic functions (33), (34). The conditions at the

front of the emitter shock wave have the form (29), where

V = 1√
µµ0εε0

.

Conclusion

ME transport solutions are built in Ref. [15] and in

this paper in the entire velocity range, from sublight to

superlight velocities, which allow calculating EM fields from

emitters of arbitrary shapes, which can be modeled using

both regular and singular functions, both in the absence of

magnetic currents and with their presence. The question

arises when and where to use superlight transport solutions

of ME.

It is known that charged particles that move in a

liquid medium at a velocity higher than the velocity of

light in this medium cause a cone-shaped glow, which is

called Vavilov−Cherenkov radiation, or simply Cherenkov

radiation [8,21–24]. Cherenkov’s experiments clearly

demonstrate the presence of such shock waves [21]. The

Cherenkov cone is the front of the shock wave, which is the

envelope of the Mach cones at its front.

This phenomenon was mathematically described using

harmonic waves the phase velocity of which exceeded the

light velocity in the considered EM medium (see [8]). The
solutions built here make it possible to describe this effect

for any superlight emitters, and the presence of Cherenkov

radiation already suggests that the solutions obtained in this

paper can be used to study EM fields in a variety of media,
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and not only in liquid, but also in bodies and tissues under

laser and other types of irradiation.

Cherenkov radiation is used in the nuclear industry [24],
where the research presented here can be very useful for

use.

It should also be noted that the obtained solutions can be

used to solve diffraction boundary value problems in EM

media limited by cylindrical surfaces and shells. Such a

class of subsonic and supersonic transport boundary value

problems for an isotropic elastic medium was considered

and published by us earlier in Ref. [25–27]. We assume

that a similar class of transport boundary value problems

in cylindrical domains should be considered for EM media.

We already carry out these studies within the framework of

the specified grant project.
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