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A spiral long-periodic structure of the turbulent flow core in a heated

rectangular duct with inclined ribs at a wall
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Paper presents the results of the numerical modeling of the turbulent airflow in a rectangular duct 50 caliber

length, on one wall of which straight ribs inclined to the axis of the channel at an angle of 45◦ are periodically

located. The simulation covered the range of the Reynolds number from 104 to 2 · 105. It has been established that

with all Re number values the long areas of statistically stationary spiral flow are formed. Specific phases of the

spiral flow structures formation have been identified as they developed from the channel entrance. It is shown that

the parameters (friction and heat transfer) of the flow with developed spiral structures are close to the parameters

of the spatially periodic flow with the same Re number. The presence of specific phases of the spiral flow formation

obtained in a numerical modeling are confirmed with the presented in the literature results of physical experiments.
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Introduction

Turbulent flows and heat transfer in rectangular channels

with internally ribbed walls have been studied by methods

of physical and numerical modeling for a long time (see,
for example, monographs [1,2]). The interest in research

is associated with the use of such channels for cooling

blades of high-temperature gas turbines [3] and for heating

various media in the channels of heat exchange devices, in

particular, devices that absorb solar radiation [4].

Rational geometric parameters have been established for

different ribbing options to date. One of the variants is

characterized by the following parameters: straight ribs with

square section e × e (e = 0.1H) are arranged in parallel in a

straight rectangular channel with W/H = 1.5 (W and H —

width and height of the section) across one of the walls

with a width of W and pitch of P , equal to H , these ribs are

inclined relative to the longitudinal axis of the channel by

an angle α, which ranges from 45◦ to 60◦ for a significant

increase of heat transfer [3].

The experimental studies for the case of α = 45◦ (Fig. 1),
for W/H = 1.5, P = H and e = 0.1H were conducted in

particular by the author of the paper [5]. The flow of air in a

channel including a section with twelve ribs, as well as inlet

and outlet plain sections, was studied in this experiment. It

was found that the intensification of heat transfer on plain

sections of the ribbed wall, compared with heat transfer in

a plain channel, is 60−70%, and the level of intensification

decreases with an increase of the Re number from 105 to

1.8 · 105; here Re= UbDh/ν , where Ub — average bulk

velocity, Dh — hydraulic diameter, ν — kinematic viscosity.

The authors of this paper, for conditions close to those

accepted in the experiments [5], performed numerical

modeling of the developed turbulent flow and heat transfer

in a channel with a ribbed wall, assuming the periodicity of

the flow field with a rib pitch P [6]. Calculations based on

the Reynolds equations using SST k − ω turbulence models

showed [6] that the degree of heat transfer intensification
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Figure 1. Section of the channel with one ribbed wall. Red

dashed lines — channel segment boundaries, blue dotted lines —
channel section boundaries normal to the longitudinal axis x,

arrow — flow direction, n and n + 1 — the numbering order of

the ribs in the channel.
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Figure 2. Results of experiments for the intensification of heat

transfer in ribbed channels: 1, 2 — data [7], 3, 4 — data [8].

in the range of the Re number from 5 · 104 to 2 · 105 is

77−79%, slightly increasing with the increase of Re. A

very moderate discrepancy between the results of physical

and numerical experiments was attributed primarily to the

difference in the real flow in the channel, which includes

only twelve ribbed segments [5], from a kind of idealized

flow with longitudinal periodicity, investigated in [6] by

numerical modeling. At the same time, we would like to

note that when choosing the working area, the author of the

experimental study [5] relied on a very common opinion

about the stabilization of the flow and the establishment

of heat transfer characteristics during the first four ribbed

sections [3].
Let us turn to other experimental studies of heat transfer

during turbulent air flow in rectangular channels with one-

sided ribbing [7,8]. The ribs had a square cross section in

both studies and were installed at an angle of 45◦ relative

to the longitudinal axis of the channel. The heat transfer in

a square-section channel (H × H) with two opposite ribbed

walls was studied in Ref. [7]. The channel included up to 33

ribbed sections and had no pre-connected plain section. The

heat transfer in a channel with a cross section W/H = 5 and

one or two ribbed wide walls was studied in Ref. [8]; the
number of ribs installed with pitch H on a wall of greater

width was sixteen, an extended section of a plain channel

was provided before the entrance of the ribbed section of

the channel.

Some of the results of these studies are shown in

summary Fig. 2. The values of the ratio of the longitudinal

coordinate x to the pitch between the ribs P are plotted

on the abscissa axis. The values of the ratio of the Nusselt

number in the ribbed channel (Nu) to the Nusselt number

of a developed flow and stabilized heat exchange in a plain

channel of the same cross section (Nu0) are plotted on the

ordinate axis. The values of the Nu number are obtained

by averaging the local parameters over the area of each

interrib space. The curves 1− 4 correspond to the following

geometric and mode parameters: red lines and symbols 1

and 2 — W/H = 1, Re= 3 · 104, e/H = 0.1, moreover, 1 –
P/H = 1, 2 — P/H = 0.5 [7]; blue lines and symbols 3

and 4 — W/H = 5, Re= 2.9 · 104, e/H = 0.15, moreover,

3 –P/H = 1.5, 4 — P/H = 1 [8].
The above experimental data and a number of other data

presented in the literature indicate the non-monotonic nature

of the change in heat transfer along the ribbed channels.

Fig. 2 shows variants 1, 2 and 4 in which a heat transfer

reduction area is observed immediately after the entrance,

which in only one case (variant 4) extends approximately to

the eighth rib, and in other cases it is limited to the length of

two-four pitches. Further, the heat transfer either increases

almost monotonously, like in variants 3 and 4 (channel
with W/H = 5), or its behavior becomes undulating, like

in variants 1 and 2 (channel with W/H = 1). For the

variant 1, the amplitude of the Nu/Nu0 ”
wave“ is close

to 10% of the average value, and the amplitude reaches

18% for the variant 2. It is appropriate to note here that

the values of the Nusselt number decrease monotonously

in plain channels, following a hyperbolic dependence of the

type a1 − a2/(x/Dh)
b , in which a1, a2 and b — values

depending on geometry channels, Re and Pr numbers. For

example, a dependence is proposed in [9], in which a1 = 1,

a2 ∝ Re−0.23 and b ≈ 0.8 is a value that weakly depends

on the Re number.

The number of ribbed segments, as a rule, does not

exceed two dozen in experimental studies and in rare

cases reaches three dozen. The mentioned features of

the experimental data obtained for relatively short channels

and the observed discrepancies with the results of solving

the idealized problem posed under the assumption of

longitudinal periodicity ensure the relevance of the task

of numerical modeling of turbulent flow and heat transfer

developing in a significantly elongated channel, the number

of segments in which far exceeds the values assumed in

known experimental studies.

The formulation of the problem of numerical simulation

of flow and heat transfer in a long channel with a single

ribbed wall presented below was largely based on the

author’s experience in numerical analysis of hydrodynamic

and heat exchange processes presented in Ref. [6], obtained
under the assumption of their longitudinal periodicity with a

rib spacing. It is most important here to note the experience

of numerical reproduction and analysis of a system of

statistically stationary vortices, which are formed by inclined

ribs and are the reason for an increase in heat transfer and

hydraulic resistance in a channel with a ribbed wall.

A general idea of the vortex structure of a turbulent

periodic flow formed in a channel with a rib installation

angle of α = 45◦ is given in Fig. 3. Inclined ribs, acting as

wall swirlers, create a swirling flow in the channel (global
longitudinal vortex 1) with a swirl angle at the periphery

of the flow core close to the ribs angle. In addition to

the global longitudinal vortex, a high-intensity concentrated

vortex descends from the trailing edge of the upper face of

each edge, in the part of the face that is located upstream 2.

The axis of this edge vortex is first oriented along the
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Figure 3. The structure of a developed spatially periodic flow in

a channel with a single ribbed wall (according to Ref. [6], α = 45◦,

Re= 2 · 104): 1 — distribution of dimensionless longitudinal

velocity vx = Vx/Ub in a channel section parallel to the edge with

superimposed projections of swirling streamlines, 2 — isosurface

Q-criteria and edge vortex streamlines, 3 — vortices on the upper

edge of the rib and in the corner between the rib and the wall.

diagonal of the interrib section, remaining approximately

parallel to the plain part of the ribbed wall, and then

it abruptly changes its direction and the edge vortex is

involved in a global vortex. Less intense vortices 3 are also

visible in Fig. 3. They are formed above the upper edge of

the rib and in the corner between the edges of the rib and

the channel wall.

1. Problem definition and
methodological aspects

This paper addresses the problem of numerical simulation

of turbulent flow and convective heat transfer of an

incompressible medium (air) with a Prandtl number equal

to 0.7 in a rectangular channel (W/H = 1.5), shown in

Fig. 4. The channel consists of an initial plain section 1

with a length of 6H (5.6Dh), a ribbed section 2 with a

length of 60H (50Dh) and a plain output section 3 length of

16H (13.5Dh). The ribbed part consists of sixty segments

(one segment is shown in Fig. 1). The ribs are installed at

an angle of α = 45◦ with a spacing of P = H . The total

length of the channel is 69.1Dh .

Unsteady Reynolds equations (Unsteady RANS) are

solved using the SST k − ω turbulence model [10]. The

turbulent Prandtl number is assumed to be 0.9.

The no-slip condition and constant temperature are set

on the solid surfaces of the channel. The distributions

of velocity, temperature and turbulence characteristics are

defined in the inlet section of the initial plain section 1,

which were previously calculated when solving the problem

of stabilized flow and developed heat exchange in a plain

channel. The methodology and results of these auxiliary

calculations are described in Ref. [6]. A zero overpressure

value is prescribed in the outlet section of the plain outlet

section 3.

The calculations were performed using the ANSYS

CFX 2019 R3 software package. Convective flows were

sampled according to the scheme of an increased approx-

imation order (High Resolution). The calculated grids

consisted of hexahedra, with a total of 106 nodes per a rib

pitch (segment). The total dimension of the grid, including

the sections before and after the ribbing, was 65.4 · 106

nodes. The experience of numerical solution of the problem

of spatially periodic flow and heat transfer presented in

Ref. [6], based on a special study of grid convergence,

allowed determining the requirements for the dimension of

the grid. It was shown, in particular, that the difference in

the results of the solution on a grid of 106 nodes compared

with a grid-converged solution on a grid of 68 · 106 was

0.9% in terms of the resistance coefficient and 2.6% in

terms of the Nusselt number when calculating the periodic

flow in one section of the ribbed channel, performed for

Re= 2 · 105.

The second-order accuracy scheme was used for ad-

vancing in the physical time. The highest frequency

fluctuations of the flow were resolved at about 20 time steps.

Preliminary calculations showed that about 350 time steps

were required to enter a statistically stable mode, starting

from the initial approximation, which was an iteration-
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Figure 4. Calculation area: 1 — initial section, 2 — ribbed

section, 3 — output section.

5∗ Technical Physics, 2024, Vol. 69, No. 11



1668 S.A. Galaev, A.M. Levchenya, V.V. Ris, E.M. Smirnov

1

2
X

Z

Y

cf

0.001 0.005 0.009 0.013 0.017

Figure 5. Distributions of local values of the friction coefficient

on surfaces in the spaces between the ribs and the positions of

isosurfaces on which Rv = 1.12; cross section 1 is located in

segment 21, section 2 is in the segment 27 (calculation results

for Re= 2 · 105).

inconsistent solution provided by a stationary problem

solver. Given this result the option of averaging the flow

parameters carried out over the next 150 steps was included

after completing the first 500 steps.

2. Results and discussion

The results of calculation of the time-averaged flow and

heat transfer in the channel illustrated in Fig. 4, the ribbed

part of which, as noted above, consists of sixty segments, are

presented and analyzed below. The numbering of segments

and ribs starts from the inlet. The data obtained for four

values of the number Re are discussed: 104, 5 · 104, 105

and 2 · 105 .
Fig. 5 shows the flow characteristics in the channel section

from segment 20 to segment 36 for the variant with the

Re number = 2 · 105. The figure shows a ribbed wall, the

plain sections of which are colored in accordance with

the local values of the friction coefficient c f = 2τw/ρU2
b .

Highlighted and translucent volumetric areas of gray color

are formed by isosurfaces of the normalized vorticity value

Rv = |rotV|H/Ub = 1.12; Rv < 1.12 inside the volumes.

Periodically recurring
”
discontinuous“ volumes pertain to

the edge vortices descending from the ribs. The
”
tube“

extending along the channel defines a formed helical

region with relatively low vorticity in the core of the flow

(Rv ≤ 1.12). The figure also shows two inclined sections of

the channel parallel to the ribs and located in the middle of

plain sections of segments 21 (section 1) and 27 (section 2).
These sections are constructed for a visual identification of

the position of the tube Rv = const relative to the channel

walls. The figure clearly shows that the transverse position

of the slightly swirling core varies along the channel with

a spatial period significantly greater than the rib pitch.

A comparison of the flow fields obtained by averaging

over individual fragments of the total sample also allowed

concluding that the formed helical region is quasi-stationary.

Next, let’s pay attention to the distribution patterns of the

coefficient c f . Red-yellow bands with values c f from 0.013

to 0.017 are distinguished on the interrib plain surfaces of

each segment. These bands of increased values c f occur

as a result of the action of edge vortices of the same type

as the vortex shown in Fig. 3 on the wall flow. It is very

noteworthy that the size and intensity of the color of the

bands with increased values c f change from segment to

segment. The larger bands are more brightly colored in

red and yellow, while the smaller stripes are less intensely

colored and contain almost no red color.

Let us compare the color change of plain surfaces

by values c f with the behavior of a helical isosurface

Rv = 1.12. The trace of the selected tube is close to the

ribbed surface in section 1, and the trace is located at a

distance from the ribbed surface in the cross section 2.

Accordingly, the band imprinting the action of the edge

vortex has a larger and brighter size on the interrib wall

of segment 21, and the corresponding band is much less

pronounced on the interrib wall of segment 27. The same

pattern can be traced further along the channel, namely,

the approach of the surface Rv = 1.12 to the ribbed wall

increases friction under edge vortices, removal of the area

reduces the friction.

Fig. 6 shows flow patterns in several cross sections normal

to the channel axis, located approximately in the same

places as the inclined sections in the previous figure; the

x coordinate here is counted from the beginning of the

ribbed section. In schematic Fig. 1, for example, blue

dotted lines show the same type of cross section and

the numbering sequence of ribs n and n + 1 intersecting

the current section. The flow patterns in Fig. 6 are

shown under the assumption that the observer is looking

downstream. The sections of the ribs 22 and 23 are

visible in the upper row in the flow patterns, and the

sections of the ribs 27 and 28 are visible in the bottom

row. The cross sections in the figure include segment 22

with parts of segments 21 and 23 (top row), as well as

segment 27 with parts of segments 26 and 28 (bottom
row). The sections of the ribs 23 and 28 are located

closer to their beginning relative to the direction of flow,

and the sections 22 and 27 are located closer to the

end.

The left column of the patterns in Fig. 6 shows the

distributions of the dimensionless longitudinal velocity

vx = Vx/Ub, and the right column shows the distribu-

tions of the dimensionless transverse velocity modulus

vyz = (V 2
y + V 2

z )0.5/Ub . White lines in the distribution

patterns vx are contours of the surface section Rv = 1.12.

The arrows indicate the direction in which the contours are

moving. It is clearly seen that the surface Rv = 1.12 is

close to the ribbed wall in the region of segment 22, and

the situation is reversed in the region of segment 27. The

Technical Physics, 2024, Vol. 69, No. 11
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Figure 6. Velocity fields in two sections of the ribbed part, calculated with Re= 2 · 105 : a — section x/P = 22.25, b — section

x/P = 27.25; left — longitudinal velocity distributions vx , on the right — transverse velocity modulus distributions vyz and transverse

streamlines; white lines on maps vx — tube boundaries Rv = 1.12; curved arrows — the direction of movement of the tube section

boundary between segments 22 and 27; 22, 23, 27 and 28 — rib numbers.

contour Rv = 1.12 and the maximum longitudinal velocity

area vx ≥ 1.4 move synchronously between the sections

x/P = 22.25 and x/P = 27.25. All this provides additional

evidence that the flow is characterized by a long-period

helical structure at least in the core of the flow.

The transverse flow patterns are shown in Fig. 6 as the

distributions of the transverse velocity modulus vyz and the

streamlines constructed from the velocity components vy

and vz . The direction of the secondary flow is consistent

with the angle of inclination of the ribs. The defining role

of the ribs in creating the swirl of the main flow is also

confirmed by the fact that vyz has the highest values at

the periphery of the cross sections. In general, the level

of transverse velocity at the periphery is about half of the

average flow rate velocity Vb . Local elongated regions are

observed near the ribbed wall and the lateral left wall, where

the transverse velocity modulus almost reaches the value

Vb . These regions are formed by edge vortices (Fig. 3)
at the ribbed wall descending from the edges 23 and 28.

These regions at the side wall are created by vortices that

descended from the edges 22 and 27. The edge vortex

under the combined action of the channel boundaries and

the general swirl of the flow spreads upward and along the

side wall as graphically illustrated in Fig. 3. Its presence

near the side wall is indicated by areas where the values

of the transverse velocity modulus almost reach the values

of the average flow rate velocity. It should be noted also

that the streamlines plotted in Fig. 6 define relatively small

vortex regions in the vicinity of the ribbed wall to the

right of the rib sections 23 and 28 that can be associated

with the origin of edge vortices when the incoming flow is

disrupted from the trailing edge of the upper edge of the

rib.

The long-period (in comparison with the pitch of the

ribs) helical structure of the slightly swirling core of the

flow in the channel is clearly shown in Fig. 7, where the

”
pigtail“ is clearly visible, formed by a fairly regular, multi-

turn interlacing of two elongated flow regions characteristic

of the central part of the simulated flow. The longitudinal

velocity is vx ≥ 1.4 inside the red area, i.e. close to the

maximum. The transverse velocity modulus is vyz ≤ 0.08

inside the blue area.

The diagrams of the segment distribution of the average

values of the friction coefficient 〈c f 〉 on plain interrib

surfaces are shown in Fig. 8. Horizontal dashed lines on the

diagrams indicate the values c f , each of which marks the

arithmetic mean value of the coefficient 〈c f 〉 in the section

from 20 to 60 of the segment. The values c f for different

values of the number Re are listed in the table. Helical

isosurfaces of magnitude Rv are shown under each diagram.

The values of the constant selected for surface visualization

range from 1.1 to 1.3. Isosurfaces Rv are colored according

to the distance from a point on the surface to the ribbed

wall. The choice of the field of parameter Rv for comparison

with the diagram c f is determined by the strong influence

Technical Physics, 2024, Vol. 69, No. 11
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Figure 7. Isosurfaces of a constant value of the longitudinal

velocity (red) and a constant value of the transverse velocity

modulus (blue), plotted according to the results of calculations

for Re= 2 · 105. Every tenth rib is colored green.

of the vortex flow structure on the wall convective diffusion

transport.

It is possible to record the sequence of phases of

flow development in the channel considering together the

diagram c f and the shape of the isosurface Rv for each

value of the Re number. Let us consider, for example,

Fig. 8, d pertaining to the variant Re= 2 · 105 . The friction

decreases in the first two segments of the ribbed section

(phase 1). Then, the friction monotonously increases after

the segment 2, reaching a maximum in segments 10 and

11 (phase 2). The increase of friction of these segments

is about 75% compared to the segment 2. It can be

seen in the image of the isosurface Rv that a longitudinal

helical motion begins to form near the ribbed wall in the

phase 2. It is also seen that the formation of a global

vortex motion occurs under the influence of both the

inclination of the ribs and edge vortices. The edge vortices

in this area and downstream can be identified by tracing

upward pointed spots of red color. The section from a

segment 2 to segment 10 is characterized by the presence

of a layer with high vorticity values near the ribbed wall

(solid red veil) which explains the monotonous increase of

the friction.

The friction decreases to a value close to the value in

segment 2 after segment 11 and up to segment 15 (phase 3).
Fig. 8, d shows that the friction decreases when breaks

appear in the red veil, which reflects the fact of a decrease

of wall vorticity. The traces of edge vortices become dotted,

and friction reaches a local minimum in the vicinity of

segment 15. The degeneration of the traces of edge vortices

indicates their weakening or, rather, their movement away

from the wall. The formation of the dextral helical shape

of the isosurface Rv is almost completed in the vicinity of

segment 15.

The forming helical structure is located at a distance from

the ribbed wall over five segments (from segment 13 to

segment 18), and friction does not change much in the

section from segment 15 to segment 22, having an average

level, the same as in the rest of the downstream part of

the channel (phase 4). The behavior of friction in this

section, if we do not consider the remaining part of the

channel, beyond the segment 22, gives reason to conclude

that there is some stabilization of the flow when approaching

the segment 15. It should be noted that this conclusion is

consistent with the data on the length of the initial section

in unilaterally ribbed channels given by other authors [3].
If we do not consider the remaining part of the channel,

we could assume that the friction should monotonously

decrease after segment 17. However, Fig. 8, d shows that

the isosurface Rv approached the wall in the area covering

segments 18−22, the edge vortices also approached it, while

friction started to increase instead of decreasing. Phase 4 is

intermediate and therefore it partially includes segments that

can be attributed to the previous phase 3, and partially to

the next phase 5.

The helical shape of the isosurface Rv with four screw

pitches is defined from segment 19 to the end of the channel

(phase 5). The screw pitches h are almost the same over

this phase and have a size of about ten interrib pitches

(h ∼= 10P). The edge vortices approaching the wall become

noticeable at each pitch of the screw, as it approaches the

wall. The screw tube approaching the wall increase the

friction like the edge vortices with it. The friction in the

corresponding segments decreases when the screw tube and

the edge vortices move away from the wall.

Comparing the parts of Fig. 8, it is possible to note

trends in the change of phase boundaries and some other

characteristics depending on the Reynolds number. The

length of phase 2 decreases from 12 to 8 segments with an

increase of the Re number from 104 to 2 · 105, the length of

the phase 3 also decreases. It is 9 segments for Re= 104 ,

and it decreases from 6 to 5 segments for the remaining

values of Re. The maximum value of c f significantly

exceeds the value of 〈c f 〉 for all Re numbers at the end

of the phase 2. This excess grows with an increase of

the Re number and amounts to 43% at Re= 104, 60% at

Re= 5 · 104, 64% at Re= 105 and 67% at Re= 2 · 105.
The pitches h of the helical shape of the surfaces

Rv = const decrease in phase 5 with the increase of the

Re number. For instance, the pitches h are 12P and 11P for

Re= 104 and 5 · 104, respectively, and the pitches h are 10P
and 9P for Re= 105 and 2 · 105. At the same time, with

the range of fluctuations of the coefficient 〈c f 〉 decreases

relative to c f an increase of the Re number: it amounts to

49% at Re= 104, 36% at Re= 5 · 104, 32% at Re= 105

and 30% at Re= 2 · 105 . The table shows the values of the

average friction coefficients c f on the interrib surface and

the values of the same coefficients 〈cSP
f 〉 for the developed

spatially periodic (SP — Spatial Periodic) flow (according

Technical Physics, 2024, Vol. 69, No. 11
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Figure 8. Distribution diagrams 〈c f 〉 and change of the shape of isosurface Rv along the channel: Re= 104 (a), 5 · 104 (b), 105 (c),
2 · 105 (d); dashed lines — values c f .

to data from Ref. [6]). As can be seen, the relative difference

between these values |c f − 〈cSP
f 〉|/〈cSP

f 〉 · 100% turned out

to be small. It is maximum at Re= 104 and is 8.5%, and in

other cases it is noticeably less: 4% at Re= 5 · 104, 1.3%
when Re= 105 and 5.7% at Re= 2 · 105.
Fig. 9 shows diagrams constructed for the heat transfer

intensification parameter 〈εq〉. The parameter 〈εq〉 is defined
as the ratio 〈αrw〉/αsm, in which αrw = qrw/|Tw − Tb| and
〈αrw〉 — local and average heat transfer coefficients on the

plain part of the ribbed wall for one segment, qrw and Tb —
local heat flow and mass-weighted average temperature in

the cross section of the channel parallel to the ribs and

located in the middle between them, αsm — heat transfer

coefficient in a plain channel with the same hydraulic diame-

ter value. Coefficient αsm(αsm = Nusmλg/Dh, λg — thermal

conductivity of the medium, Dh — hydraulic diameter of the

channel) is calculated (using the Nikuradze formula for the

resistance coefficient [11] λsm = 0.0032 + 0.221/Re0.237)
according to Gnielinski’s formula for Re= 104 [12]:

Nusm =
(λsm/8)(Re − 1000)Pr

1 + 12.7(λsm/8)1/2(Pr
2/3 − 1)

and Petukhov-Kirillov formula for Re≥ 5 · 104 [13]:

Nusm =
(λsm/8)RePr

1 + 900/Re + 12.7(λsm/8)1/2(Pr
2/3 − 1)

.

The values of αsm are listed in the table.

It is possible to conclude comparing the diagrams

in Figs. 8 and 9 that their shape is similar, which is
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Figure 9. Distribution of the heat transfer intensification

parameter 〈εq〉 along the channel, dashed lines εq denote values

for spatially periodic flow (according to [6]).

an expected consequence of the similarity of turbulent

convective-diffusive heat and momentum transfer. It was

shown in Ref. [6] that the Reynolds analogy coefficient

2St/c f (St=Nu/(RePr) — the Stanton number, in which

the Nusselt number is determined by the heat transfer on

all walls) remains close to one, varying from 0.9 to 1.1 in

the range of values of the Re number considered here.

The comparison of the diagrams in Fig. 9 with the graphs

in Fig. 2 can show that the behavior of the experimental

heat transfer intensification curves in the first fifteen to

twenty segments is similar in many respects to the calculated

diagrams. Phases 1−4 of the development of flow identified

during the analysis of the calculated data can also be

identified on experimental graphs. The phase 5, pertaining

to the formed helical motion in the core of the flow, is

not visible on the graphs, with the exception of variant 2,

which can be explained by the insufficient number of

segments (less than 16) in the experimental channels of

the variants 1, 3 and 4.

The horizontal dashed lines on the diagrams 〈εq〉 mark

the values εq , each of which represents the arithmetic mean

of the values 〈εq〉 in the segment from 20 to 60 segments (in
the phase section 5). The values εq calculated for different

Re numbers are listed in the table. The table shows the

values of the average heat transfer intensification coefficients

Integral characteristics of friction and heat transfer

Re number 104 5 · 104 105 2 · 105

c f 0.0141 0.0092 0.0078 0.0066

〈cSP
f 〉 0.0130 0.0096 0.0079 0.0070

εq 1.45 1.63 1.69 1.69

〈εSP
q 〉 1.53 1.81 1.88 1.91

αsm(W/m2·K) 7.0 23.3 38.9 67.5

N
u

100

4
10

1000

1

2

5
10

6
10

Re

Figure 10. Calculated average values of the number Nu

depending on the Re number: 1 — assuming the spatial periodicity

of the flow [6,14], 2 — in the section of the helical flow in a long

channel.

on the interrib surface 〈εSP
q 〉 for the developed spatially

periodic flow in addition to the values of εq [6]. The relative
difference between these values εq − 〈εSP

q 〉/〈εSP
q 〉 · 100%

was: 5.2% at Re= 104, 10% at Re= 5 · 104, 10.1% at

Re= 105 and 11.5% at Re= 2 · 105 . Thus, the difference

between the average values εq from the values obtained for

the idealized spatially periodic flow 〈εSP
q 〉 remains within

the range close to ten percent with the formed helical

motion (phase 5), as in the case of average values of friction

coefficients.

Fig. 10 shows the dependences of the average Nusselt

number calculated taking into account the heat transfer

on all walls of the channel on the Reynolds number.

The heat transfer is approximated by the dependence

NuSP = 0.0295 · Re0.807 for the periodic flow, a close

correlation Nu= 0.0288 · Re0.804 is valid for a long channel

in the section of the helical flow.

Conclusions

1. The core of a statistically stationary turbulent flow has

a helical shape in the chosen configuration of a long (gauge
50) ribbed channel, the characteristics of which depend on

the Reynolds number in the conditions that we studied.

2. The process of formation of a helical structure along

the length of the channel for all values of the Reynolds

number can be divided into four phases, followed by

entering the (fifth) phase of a fully developed helical motion

of the medium with a screw pitch and an amplitude of

change of the hydrodynamic characteristics monotonously

dependent on the Reynolds number.

3. The sections where the helical structure of the flow

core is gradually formed, as a whole, occupy about a third

of the length of the channel, their length slightly decreases

with an increase of the Reynolds number. The process
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of a helical structure formation is accompanied by non-

monotonic behavior of friction and heat transfer, while the

friction and heat transfer reach extremely high values in the

initial phases.

4. The resistance and heat transfer characteristics aver-

aged over the channel length within 10% coincide with the

characteristics calculated earlier in Ref. [6] for an idealized

spatially periodic flow in the phase with a fully developed

helical structure.

5. The phases of formation of the helical structure of the

flow core in ribbed channels identified as a result of calcu-

lations are indirectly (through heat transfer characteristics)
found in the results of a number of experimental studies in

Ref. [5,7,8].
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