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Instability development in the Bursian diode
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Stability features of a Bursian diode (a vacuum diode with an electron beam) steady states in a mode with

a negative potential difference between the collector and the emitter has been studied. Using linear theory, it is

shown that solutions corresponding to the middle (overlap) branch are aperiodically unstable. The development of

this instability at the nonlinear stage has been numerically investigated by a high-precision E,K- code. It turned out

that, depending on the phase of the perturbation, the process develops in opposite directions, and ends in stationary

states lying on different branches of solutions. The process reaches solutions from the lower (normal) branch in an

aperiodic manner, with a growth rate that matches the one predicted by linear theory. On the other hand, stationary

solutions with reflection are affected by the process in an oscillatory manner. A general expression is obtained for

the law of conservation of energy in the diode — external circuit system. In calculations of instability development,

this law was carried out with high accuracy.
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Introduction

The electron flow in the Bursian diode enters the

vacuum gap from an emitter with a velocity distribution

function (VDF) close to monokinetic, and has a finite

average velocity [1]. The system of equations describing

the stationary states of a diode may have several solutions

in a certain range of current densities j0 at a fixed value j0.
This result was first obtained in Ref. [2]. Bursian diode

solutions and their stability have been studied for more than

100 years (see, for example, [3–7] and references in them).
The stationary solutions are conveniently represented by

points on the plane {ε0, δ} with a fixed potential difference

between the collector and the emitter U , where ε0 and

δ — dimensionless electric field strength at the emitter and

interelectrode the distance (see, for example, [7]). These

points fall on continuous lines (branches of solutions).
There are three branches: the lower branch (normal), the
middle branch (overlap) and the upper branch with electron

reflection from the virtual cathode (VC) (Fig. 1).

Solutions belonging to the normal branch are stable with

respect to small perturbations and the overlap branches are

aperiodically unstable in accordance with linear theory [8].
To date, linear theory has not yet been created for solutions

with reflection.

We numerically study in this paper how the perturbation

of solutions from the unstable branch of the overlap

develops, and determine in which states the non-stationary

process ends. We use high-precision E,K- code for this

purpose [9]. It is shown that the process at the initial

stage develops in accordance with the prediction of linear

theory, and the amplitude of the disturbance changes

exponentially [8]. However, the process proceeds in different

directions depending on the phase of the perturbation, and

it ends with a stationary solution either from the normal

branch or from the branch with electron reflection. Both

end states coincide with the previously found stationary

solutions with high accuracy.

It was shown in Ref. [10] that the stable states of the

diode can be unstable in the mode with U < 0 if inductance

is included in the external circuit. Next, it is necessary to

find out how instability develops at the nonlinear stage, as

well as in what states this process will end. We study

in this paper the stability of the states of these modes

without reactive external load, examine the nonlinear stage

of instability development and find out in what state this

process ends. Simultaneously, we propose a form of the law

of conservation of energy in the diode — external circuit

system, and demonstrate the fulfillment of this law during

calculations.

1. Stationary solutions

We consider a diode of flat geometry. The electrodes

are spaced from each other at a distance of d . We believe

that electrons enter the plasma from the left electrode with

an average velocity of v0 > 0 and a density of n0. The

particles move without collisions, and when they reach any

electrode, they are absorbed on it. We use dimensionless

quantities for the convenience of consideration, choosing

the electron energy at the left boundary W0 = m v2
0/2 and

the Debye Huckel length λD =
[

2ǫ̃0W0/(e2n0)
]1/2

as units

of energy and length (here e, m — the charge and mass

of the electron, and ǫ̃0 — the permittivity of the vacuum).
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Figure 1. Dependence of the electric field strength at the emitter (a) and the minimum potential at PD (b) on the magnitude of the

interelectrode distance. Solid lines — monokinetic VDF, dots — VDF in the form of
”
gates“ with spread 1 = 0.01. 1 — normal branch,

2 — overlap branch, 3 — branch with electron reflection. V = −0.4.

We have for dimensionless coordinates, potential, electric

field strength, velocity and time: ζ = z/λD , η = e8/(2W0),

ε = eEλD/(2W0), u = v/v0, τ = t/(λD/v0). The distance

between the electrodes is δ = d/λD, and the potential

difference is V = eU/(2W0).

The VDF and the electron density at the point ζ is

calculated in accordance with Ref. [11]. We mentally divide

the VDF at the emitter f 0(u0) into groups of particles with

velocities lying in a narrow range (u0, u0 + 1u0). We will

call these groups
”
beams“ for brevity sake. The density

1n(ζ ; u0) and the characteristic velocity u(ζ ; u0) of the beam

at a point with a potential η(ζ ) are expressed in terms of

the corresponding values at the emitter (ζ = 0) by simple

formulas in the collisionless case. In this case, 1n(ζ ; u0)

and u(ζ ; u0) are expressed in terms of η(ζ ), and they are

additionally expressed through extremes on the potential

distribution (PD) in the case of particle reflection. It only

remains to perform summation (integration) for all bundles

that can hit the point ζ for calculating the density of the

entire flow. It should be noted that not all particles came

from the left electrode will be able to reach the point ζ : if

the initial energy of the particle u2
0/2 turns out to be less

than |η(ζ )|, such a particle will be reflected at a point lying

to the left of the point ζ .

Using the laws of conservation of the number of electrons

for each beam (collisionless mode!)

1n(ζ ; u0) u(ζ ; u0) = 1n(0; u0) u(0; u0) ≡ f 0(u0) u0 1u0

(1)

and energy for the electron

1

2
u2(ζ ; u0) − η(ζ ) − 1

2
u2
0 = 0, (2)

we find the density of the beam at the point ζ :

1n(ζ ; u0) =
f 0(u0) u0 1u0

[

u2
0 + 2η(ζ )

]1/2
. (3)

After performing integration over the velocity regions on

the left boundary corresponding to the particles falling at

the point ζ , we obtain the total density of particles at this

point

n(ζ ; u0) =
∑

i=0,1

∫

�i

f 0(u0) u0 du0
[

u2
0 + 2η(ζ )

]1/2
. (4)

i = 0 and 1 in (4) corresponds to particles arriving at the

point ζ with positive and negative velocities. The integration

regions at the emitter �i are determined by the type of

potential distribution. It should be noted that these integrals

are taken analytically for a broad class of VDF on the

emitter [11,12]. Similar formulas can be obtained for any

VDF moments.

We obtain the following expression for the electron

density for the case when the VDF of the entering electrons

is a δ-function [7]:

ne(η; r) = α(r, ζm) (1 + 2η)−1/2,

α(r, ζm) =







1 + r, ζ < ζm,

1− r, ζ > ζm.
(5)

Here ζm — the position of the VC point ηm. If the

initial electron energy is greater than |ηm|, there are no

reflected electrons, r = 0, and α(r, ζm) = 1. The process

of reflection of electrons from VC is described using the

monoenergetic VDF f 0(u0) by introducing the electron

reflection coefficient r which represents the fraction of the

electron flow returned to the emitter (0 ≤ r ≤ 1). The

possibility of splitting the electron beam at the reflection
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point is justified by the fact that in real devices, the

electrons coming from the emitter always have a small

spread in velocities. Then electrons whose energies at the

emitter are slightly greater than the value of the potential

barrier |ηm| overcome it, and electrons with energies slightly

less than this value are reflected. Bursian introduced

the electron reflection coefficient to quantify the partial

reflection of electrons from VC in a stationary mode [2].
Then the dimensionless current density per collector, i.e.

the fraction of the electron flow that has passed beyond the

reflection point, is j = 1− r . If the value is |ηm| < 1/2, the

reflection coefficient is r = 0.

Substituting the density of electrons (5) into the Poisson

equation

η′′ = ne(η; ηm) (6)

with boundary conditions

η(0) = 0, η(δ) = V, (7)

and solving this problem, we find the distributions of the

potential η(ζ ) and the electric field ε(ζ ) in the diode.

It should be noted that this problem may have several

solutions for the same value δ due to the nonlinearity of

the equation (6) and setting Dirichlet boundary conditions

(but, of course, for different values of ε0).
The following formulas are obtained for calculation of

stationary solutions for monoenergetic VDF [7]. The PD

in the region η < 0 turn out to be symmetric with respect

to the position of the minimum point ζm in reflection-free

mode. Its coordinates are expressed in terms of the electric

field strength at the emitter ε0:

ηm =
1

8
ε20 (4− ε20), ζm =

1

3
ε0(3− ε20). (8)

For the mode without reflection of electrons in the cal-

culations of the characteristics of stationary solutions, it is

convenient to use the parameter τ — the time of electron

flight from the emitter to the point ζ :

ζ =
1

6
τ 3 − 1

2
ε0τ

2 + τ , u =
1

2
τ 2 − ε0τ + 1,

η =
1

2
(u2 − 1), ε = ε0 − τ . (9)

The following formulas are available for τ (for the overlap

branch — they are marked with the symbol O, for

normal — N):

τO = 2
[

2
(

1 +
√

1 + 2η
)]1/2

cos
α − π

3
,

τN = 2
[

2
(

1 +
√

1 + 2η
)]1/2

cos
α + π

3
. (10)

Here

cos(α) = − q
2(−p/3)3/2

= − 6ζ
[

2
(

1 +
√
1 + 2η

)]3/2
, (11)

and the parameters q and p are the coefficients of the cubic

equation x3 + px + q = 0, to which the 1st equation (9) is

reduced, and are equal to: q = 12ζ , p = −6
(

1 +
√
1 + 2η

)

(see, for example, [13]).

In the electron reflection mode (Fig. 1, curve 3) it is

convenient to use the reflection coefficient r as a parameter,

which varies from 0 to 1 on this branch. In contrast to

the case when there are no reflected electrons (r = 0), the
PD in the region η < 0 turn out to be asymmetric relative

to the reflection point ζr in the mode with reflection. The

following parameter values correspond to this point:

ε0 =
√

2(1 + r), ζr =
1

3

√

2

1 + r
, ηr = −1

2
. (12)

To the left of the point ζr

η(ζ ) = −1

2
+

1

2

(

1− ζ

ζr

)4/3

, ε(ζ ) =
2

3ζr

(

1− ζ

ζr

)1/3

,

(13)
and to the right of it —

η(ζ ) = −1

2
+

1

2

(

1− r
1 + r

)2/3 (

ζ

ζr
− 1

)4/3

,

ε(ζ ) =
2

3ζr

(

1− r
1 + r

)2/3 (

ζ

ζr
− 1

)1/3

. (14)

Stationary solutions are conveniently represented by

points on the plane (ε0, δ). These points form separate

curves with a fixed value of the potential V , which are called

branches of solutions [9]. These branches for the case of a

monoenergy VDF are shown by solid curves in Fig. 1.

Now let us consider the case when the electron flow has

a VDF in the form of
”
gates“

f 0(u0) = (21)−12
[

12 − (1− u0)
2
]

. (15)

Here 2(x) — Heaviside function. It is equal to one with

x ≥ 0 and 0 with x < 0. We will use such a VDF of

electrons at the emitter in numerical calculations of the

instability development process.

In the mode without reflection of electrons, the potential

in the minimum is ηm > −(1− 1)2/2, and all electrons fly-

ing out from the left boundary reach the opposite electrode.

ηm changes in the interval [−(1 + 1)2/2,−(1− 1)2/2]
in reflection mode. The reflection of electrons begins at

the point ζ− < ζm, where the potential η = −(1− 1)2/2
(ζm — the position of the minimum of PD). There are

both electrons that flew out from the left electrode and

moving to the right boundary, and electrons reflected from

the barrier in the section (ζ−, ζm) in the section (0, ζ−). A
flow of reflected electrons is formed at this section. Only

electrons that have overcome the potential minimum ηm and

are moving to the right electrode are present in section

(ζm, δ). The following expressions are obtained using the
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formula (4) for the electron density [9]:

ne(η, ηm) =
1

21







































































































√

(1 + 1)2 + 2 η −
√

(1− 1)2 + 2 η,

ηm > − 1
2
(1− 1)2

√

(1 + 1)2 + 2 η +
√
−2 ηm + 2 η

−2
√

(1− 1)2 + 2 η,

ζ < ζm, η > − 1
2
(1− 1)2,

√

(1 + 1)2 + 2 η +
√
−2 ηm + 2 η,

ζ < ζm, η < − 1
2
(1− 1)2,

√

(1 + 1)2 + 2 η −
√
−2 ηm + 2 η,

ζ > ζm.

(16)

All PD can be found after substituting the concentra-

tion (16) into the Poisson equation (6) and the use of

boundary conditions (7). Their structure is described in

detail in Ref. [9]. Solutions are shown by bold dots

in Fig. 1. It can be seen that the solution branches do

not differ much from the corresponding branches for the

case of a monokinetic VDF. However, now some of the

solutions on the overlap branch turn out to be solutions with

electron reflection (for those values ε0, which correspond

to PD with ηm < −(1− 1)2/2) (Fig. 1, b). Solutions,

as in the case of monokinetic VDF, are determined by

three dimensionless parameters: the interelectrode distance

δ = d/λD , the potential difference between the electrodes

V = eU/(2W0) and the electric field strength at the left

electrode ε0. However, they are also slightly affected by

the speed variation 1. It has a particularly strong effect on

solutions with electron reflection.

It should be noted that if the spread of the VDF

is small, i.e. 1 ≪ 1, the type of VDF inside the

interval [(1− 1), (1 + 1)] should not affect the results of

calculations of electron density distributions and fields in

the interelectrode gap. That’s why we chose the simplest

type of VDF with a spread of energy (16).

2. Dispersion properties of plasma

When studying the dispersion properties of plasma in the

mode without reflection of electrons from a potential barrier,

when there are no reactive elements in the external circuit of

the diode, we use the dispersion equation for monokinetic

electron VDF [9]:

Z(δ, ω)=
1

ω4

[

(2−iωT ) exp(iωT )−iω3δ−iωT − 2
]

=0.

(17)
This equation is obtained by the method of small perturba-

tions: the solution of the non-stationary problem is sought

by substituting PD in the following form

η(τ , ζ ) = η0(ζ ) + η̃(ζ ) exp(−iωτ ), |η̃(ζ )| ≪ |η0(ζ )|,
(18)

in the Poisson equation and linearization of the unsteady

electron density by a small perturbation η̃(ζ ). The result is a
linear integral equation for the amplitude of the disturbance

PD η̃(ζ ). This equation can be solved analytically for

the Bursian diode [8]. After using the zero boundary

condition on the collector for η̃(ζ ), the desired dispersion

equation is obtained.

Solutions of the dispersion equation — these are the

eigenvalues of perturbations: ω = � + iŴ, where � is

the frequency, and Ŵ is the growth rate. It is known

that the dispersion equation has a countable number of

solutions for diodes with collisionless plasma, for each

value of the interelectrode gap δ . The Bursian diode has

one aperiodic and many oscillatory eigenvalues for each

stationary solution. The aperiodic solution is found by

substituting ω = iŴ into equation (17):

Ŵ−4
[

(2 + ŴT ) exp(−ŴT ) − Ŵ3δ + ŴT − 2
]

= 0. (19)

For solutions corresponding to the normal branch, the

growth rates turn out to be negative, and it is positive for the

overlap branch. This suggests that solutions with an overlap

branch are unstable with respect to small perturbations.

It can be shown by decomposing the small Ŵ of the left

side (19) that the growth rate vanishes at the bifurcation

point δSCL = (
√
2/3)

(

1 +
√
1 + V

)3/2
, where the normal

and overlap branches meet. It is necessary to solve the

complete complex equation (17) to find the oscillatory

branches.

The dispersion curves, i.e. the dependences of the

eigenvalues on the magnitude of the interelectrode distance,

are shown in Fig. 2. The dashed curves correspond to

solutions with the overlap branch (they are marked with the

index
”
O“), and the solid curves correspond to solutions

with the normal branch (they are marked with the index

”
N“). The aperiodic branches are marked with the letter

”
A“, the oscillatory are marked with the letter

”
O“. The

figure shows only two oscillatory dispersion branches having

the smallest (in absolute value) decrements.

It can be seen that the growth rates are negative for

all oscillatory dispersion branches, i.e. the stationary

solutions in the mode without reflection of electrons from

the potential barrier can only be aperiodically unstable

in the Bursian diode with V < 0 and these are solutions

with overlap branches.

Currently there is no linear theory for studying the stabil-

ity of solutions corresponding to the branch with reflection

(curve 3 in Fig. 1), so the stability of such solutions can

only be studied using numerical methods (see, for example,

the paper [9]). The values of proper frequencies obtained

numerically are given below for δ = 0.75, V = −0.4.

It is interesting to trace how the process of instability

development proceeds, and in what state it ends. This is

addressed in sect. 3.

Technical Physics, 2024, Vol. 69, No. 11
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Figure 2. Growth rates (a) and frequencies (b) of the dispersion curves corresponding to the normal (solid) and overlap (dashed)
branches for the monokinetic Fed. V = −0.4.

3. Numerical calculations of instability
development processes

We carry out numerical calculations of the development

of perturbation using the E,K- code. It is described in detail,

for example, in Ref. [9]. The calculations used the shape of

the electric field perturbation and the growth rates found

by the linear theory. An unstable stationary solution on the

overlap branch for δ = 0.75, V = −0.4 was considered as

an initial solution. Since the E,K-code does not provide

for the use of a monokinetic VDF, it was taken in the

form (16) with a spread of 1 = 0.01. The considered

stationary state corresponds to the mode without reflection

of electrons for selected parameter values, as can be seen

from Fig. 1, b (ηm > −(1− 1)2/2). This figure also shows

that two more stationary solutions can exist with these

values of parameters: one (without reflection of electrons)
lies on the normal branch (curve 1), and the other on

the branch with reflection (curve 3). Let’s see if the non-

stationary process can end in any of these solutions.

The following values of space-time cells were selected in

the calculations: 200 division points were taken according

to the coordinate, i.e. 1ζ = 0.00375, and the time step

is 1τ = 0.02. The initial condition — the distribution of

the electric field in the gap was set equal to the sum

of the stationary field in the first 400 time steps and the

disturbance:

ε(τ , ζ ) = ε(0, ζ ) + a F(ζ ) exp(Ŵτ ),

F(ζ ) = −Ŵ−3u(t)−1
[

(1 + Ŵt) exp(−Ŵt)

+ 1/2Ŵ2t2 − ε0Ŵ
2t + Ŵ2 − 1

]

. (20)

The solid curve in Fig. 3 shows the normalized disturbances

of the electric field (Fig. 3, a) and potential distribu-

tions (Fig. 3, b), while the corresponding dependences

obtained in the calculations are shown by the dashed

curve. It can be seen that the theoretical dependences

for the monokinetic VDF and the dependences obtained

in calculations for a beam with a spread are close. Here t is
related to ζ formulas (9), (10); a — the amplitude of the

field disturbance, and F(ζ ) — form factor which does not

change during the initial stage of perturbation development,

since the process is aperiodic. The linear theory gives an

growth rate value of Ŵ = 0.738 for selected parameters. The

magnitude of the amplitude a was assumed to be equal

to 10−5. The form factor F(ζ ) was determined by the

perturbation of the electric field found by linear theory. It

is shown by a solid curve in Fig. 3, and the form factor

obtained in the calculations is shown by the dashed curve.

It can be seen that the form factors for the monokinetic

VDF and for the beam with spread are close.

The amplitude of the disturbance is determined with an

accuracy of phase in the linear theory. As will be shown

below, when choosing a phase equal to zero (sign
”
+“

for a), the process goes towards the normal branch (curve 1
in Fig. 1), and with a phase equal to π (sign

”
-“ for a), —

towards the branch with reflection (curve 3 in Fig. 1).
Calculations have shown that if the sign

”
+“ is selected

for the amplitude of the disturbance, the process ends with

an exit to a stationary solution corresponding to the normal

branch. This can be seen in Fig. 4 and 5 (curves 1),
which show the temporal evolutions of the electric field and

convection current strengths at the emitter and collector, as

well as in Fig. 6 (curves 1), demonstrating the temporal

evolutions of the minimum potential and its position. It is

also apparent that the disturbance develops aperiodically at

the initial stage. This is confirmed by the immutability of

the shape of the electric field disturbance.

The high accuracy of the E,K-code allows extracting the

growth rate value from the calculated process characteristics.

The non-stationary dependence f i(τi) was processed using

Technical Physics, 2024, Vol. 69, No. 11
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the least squares method. An approximating function of the

following form was used for this purpose:

f (τ ) = c + [a cos(ωτ ) + b sin(ωτ )] exp(Ŵτ ). (21)

The least squares method in this case is to minimize the

functional of five variables:

M(c, a, b, ω, Ŵ) =
∑

i

[ f i(τi ) − f (τi)]
2. (22)

The coefficients at which the minimum functional (22)
were determined using the gradient descent method. The

calculated growth rate turned out to be equal to 0.752,

which practically coincides with the growth rate found

according to linear theory using monokinetic electron VDF

at the emitter (Ŵ = 0.738).

Fig. 4−6 shows that the process reaches a stationary

solution when the perturbation has a phase equal to 0

(sign
”
+“ for a), and it coincides with the solution lying

on the normal branch. The output occurs aperiodically.

The calculations made it possible to find the value of the

decrement. It turned out to be equal to −1.138 and

practically coincided with the one found according to the

linear theory with the monokinetic VDF of electrons at

the emitter (Ŵ = −1.133). At the same time, both during

the initial stage of perturbation development and when

entering the stationary mode, the frequency obtained during

processing of the process ω turned out to be zero, which

corresponds to the aperiodic nature of the process.

On the other hand, when the perturbation has a phase

equal to π, the process ends with a stationary solution
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corresponding to the branch with electron reflection from

the VC (branch 3 in Fig. 1). This can be seen from fig. 4

and 5, which show the temporal evolutions of the electric

field and convection current strengths at the emitter and

collector, as well as Fig. 6, demonstrating the temporal

evolutions of the minimum potential and its position.

The stationary solution with reflection is reached through

damped oscillations unlike the case when the zero phase

was selected and the process reached a solution without

reflection of electrons. The calculations made it possible to

determine the density Ŵ and the frequency �. As a result

of processing the dependence of the electric field strength

at the emitter on time using the least squares method, the

values of these quantities turned out to be −0.43 and 5.19,

respectively.

Fig. 7 shows the evolution of the potential distribution

η(τ , ζ ) and the electron density n(τ , ζ ) in the interelectrode

gap when the transition to the electron reflection mode

occurs. When reflected particles occur, it can be seen that

strong gradients appear on the particle density distribution

n(τ , ζ ) in the vicinity of the potential minimum. In addition,

it can be seen that the density varies by more than an order

of magnitude along the coordinate. It was necessary to

additionally calculate the density at intermediate points of

cells adjacent to the maximum density at each moment τ to

ensure high accuracy of calculation n(τ , ζ ).

4. Conservation laws in the diode —

external circuit system

We checked the fulfillment of the laws of conservation of

total current in the course of calculations, as well as energy

in the diode — external circuit system.
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4.1. Conservation of full current

It is known that the total current should not depend

on the coordinate in a one-dimensional plasma diode.

It consists of the convection current jconv(t, z ) and the

displacement current jdis(t, z ) at every moment of time t
at the gap point z :

j(t) = jconv(t, z ) + jdis (t, z ) = jconv(t, z ) +
1

4π

∂

∂t
E(t, z ).

(23)
Fig. 8 shows the evolution of the total current at the emitter

and collector for cases when the process ends reaching

the normal branch (Fig. 8, a) and a branch with reflection

(Fig. 8, b). It can be seen that these currents coincide with

a high degree of accuracy in both processes. This indicates

that the numerical code works correctly.

4.2. The law of conservation of energy in
the diode — external circuit system

The law of conservation of energy in a diode with a flow

of charged particles is formulated as follows: the change in

the total energy Win in the interelectrode gap per unit of time

is equal to the algebraic sum of the energy flows through the

surfaces of the emitter SW (t, 0) and the collector SW (t, d),
as well as the energy released to external load Pec(t). Let’s
look at these components in more detail.

The total energy Win consists of the total energy of the

electric field E generated by charges, WE f , and the kinetic

energy of charged particles in the volume, Wkin:

Win = WE f + Wkin =

∫ d

0

1

8π
E2(x) dx +

∫ d

0

wkin(x) dx .

(24)
Charged particles inside the gap induce surface charges

on the electrodes. When the particles move, the surface

charges change over time, the electric field at the surface of

the electrodes changes, and an electric current is induced in

the external circuit. This is the displacement current jdis .

If the particles did not reach the electrodes (and did not

come from the emitter), then a current j would flow in the

external circuit, equal to jdis , energy equal to j|U | would be

released on the external load, where U — external voltage,

and energy would flow through the surfaces of the emitter

and collector − jϕE and jϕC , where ϕE and ϕC — the

work function of the emitter and the collector. Thus, energy

would be released in the external circuit in this case

Pec(t) = j|U | − jϕE + jϕC

= − j(t) (ϕE − ϕC − |U |) = − j(t) · ΦC . (25)

Here ΦC — the internal potential difference between the

electrodes. When flows of charged particles appear through

the electrode surfaces, a convection current is additionally

added to the displacement current in the external circuit,

and the current flowing in the external circuit should be

determined by the formula(23). As already noted, the total

currents at the emitter and collector at each moment of time

turn out to be the same in the one-dimensional case.

Therefore, the law of conservation of energy has the form

∂

∂t

[

∫ d

0

1

8π
E2(t, x) dx +

∫ d

0

wkin(t, x) dx

]

= SW (t, 0) + SW (t, d)−ΦC

[

jconv(t, d) +
1

4π

∂

∂t
E(t, d)

]

.

(26)

Let us consider the example (Fig. 9). Let an infinitely thin

charged plate with charge Q be located at the point Z at the

moment of time t . Let’s use E1 to denote the electric field

strength to the left of the plate, and E2 to denote the electric

field strength the right of the plate. We have a system of
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it moves in a flat diode.

equations to calculate these fields:

E2 − E1 = 4π Q,

E2 (d − Z) − E1 Z = −8C . (27)

Its solution has the form

E1 = −8C

d
− 4π Q

d − Z
d

,

E2 = −8C

d
+ 4π Q

Z
d
. (28)

The charge Q induces surface charges on the electrode

surfaces. When the plate moves, they change over time,

changing the electric fields at the electrode surfaces, and an

electric current is induced in the external circuit. Since in

this case there are no streams of charged particles on the

surface of the electrodes, the total current in the external

circuit coincides with the displacement current:

j(t) =
1

4π

∂

∂t
E(t, Z) =

Q
d
v. (29)

Let us calculate the total energy of the field in the gap

and the kinetic energy of the plate. For the energy of the

electric field, we obtain

WE f =

∫ d

0

1

8π
E2(x)dx =

1

8π

[

E2
1 Z + E2

2 (d − Z)
]

=
1

8π d

[

82
C + 16π2Q2Z(d − Z)

]

. (30)

Now let us calculate the total kinetic energy of the moving

plate. A force acts on each element of the plate on the right

side

F2 =
1

2
σ2 E2 =

1

8π
E2
2 , (31)

and on the left —

F1 =
1

2
σ1 E1 =

1

8π
E2
1 . (32)

Here σ1,2 — the density of the surface charge to the left and

right of the plate, respectively. At the same time, both of

these forces are directed along the external normal to each

of the surfaces of the plate (Fig. 9). Therefore, the total

force acting on the charged plate is equal to

F =F2 − F1=
1

8π

(

E2
2 − E2

1

)

=
4π Q2

d

(

Z − d
2
− 8C

4π Q

)

.

(33)
The equation of motion of the plate has the form

mZ̈ = F =
4π Q2

d

(

Z − d
2
− 8C

4π Q

)

. (34)

By multiplying both parts of (34) by v and integrating, for

the kinetic energy of the plate we obtain

Wkin =
m v2

2
=

m v2
0

2
− 2π Q2

d

(

d
2

+
8C

4π Q

)2

+
2π Q2

d

(

Z − d
2
− 8C

4π Q

)2

. (35)
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By the way, it can be seen from this expression that if 8C

and d are fixed, then when the plate charge exceeds a

certain value depending on 8C and d, the velocity will

vanish at some point of the gap, and the plate will turn

back, i.e. it will be locked by its own electric field.

For instance, the value of |Q| should be greater than

(m v2
0 d/(4πZ(d − Z))1/2 for 8C = 0.

The rate of change of the total energy in the gap is

∂

∂t
(WE f + Wkin) = 4πQ2

(

1

2
− Z

d

)

v

+ 4πQ2

(

Z
d
− 1

2
− 8C

4πQd

)

v = −Qv

d
8C = − j8C .

(36)
This expression coincides with the right-hand side of the

formula (26), which confirms its correctness in the case of

the absence of particle flows on the electrodes.

We calculated each of the terms of the formula (26) in

each time moment. It was convenient to use the integral

form of the law of conservation of energy:

Win(t)−Win(t0)=
∫ t

t0

dt′ [SW (t′, 0)+SW (t′, d)−ΦC j(t′, d)] .

(37)
Figure 10 shows the evolution of the left and right parts

of the formula (37) during transitions to the normal branch

(dashed curve) and to the branch with reflection (dotted
curve). It can be seen that in both cases the law of

conservation of energy is fulfilled with good accuracy.

Conclusion

The processes of instability development in the Bursian

diode have been studied for the case when a negative

potential difference is applied between the collector and the

emitter. It is shown that instability develops from the state

lying on the overlap branch in accordance with the linear

theory. At the same time, the shape of the perturbations

remains unchanged, and the growth rate is close to the

theoretical one. It is also shown that, the process can

have different directions and end in different states that

coincide with stationary solutions depending on the sign

of the amplitude of the perturbations.

The calculations were validated by checking that the total

current does not depend on the coordinate, as it should be

in a one-dimensional diode. The currents calculated during

the calculations of the processes at the emitter and collector

practically matched. An analytical expression is obtained for

the law of conservation of energy in the diode — external

circuit system. The correctness of the formula is confirmed

by a simple example of the motion of a charged layer in an

interelectrode gap. It was demonstrated by the calculations

that the law of conservation of energy is fulfilled with a

good degree of accuracy.

The conducted research will make it possible to fur-

ther study the processes of instability development in

the diode — external circuit system in the presence of

reactive elements in the external circuit. The possibility

of instability in the mode with U < 0 in the presence of

inductance was discovered earlier in Ref. [10]. In contrast

to the case when the external circuit has no reactive

elements, the reactive load leads to the appearance of

time-varying boundary conditions for the potential at the

electrodes, which complicates the research. It is important

to understand in which states the process of instability

development will end. The results obtained may be useful

in the creation of microwave radiation generators [14,15].
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