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The results of a theoretical study of the laws of degenerate four-wave mixing in a cubic photorefractive

crystal of 23 symmetry class are presented. When obtaining the coupled waves equations, it was assumed

that light beams have linear polarization, and six mixed holographic gratings are recorded in the crystal.

The theoretical model takes into account linear electro-optical, inverse piezoelectric and photoelastic effects,

as well as optical activity, natural absorption and circular dichroism of the crystal. The dependences of

the reflection coefficient on the thickness of the crystal and the azimuth of the linear polarization of light

beams are analyzed for cases when amplitude, phase and mixed gratings are recorded in the crystal by four-

wave mixing. It has been established that the highest value of the azimuth-optimized polarization intensity

of the phase-conjugated light beam is achieved by diffraction by mixed gratings. The combinations of

crystal thickness and light beam polarization azimuths at which maximum values of the reflection coefficient

are achieved are determined. It is shown that the efficiency of diffraction of light beams by mixed

holographic grating depends on the magnitude of its spatial shift relative to the recording interference

pattern.
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Introduction

A volume mixed hologram is a set of phase and

amplitude holographic gratings (hereinafter — gratings),
which are formed by modulating the refractive index and

absorption coefficient of the recording medium [1]. The

possibility of recording mixed (phase-amplitude) gratings in
a photorefractive crystal of the 4̄3m symmetry class was

experimentally demonstrated in Ref. [2]. It was found

that the appearance of phase and amplitude gratings is

attributable to a single process of formation of the electric

field of spatially separated charges in a photorefractive

crystal. It is shown in this paper that the formation of

an amplitude grating can have a significant effect on the

efficiency of light wave diffraction.

The fundamental principles of the degenerate four-wave

mixing (FWM) on photoinduced gratings recorded in

recording materials by interfering waves are systematically

described and generalized in Ref. [3]. Special attention

is paid in this paper to the description of the physics of

the process of light amplification, which takes place as a

result of energy exchange between light waves during their

self-diffraction on dynamic gratings recorded in a nonlinear

medium. Most of studies (see, for example, [4,5]) analyze

the patterns of FWM without taking into account optical

activity. The results obtained in such studies can be used

to study the features of the wavefront conjugation (WFC)

in photorefractive crystals of the 4̄3m symmetry class.

A number of papers have also been published (see, for

example, [6,7]), in which the theory of FWM is presented

taking into account optical activity and can be applied in

the case when a photorefractive crystal of 23 symmetry

class is used as a recording nonlinear medium. The above

studies when solving the coupled waves equations did not

take into account the additional modulation of the dielectric

constant of the recording medium at optical frequencies as

a result of the mixed action of photoelastic and inverse

piezoelectric effects, which are inherent in cubic crystals.

A brief overview of theoretical and experimental studies

of the photorefractive effect and properties of volume

holograms in cubic optically active piezocrystals is presented

in Ref. [8].

Currently, the features of diffraction and mixing of light

beams on dynamic gratings in photorefractive crystals are

studied by a number of research groups. The scientific

traditions laid down in the pioneering study of the phase

conjugation of light beams at FWM [9] are supported and

multiplied by Belarusian scientists. Modern papers study

the dynamics of photoinduced absorption and conditions for

recording photorefractive gratings in crystals of the sillenite

family[10]. The authors experimentally demonstrated that

there are two mechanisms for recording gratings in a

Bi12TiO20 (BTO) crystal in case of usage of nanosecond

laser pulses with an intensity of the order of 1MW/cm2.
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Spectral patterns of recording short- and long-lived gratings

in a BTO crystal were defined by non-contact diagnostics

using dynamic holography [11]. The obtained results will be

useful for application of bismuth titanate crystals in adaptive

holographic interferometry systems.

A fundamental contribution to the development of pho-

torefractive crystal optics and the wavefront conjugation

theory was made by the Tomsk Scientific Group (see, for
example, [12]). The conditions for the generation of WFC

in Bi12SiO20 (BSO) and BTO samples were determined in

Ref. [13] with the orientation of the grating vector along

the direction [1̄10] and arbitrary linear polarization of light

waves propagating in the plane (001). The possibility of

effective WFC on reflection phase gratings in a crystal

BTO:Fe, Cu in case of a diffusion mechanism of charge

separation without the application of an external electric

field is demonstrated in Ref. [14]. The authors present a

system of coupled wave equations suitable for describing

the contra-directional mixing in a crystal of arbitrary cross-

section, which take into account the mixed effect of

linear electro-optical, photoelastic and inverse piezoelectric

effects, as well as optical activity and absorption of the

recording medium. A number of interesting results have

been presented in recent publications of the scientific

group. The dependences of the signal beam amplitude

on the frequency of phase modulation of light, intensity

and spatial frequency of the interference pattern were

studied in Ref. [15] and photoelectric characteristics of a

lithium niobate crystal were determined as a result of the

studies. The possibility of creating photovoltaic tweezers

for the formation of volume transmission holograms in a

lithium niobate crystal with diffusion alloying with copper

is considered in Ref. [16].
The priority scientific results and original developments

in the field of using nonlinear photorefractive crystals

to control optical radiation, consistently presented in the

monograph [17], were obtained by St. Petersburg scientists.

The authors consider the fundamental principles of the

theory of interference and diffraction of light beams on

dynamic photorefractive gratings formed in nonlinear media.

The practical aspects of usage of photorefractive crystals to

create a component base of modern optical and information

systems (adaptive holographic interferometers, integrated

optical modulators, controlled diffraction gratings, optical

radiation filters, etc.) are considered.

Despite a sufficient number of studies of the FWM

patterns on photoinduced gratings in cubic photorefractive

crystals, the results obtained in most studies are valid for

fixed values of crystal thickness, azimuths of polarization of

light waves, orientation angles of the crystal, spatial shifts

between induced interference patterns and holographic

gratings (hereinafter — spatial shift). It is of interest to

study the more general case when the reflectance is a

function of several parameters at a time (for example, crystal

thickness, polarization azimuths, etc.) and to determine

the optimal conditions of a holographic experiment under

which the highest WFC efficiency is achieved. It is

useful to consider cases when several gratings with a

phase-amplitude structure are formed simultaneously in a

crystal. Solving such a problem will allow determining

the dependence of the intensity of the phase-conjugated

light wave on the thickness of the crystal and the azimuth

of polarization of light waves with a greater accuracy,

as well as predicting methods to increase the efficiency

of diffraction in FWM by controlling the characteristics

of a holographic system. The results of such a study

are partially presented in a short report in Ref. [18], in

which the dependence of the azimuth-optimized linear

polarization of light waves of the reflectance values at

the contra-directional FWM on the thickness of the BSO

crystal of (001)-cut was studied. These data allow

determining the thickness of the crystal at which the

highest reflectance is achieved. However, the paper did

not consider the issue of the azimuths of polarization of

the light waves entering the crystal, at which the greatest

intensity of the phase-conjugated wave is achieved, and

the diffraction contributions of the phase and amplitude

components of the mixed grating at WFC were not

analyzed.

The patterns of simultaneous diffraction and energy

exchange between linearly polarized light beams at FWM

on mixed photorefractive gratings recorded in an optically

active absorbing piezocrystal are studied in this paper.

A system of differential equations has been obtained

that can be used to find the polarization components

of light beams and analyze the patterns of WFC in a

cubic photorefractive crystal of 23 symmetry class. The

numerical solution of the obtained results was used to

find the values of the crystal thickness and the polar-

ization azimuth of the light beams at the input to the

crystal at which the intensity of the phase-conjugated

light beam at FWM will reach the highest value. We

performed a comparative analysis of the dependencies of

the maximum and minimum reflectance values on the

crystal thickness calculated for cases when phase, amplitude

and mixed gratings are formed in a cubic photorefractive

crystal.

1. Theoretical model

Figure 1 shows the scheme of mixing of linearly polarized

pump beams 1, 2 and a signal beam 3 in a photorefractive

crystal of 23 symmetry class, a detailed description of

which is given in Ref. [19]. Two transmission and four

reflection gratings [3] can be recorded in a nonlinear

medium in case of FWM according to the scheme shown

in Fig. 1, a. The light beams 1−3 determine the recording

of three primary gratings: the transmission grating 13 is

formed as a result of the mixing of beams 1 and 3, and

the reflection gratings 12 and 23 are formed by pairwise

interference of beams 1, 2 and 2, 3. Self-diffraction

of beams on primary gratings changes their amplitude-

phase characteristics and results in the appearance of
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Figure 1. Geometric scheme of the four-wave mixing in a photorefractive crystal (a); orientation of the wave vectors of holographic

gratings in the plane of incidence (b).

a phase-conjugated beam 4. The interference of this

beam with beams 1−3 leads to the recording of three

secondary gratings: the transmission grating 24 and two

reflection gratings 14, 34. The location of the wave

vectors of the primary and secondary gratings in the plane

of incidence is shown in Fig. 1, b. It is well known

(see, for example, [20]) that the efficiency of WFC is

determined by the spatial orientation of a cubic crystal,

the mutual spatial shift of photorefractive gratings and the

azimuths of polarization of light beams. These factors

are taken into account in the theoretical model by using

the following assumptions for deriving equations: the
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amplitudes and phases of recording light beams change

in case of their self-diffraction on recorded gratings; the

crystal is arbitrarily oriented in space relative to the plane

of incidence; six mixed gratings with arbitrary spatial

shifts relative to the corresponding interference patterns are

recorded in a nonlinear medium; linearly polarized light

beams have arbitrary azimuth values ψ j at the input to the

crystal.

The wave equation for optically active absorbing media

in the approximation of slowly varying amplitudes and

smallness of the Bragg angle ϕB can be represented as

follows:

dE1p

dz
=m12[(ie

iδ12κ1p2p − eiφ12σ1p2p)E2p

+(ieiδ12κ1p2s − eiφ12σ1p2s)E2s ]

+m13[(ie
iδ13κ1p3p − eiφ13σ1p3p)E3p

+(ieiδ13κ1p3s − eiφ13σ1p3s)E3s ]

+m14[(ie
iδ14κ1p4p − eiφ14σ1p4p)E4p

+(ieiδ14κ1p4s − eiφ14σ1p4s E4s ]

+(ρ1 + iχ1)E1s − α1E1p,

dE1s

dz
=m12[(ie

iδ12κ1s2p − eiφ12σ1s2p)E2p

+(ieiδ12κ1s2s − eiφ12σ1s2s)E2s ]

+m13[(ie
iδ13κ1s3p − eiφ13σ1s3p)E3p

+(ieiδ13κ1s3s − eiφ13σ1s3s)E3s ]

+m14[(ie
iδ14κ1s4p − eiφ14σ1s4p)E4p

+(ieiδ14κ1s4s − eiφ14σ1s4s)E4s ]

−(ρ1 + iχ1)E1p − α1E1s ,

dE2p

dz
=m∗

12[(ie
−iδ12κ2p1p − e−iφ12σ2p1p)E1p

+(ie−iδ12κ2p1s − e−iφ12σ2p1s)E1s ]

+m23[(ie
iδ23κ2p3p − eiφ23σ2p3p)E3p

+(ieiδ23κ2p3s − eiφ23σ2p3s )E3s ]

+m24[(ie
iδ24κ2p4p − eiφ24σ2p4p)E4p

+(ieiδ24κ2p4s − eiφ24σ2p4s )E4s ]

+(ρ2 + iχ2)E2s − α2E2p,

dE2s

dz
=m∗

12[(ie
−iδ12κ2s1p − e−iφ12σ2s1p)E1p

+(ie−iδ12κ2s1s − e−iφ12σ2s1s)E1s ]

+m23[(ie
iδ23κ2s3p − eiφ23σ2s3p)E3p

+(ieiδ23κ2s3s − eiφ23σ2s3s)E3s ]

+m24[(ie
iδ24κ2s4p − eiφ24σ2s4p)E4p

+(ieiδ24κ2s4s − eiφ24σ2s4s)E4s ]

−(ρ2 + iχ2)E2p − α2E2s ,

dE3p

dz
=m∗

13[(ie
−iδ13κ3p1p − e−iφ13σ3p1p)E1p

+(ie−iδ13κ3p1s − e−iφ13σ3p1s )E1s ]

+m∗

23[(ie
−iδ23κ3p2p − e−iφ23σ3p2p)E2p

+(ie−iδ23κ3p2s − e−iφ23σ3p2s )E2s ]

+m34[(ie
iδ34κ3p4p − eiφ34σ3p4p)E4p

+(ieiδ34κ3p4s − eiφ34σ3p4s)E4s ]

+(ρ3 + iχ3)E3s − α3E3p,

dE3s

dz
=m∗

13[(ie
−iδ13κ3s1p − e−iφ13σ3s1p)E1p

+(ie−iδ13κ3s1s − e−iφ13σ3s1s)E1s ]

+m∗

23[(ie
−iδ23κ3s2p − e−iφ23σ3s2p)E2p

+(ie−iδ23κ3s2s − e−iφ23σ3s2s)E2s ]

+m34[(ie
iδ34κ3s4p − eiφ34σ3s4p)E4p

+(ieiδ34κ3s4s − eiφ34σ3s4s)E4s ]

−(ρ3 + iχ3)E3p − α3E3s

dE4p

dz
=m∗

14[(ie
−iδ14κ4p1p − e−iφ14σ4p1p)E1p

+(ie−iδ14κ4p1s − e−iφ14σ4p1s )E1s ]

+m∗

24[(ie
−iδ24κ4p2p − e−iφ24σ4p2p)E2p

+(ie−iδ24κ4p2s − e−iφ24σ4p2s )E2s ]

+m∗

34[(ie
−iδ34κ4p3p − e−iφ34σ4p3p)E3p

+(ie−iδ34κ4p3s − e−iφ34σ4p3s )E3s ]

+(ρ4 + iχ4)E4s − α4E4p,
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dE4s

dz
=m∗

14[(ie
−iδ14κ4s1p − e−iφ14σ4s1p)E1p

+(ie−iδ14κ4s1s − e−iφ14σ4s1s)E1s ]

+m∗

24[(ie
−iδ24κ4s2p − e−iφ24σ4s2p)E2p

+(ie−iδ24κ4s2s − e−iφ24σ4s2s)E2s ]

+m∗

34[(ie
−iδ34κ4s3p − e−iφ34σ4s3p)E3p

+(ie−iδ34κ4s3s − e−iφ34σ4s3s)E3s ]

−(ρ4 + iχ4)E4p − α4E4s .

The following symbols and notations are used

here: κhbut = (κ0(ehb1b̂hueut))/ cosϕh, σhbut =
= (σ0(ehb1σ̂hueut))/ cosϕh, ρh = ρ/ cosϕh, χh = χ/ cosϕh,

αh = α/ cosϕh, where κ0 = πn3
0/(2λ) — the coupling

constant of the phase component of the grating,

σ0 − π/(nc) — coupling constant of the amplitude

component of the grating, δb̂hu — change in the inverse

dielectric constant of the crystal, 1σ̂hu — change in the

conductivity tensor of the crystal, ϕh — Bragg angle in the

incidence plane for the beam h, δhu and ψhu — spatial shifts

of the phase and amplitude components of the recorded

grating hu relative to the recording interference pattern hu,
n0 — refractive index of an undisturbed crystal, ρ —
specific rotation, α — linear absorption coefficient, χ —
circular dichroism parameter, λ — wavelength, c — speed

of light in vacuum, i — imaginary unit. When considering

the indices h and u, it should be borne in mind that if they

do not stand side by side (for example, κhbut), they should

be attributed to the designation of the light beam: 1, 2,

3 or 4. If the indexes h and u are located side by side

(for example, 1b̂hu), then the index hu corresponds to the

grid number, which can have one of the following values:

12, 13, 14, 23, 24, 34. The indices b and t denote p- or
s -components of the beames.

The variables Ehp and Ehs are the polarization com-

ponents of the light beam h in the coupled wave

equations, which are equal to the projections of the

electric field intensity vector Eh on the axis coincid-

ing in the direction with the unit vectors ehp and ehs .

The variable mhu indicates the modulation depth of the

recording interference pattern hu, which is found us-

ing the formula: mhu = (Ehs Eus + EhpEup cos(ehpeup))/I0,
where (ehpeup) — the scalar product of the unit

vectors ehp and eup, I0 — the resulting intensity

of the light field inside the crystal (I0 = E2
1p + E2

1s +

+ E2
2p + E2

2s + E2
3p + E2

3s + E2
4p + E2

4s). The asterisk

above the variable mhu means complex conjugation.

The physical meaning of the terms (i exp(iδhu)κhbut −
− exp(iφhu)σhbut)Eut is to specify the relationship between

the components Ehb and Eut of light beams h and u when

they are diffracted on the phase and amplitude components

of the mixed grating hu respectively. Tensor convolutions

(ehb1b̂hueut) and (ehb1σhueut) in variables κhbut and σhbut

correspond to the values of diffraction contributions of the

phase and amplitude components of the mixed grating hu
during the formation of the phase-conjugated beam. The

products ρhEhp and ρhEhs are used to find the increments of

the variables Ehp and Ehs , which occurs due to rotation

of the polarization plane of the light beam h when it

propagates in optically active crystal. The terms iχhEhp

and iχhEhs appear in the coupled wave equations due to

the circular dichroism inherent in photorefractive crystals of

23 symmetry class [21], manifested in the difference of the

absorption coefficients for components Ehp and Ehs . The

products αhEhp and αhEhs are used to find changes in the

components Ehp and Ehs with a decrease of the intensity of

the light beam h under the effect of linear absorption of the

crystal.

The change of the conductivity tensor 1σ̂hu of the crystal

in a linear contrast approximation is determined from the

expression: 1σ̂hu = mhuσhuδk f , where σhu — conductivity

coefficients, δk f — a unit symmetric tensor of the second

rank. The components of the inverse dielectric constant

tensor 1b̂hu of the crystal will be found based on the well-

known expressions [22]:

b11 = p1n1R1 + p2n2R2 + p3n3R3,

b22 = p1n2R2 + p2n3R3 + p3n1R1,

b33 = p1n3R3 + p2n1R1 + p3n2R2,

b12 = b21 = p4(n1R2 + n2R1) + r41n3,

b13 = b31 = p4(n1R3 + n3R1) + r41n2,

b23 = b32 = p4(n2R3 + n3R2) + r41n1,

R1 = γ11Q1 + γ12Q2 + γ13Q3,

R2 = γ21Q1 + γ22Q2 + γ23Q3,

R3 = γ31Q1 + γ32Q2 + γ33Q3,

γ11 = (Ŵ22Ŵ33 − Ŵ223)/D,

γ22 = (Ŵ11Ŵ33 − Ŵ213)/D,

γ33 = (Ŵ11Ŵ22 − Ŵ212)/D,

γ12 = γ21 = (Ŵ13Ŵ23 − Ŵ12Ŵ33)/D,

γ13 = γ31 = (Ŵ12Ŵ23 − Ŵ13Ŵ22)/D,

γ23 = γ32 = (Ŵ12Ŵ13 − Ŵ11Ŵ23)/D,

D = Ŵ11(Ŵ22Ŵ33 − Ŵ223) − Ŵ22Ŵ
2
13 − Ŵ33Ŵ

2
12 + 2Ŵ12Ŵ13Ŵ23

Ŵ11 = c1n2
1 + c3(n

2
2 + n2

3),

Ŵ22 = c1n2
2 + c3(n

2
1 + n2

3),

Ŵ33 = c1n2
3 + c3(n

2
1 + n2

2),

Ŵ12 = Ŵ21 = n1n2(c2 + c3),

Ŵ13 = Ŵ31 = n1n3(c2 + c3),

Ŵ23 = Ŵ32 = n2n3(c2 + c3),

Q1 = 2e14n2n3, Q2 = 2e14n1n3, Q3 = 2e14n1n2.
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The following designations are used for nonzero compo-

nents of linear electro-optical tensors (r̂S), photoelastic (p̂E)
and inverse piezoelectric (ê) effects, as well as components

of the elasticity tensor (ĉE):

rS
123 = rS

132 = rS
213 = rS

231 = rS
312 = rS

321 ≡ r41,

e123 = e132 = e213 = e231 = e312 = e321 ≡ e14,

cE
11 = cE

22 = cE
33 ≡ c1,

cE
12 = cE

13 = cE
23 = cE

21 = cE
31 = cE

32 ≡ c2,

cE
44 = cE

55 = cE
66 ≡ c3,

pE
11 = pE

22 = pE
33 ≡ p1,

pE
12 = pE

23 = pE
31 ≡ p2,

pE
13 = pE

21 = pE
32 ≡ p3,

pE
44 = pE

55 = pE
66 ≡ p4.

The index S for the linear electro-optical effect tensor r̂S

means that the component r41 of the linear electro-optical

effect tensor was measured for a clamped crystal; the

components of the elasticity tensors ĉE and the photoelastic

effect p̂E were measured at a constant electric field. The

parameters n1, n2, n3 are the direction cosines of the wave

vector Khu of the grating hu in the crystallographic coordi-

nate system. In the above expressions, the tensor γ̂ is the

inverse of the tensor Ŵ̂ with components: ŴE
ik = cE

i jkln jnl ,

where cE
i jkl — components of the elasticity tensor ĉE .

A distinctive feature of the above coupled wave equations

from those presented earlier (see, for example, [7,19]) is

that they have a fairly large generality, since the case was

considered when they were obtained when six gratings with

a phase-amplitude structure are simultaneously recorded in a

dynamic mode during diffraction and mixing of light beams

in an optically active piezoelectric absorbing medium. A

wider range of issues related to the reconstruction and

amplification of the wavefront scattered by an object, as well

as the generation of optical radiation by lasers on dynamic

gratings, can be considered using the presented theoretical

model.

Let us consider the special case when the unit vectors of

the orthonormal basis (e1, e2, e3) are oriented along crystal-

lographic axes of the form 〈100〉 (i.e. θ = 0◦): e1 ‖ [100],
e2 ‖ [010], e3 ‖ [001]. We will take into account the

diffraction contributions of only secondary gratings when

determining the efficiency of the WFC. We will assume in

our calculations that the electric field strength of the gratings

Esc is 2 kV/cm, and the coupling coefficient characterizing

the mixing of beams on amplitude gratings is 20m−1.

Let us use the material parameters of the BSO crystal

borrowed from Ref. [23–25]: refractive index of an undis-

turbed crystal n0 = 2.54 at λ = 633 · 10−9 m [23]; electro-
optical coefficient r41 = −5 · 10−12 m/V [23]; elasticity

coefficients c1 = 12.96 · 1010 N/m2, c2 = 2.99 · 1010 N/m2,

c3 = 2.45 · 1010 N/m2 [24]; photoelasticity coefficients

p1 = −0.16, p2 = −0.13, p3 = −0.12, p3 = −0.015 [25];

piezoelectric coefficient e14 = 1.12C/m2 [24]. The values

of the specific rotation, absorption and circular dichroism of

the crystal are assumed, respectively, to be ρ = 384 rad/m,

χ = 1.5m−1 and α = 15m−1. Let us consider the intensity

of the pump beams to be the same, besides their ratio to

the intensity of the signal beam is 1:20. The angles ϕ j in

the crystal are chosen to be 5◦.

The azimuths of beams 1 and 3 at the input to the

crystal (z = 0) are assumed to be equal to each other

(ψ1 = ψ3 = ψ) in calculations, and the input azimuth of the

polarization of beam 2 for z = d is found in accordance

with the condition ψ2 = −ψ + ρd . The vectors E1 and E2 of

the pump beams propagating inside the crystal (0 < z ≤ d)
remain parallel to each other if this condition is met. This

choice of input azimuths of polarizations is attributable to

the fact that the initial modulation depth of the interference

patterns induced in the crystal will be optimal in this

case [26]. We assume that the phase gratings recorded

in the photorefractive crystal and the phase components

of the mixed gratings are spatially displaced relative to

the corresponding interference patterns by a quarter of the

period (δhu = π/2). The case when the spatial shift δ34 is

−π/2 will be considered separately. All amplitude gratings

recorded in a nonlinear medium, as well as the amplitude

components of mixed gratings, are considered unbiased, as

a result of which the parameter φhu is assumed to be zero.

The well-known [27] shooting method was used

to numerically integrate the coupled wave equations.

The initial conditions E j p(z ) and E js(z ) for the two-

point boundary value problem were chosen as follows:

E1p(0) = E1 cosψ1, E1s(0) = E1 sinψ1, E2p(d) = E2 cosψ2,

E2s(d) = E2 sinψ2, E3p(0) = E3 cosψ3, E3s(0) = E3 sinψ3,

E4p(d) = 0, E4s(d) = 0. The polarization components E4p

and E4s were found at z = 0 as a result of solving the

coupled wave equations. The efficiency of the WFC was

evaluated using the reflectance R which is determined by

the ratio of the intensity of the phase-conjugated beam

at the exit from the crystal to the initial intensity of the

signal beam [23]: I4(0)/I3(0), where I3(0) and I4(0) — the

intensities of the signal and phase-conjugated beams.

2. Results and discussion

Let’s analyze the dependency graphs presented in Fig. 2

Rmax(d) and Rmin(d), which represent the envelopes of

the maximum Rmax (curves 1 and 2) and minimum Rmin

(curves 3 and 4) reflectance values calculated for the inter-

val 0 < d ≤ 20mm. The curves 2 and 3 are obtained for

the case when the secondary gratings recorded in the crystal

at FWM have only a phase structure, and the curves 1

and 4 are phase-amplitude. If the secondary gratings are

amplitude, then the reflectance is practically independent of

the polarization azimuth ψ and the graphs Rmax(d), Rmin(d)
degenerate into a dependence R(d)(curve 5). The method

of finding the values of Rmax and Rmin at a fixed crystal

thickness consists in using the following procedure. We
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iterate over the values of the polarization azimuth ψ in

increments of 2◦ in the range from 0 to 180◦ for each d,
we find p- and s -components of light beams, numerically

solve the system of coupled wave equations and determine

the reflectances R. Next, we select the maximum Rmax and

minimum Rmin values from the resulting series of values R.
The parameter Rmax is the azimuth-optimized value of the

reflectance R. The value Rmin will be useful in the future

for analyzing the diffraction contributions of the phase and

amplitude components of the gratings when studying the

efficiency of the WFC. The term
”
diffraction contribution“

will be understood as the percentage ratio of the intensity

of the diffracted beam formed by one of the components

(phase or amplitude) of the mixed grating to the total

intensity of the phase-conjugated beam.

Let us first consider the hypothetical case of recording

only amplitude gratings in a crystal. This situation can

be realized, for example, when recording a transmission

grating with a wave vector parallel to the crystallographic

axis [100]. The amplitude of the refractive index modulation

will be approximately zero due to the anisotropy of the

linear electro-optical effect, and the transmission grating

can be recorded by modulating the absorption coefficient

of the crystal. The intensity of the phase-conjugated beam

increases monotonously with the increase of the crystal

thickness and at d = 20mm the gain is R = 3.2 · 10−3 in

the case of recording of amplitude gratings 14, 24 and 34

as can be seen from Fig. 2. It can be argued that the

diffraction contribution of the amplitude component of the

grating in thin BSO crystals will also be quite small due to

the relatively small values of R. However, the optical activity
results in a decrease of the intensity of the phase-conjugated

beam formed during beam diffraction on the phase grating
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at some values of d, and in these cases the efficiency of the

WFC will be determined by the diffraction contribution of

the amplitude grating.

The graph of dependence Rmax(d) has a periodic char-

acter (curve 2 in Fig. 2) when phase gratings are formed

in a crystal, which is attributable to the effect of optical

activity. The local maxima of the reflectance, which

are indicated in Fig. 2 by the points B1 and B2, are

achieved at such values d, for which the angle of rotation

of the polarization plane of the light beams propagating

in the crystal is 90◦ and 270◦ , which corresponds quite

accurately to the expression d = wπ/(2ρ) (w = 1, 3):
B1 — d = 4.1mm, B2 — d = 12.3mm. The values

of Rmax in local maxima decrease with the increase of

the crystal thickness: Rmax = 16.1 · 10−3 (point B1) and

Rmax = 14.5 · 10−3 (point B2), which can be explained by

the effect of crystal absorption and destructive interference

of diffracted waves formed during diffraction on phase

gratings. The comparison of the curves 2 and 5 can

demonstrate that the azimuth-optimized polarization value

of the reflectance Rmax obtained for phase gratings for any

value d will exceed the reflectance R obtained for amplitude

gratings.

It can be seen when considering the dependence graph

Rmin(d) (curve 3 in Fig. 2) that the maximum gain values

at points C1 (Rmin = 10.1 · 10−3), C2 (Rmin = 3.7 · 10−3)
decrease with the increase of d . The local maxima of the

dependence graph Rmin(d) correspond to smaller thickness

values than in the dependence graph Rmax(d): C1 —
d = 3.7mm, C2 — d = 12mm. The comparison of the

curves 3 and 5 can demonstrate that the gain achieved

during recording of phase gratings in the crystal will be

greater than in case of recording of the amplitude gratings

in the intervals 0 ≤ d ≤ 7.1mm and 10 < d ≤ 13.7mm for

any value of the polarization azimuth ψ. The diffraction

on amplitude gratings can achieve a higher intensity of

the phase-conjugated beam than on phase gratings for the

remaining thickness values in the range 0 < d ≤ 20mm.

The diffraction efficiency will have the highest value

if mixed gratings are recorded in the crystal, since the

maximum possible value of Rmax is achieved for gratings

with a phase-amplitude structure for any fixed value

of d (Fig. 2). The fundamental difference between the

dependencies Rmax(d) obtained for mixed (curve 1) and

phase gratings (curve 2) is that the gain values in the local

maxima of the graph Rmax(d) calculated for the mixed

grating, increase with increasing crystal thickness: point

A1 — Rmax = 18.6 · 10−3, point A2 — Rmax = 21.7 · 10−3.

This can be explained by the fact that when choosing the

optimal polarization azimuth ψ , the decrease of Rmax char-

acteristic of phase gratings with the increase of thickness

is compensated by adding the diffraction contribution of

the amplitude components of the mixed gratings, which

increases with the increase of d . Local maxima on the

curve 1 are slightly offset along the abscissa axis towards

the increase of the values of d relative to the points B1

and B2 on the curve 2: the first maximum (point A1) of
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the curve 1 is reached at d = 4.3mm and corresponds to

the angle of rotation ρd = 95◦, and the second maximum

(point A2) is located at d = 12.6mm, for which the angle

of rotation ρd is 277◦ . This is attributable to the fact that

the intensity of the phase-conjugated beam in the case of

recording mixed gratings is maintained by the diffraction

contribution of their amplitude components with an increase

of d after the points B1 and B2 corresponding to the local

maxima Rmax for phase gratings. The local maxima A1 and

A2 are shifted relative to the points B1 and B2 only by a

few millimeters since the intensities of the phase-conjugated

beams generated by phase and amplitude gratings differ

almost tenfold with such thicknesses. Thus, when mixed

gratings are formed in a crystal, the conditions for achieving

the highest diffraction efficiency change relative to the case

of recording phase gratings: the values of the reflectance R
optimized by azimuth of polarization increase and the values

of the crystal thickness at which local maxima of the graph

of dependence Rmax(d) are reached change.

The local maxima of the graph of dependence Rmin(d)
calculated for mixed gratings (curve 4) are reached

at points D1 (d = 3.6mm), D2 (d = 8.2mm), D3

(d = 12mm) and D4 (d = 16.4mm). The points D1

and D3 correspond to such values d that lie in the

vicinity of d = wπ/(2ρ) (w = 1, 3), and the thickness

values at which the local maxima D2 and D4 occur, meet

the following condition fairly accurately: d = wπ/(2ρ)
(w = 2, 4). The highest value Rmin is reached at the

point D1 (Rmin = 9.1 · 10−3), and it has the maximum pos-

sible value in the range of 0 < d ≤ 20mm, because of the

destructive effect of optical activity on the intensity of the

phase-conjugated beam formed at diffraction on the phase

components of the gratings. The remaining local maxima

of the graph of dependence Rmin(d) correspond to the

following values of the reflectance: D2 — Rmin = 0.9 · 10−3,

D3 — Rmin = 1.6 · 10−3 and D4 — Rmin = 3.1 · 10−3 .

The increase of the values of Rmin at the points D2, D3

and D4 is associated with an increase of the diffraction

contribution of the amplitude components of the gratings.

Local maxima D1, D2, D3 and D4 are achieved when the

electric field strength vectors of beams 1 and 3 are oriented

relative to the plane of incidence at an angle ψ = 67◦ .

Obviously, the azimuth values ψ2 for the points D1, D2,

D3 and D4 will significantly differ from each other due

to the high specific rotation of the crystal because of the

fulfillment of equality: ψ2 = −ψ + ρd . It should be noted

that the results obtained cannot be used to find optimal

azimuth values at which the highest diffraction efficiency is

achieved in a photorefractive crystal with 4̄3m symmetry

class, since optical activity results in the appearance of

a complex of polarization phenomena during the mixing

of light beams on gratings in crystals of 23 symmetry

class and changes of optimal mixing conditions relative to

semiconductor crystals [26].
Let us consider the physical mechanism of diffraction of

light beams on phase gratings at FWM in a crystal of 23

symmetry class of (001)-cut if the condition d = wπ/(2ρ)

(w = 1, 2, . . .) is fulfilled. For such a holographic configu-

ration the largest diffraction contribution in the formation of

an phase-conjugated beam among the phase components of

the gratings 14, 24 and 34 is made. For such a holographic

configuration by a reflection grating 14, whose wave vector

is directed along the crystallographic direction [001]. It

follows from the solution of the equations of the Fresnel’s

normals that the when recording such a grating BSO crystal

becomes optically anisotropic and main axes of the section

of the optical indicatrix of BSO crystal correspond to the

refractive indices n1,2 = n0 ± 1n, where 1n = n3
0r41Esc/2,

where n1,2 — refractive indices of its normal waves [26].
The diffracted waves occurring in the crystal are polarized

in mutually perpendicular directions and shifted in phase

by π. The phase-conjugated beam will amplify in case

of polarization along one of the main axes of the section

due to coherent addition with a diffracted wave, and it

will weak in case of polarization along the second main

axis [26]. The rotation angle of the polarization plane of

the light beams is 90◦ (w = 1) and 270◦ (w = 3) when

the condition d = wπ/(2ρ) (w = 1, 3) is met. This means

that at such values d, in the case of an optimal choice of

azimuth ψ, the intensity vectors of the electric fields of the

beams will be oriented closer to the main axis along which

the phase-conjugated beam will be amplified, resulting in

the highest reflectances. This is the main reason for the

location of all local maxima in Fig. 2 in the vicinity of

d = π/(2ρ) (4.1mm) and d = 3π/(2ρ) (12.3mm) with the

exception of points D2, D4 for which the existence of a

local maximum is attributable to the diffraction contribution

of the amplitude component of the grating. The rotation

angles of the polarization planes of the light beams are

180◦ (w = 2) and 360◦ at w = 2, 4 (w = 4). This means

that the intensity vectors of the electric fields of the beams

propagating in the crystal for any azimuth value ψ will

be oriented half way closer to the main axis, along which

the coherent addition of the phase-conjugated beam with

the diffracted wave occurs, and half way — closer to the

main axis, along which the phase-conjugated beam and the

diffracted wave is subtracted. The diffraction efficiency on

the phase component of the grating is close to zero as a

result. This explains that the diffraction contribution of the

phase components of the mixed gratings is relatively small

at d = π/ρ (8.2mm) and d = 2π/ρ (16.4mm).

The comparison of the dependencies Rmin(d) (curves 3

and 4) and R(d) (curve 5) demonstrates that the highest

values of Rmin are achieved in the intervals 0 ≤ d ≤ 7.1mm

and 10mm < d ≤ 13.7mm under the condition of for-

mation of phase gratings in the crystal. The gain of

the amplitude gratings in intervals 7.1mm< d ≤ 10mm,

13.7mm< d ≤ 16.2mm and 17mm< d ≤ 20mm exceeds

the values Rmin corresponding to phase and mixed gratings.

The diffraction contribution of the phase components of the

gratings is approximately zero at d = π/(2ρ) and Rmin for

mixed gratings matches the gain of the amplitude gratings

(Rmin = R). The highest values of reflectance are achieved
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in the range of 16.2mm< d ≤ 17mm in case of recording

of mixed gratings in a BSO crystal.

Fig. 2 shows that the values of the reflectance can vary

quite broadly in the case of recording phase or mixed

gratings in a BSO crystal. For this reason let us consider the

question of finding the optimal values of the polarization

azimuths ψ, at which the mode of maximum efficiency

of the WFC is realized. Figures 3 and 4 show graphs

of dependencies R(d, ψ) calculated for phase (Fig. 3) and

mixed gratings (Fig. 4), which are wavelike surfaces with

pronounced maxima. The highest values of the gain for

the phase gratings marked with points B1 and B2 in the

graph Rmax(d) (Fig. 2) are achieved at ψ = 135◦ . Such an

azimuth of polarization corresponds to the orientation of

the intensity vectors of the pump and signal light beams

at the input to the crystal along the 〈110〉 crystallographic

direction. The local maxima of the dependence Rmin(d)
marked on the surface R(d, ψ) by the points C1 and C2

are located at ψ = 40◦ . The position of the local maxima

of the surface R(d, ψ) corresponding to the points A1 and

A2 changes to 27◦ at the coordinate ψ in case of recording

mixed gratings in a crystal and is equal to 162◦ . A similar

change of the values of ψ also occurs for the local maxima

of the dependence Rmin(d) shown in Fig. 2, since the
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points D1, D2, D3 and D4 approximately correspond to

ψ = 67◦ (Fig. 4, b) Therefore, the difference of the values of
the polarization azimuths at which the local maxima of the

dependencies Rmax(d) and Rmin(d) obtained for phase and

mixed gratings are reached is 27◦ . This may be associated

with the peculiarities of diffraction of light beams on phase

and amplitude gratings in an optically active medium. The

phase gratings formed in the BSO crystal of (001)-cut are
optically anisotropic, and the diffraction efficiency depends

on the initial values of the polarization azimuths of the

entering light beams (see, for example, [28]), and the

amplitude gratings are optically isotropic, and the rotation

of the polarization plane of the light beams does not

significantly affect the reflectance. Simultaneous diffraction

of light beams on optically isotropic and anisotropic gratings

in case of FWM occurs on mixed holograms, which results

in a transformation of the surface R(ψ, d) and a change of

the optimal values of the polarization azimuth ψ.

The mutual spatial shift of the photorefractive gratings

recorded in the crystal is a key factor determining the oc-

currence of
”
positive feedback“ and the WFC efficiency [3].

Let us study the patterns of the effect of spatial shift on

the dependence of the reflectance on the thickness d and
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the azimuth of polarization ψ by considering a special case

when the parameter δ34 changes from π/2 to −π/2. A

similar problem for phase gratings in a BSO crystal was

considered in sufficient detail in Ref. [18]. The comparison

of Fig. 2 and 5 demonstrates that the change of the

parameter δ34 to π for any thickness value in the range

of 0 < d ≤ 20mm results in an almost halving of the values

Rmax for phase and mixed gratings. For example, the

values of Rmax achieved at δ34 = π/2 at points A1, A2

decrease by 9.7 · 10−3 for mixed gratings and they are

equal to Rmax = 8.8 · 10−3 (point E1) and Rmax = 12 · 10−3

(point E2), accordingly, for δ34 = −π/2. The difference

between the values of Rmax for phase gratings at local

maxima B1, B2 in Fig. 2 and F1, F2 in Fig. 5 is approximately

equal to 7.9 · 10−3 . A decrease of the azimuth-optimized

polarization values of the reflectance in case of a change

of the sign of the spatial shift δ34 indicates a change of the

beam diffraction mode on the secondary gratings, which

results in a subtraction of the diffraction contributions of the

gratings 14, 24 and 34.

A decrease of the diffraction contribution of the phase

components of the gratings when the sign of the spatial

shift δ34 is reversed also results in a change of the reflectance

in the local maxima of the dependence Rmin(d) (Fig. 2
and 5). The value of Rmin decreases more than three

times to 2.9 · 10−3 (point H1) with d = π/(2ρ), and the

intensity of the phase-conjugated beam is almost zero with

d = 3π/(2ρ). However, the values of Rmin at points D2,

H2 and D4, H4 are approximately equal in the vicinity

of d = wπ/(2ρ) (w = 2, 4). The comparison of the

curves 3−5 in Fig. 5 demonstrates that the largest values

of Rmin are achieved in the range of 0 ≤ d ≤ 6.4mm when
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recording phase gratings, and for the remaining thickness

values — amplitude gratings.

It follows from the comparison of Fig. 3, 4 with

Fig. 6, 7 that the local maxima of the dependence graphs

Rmax(d, ψ) are shifted by the values of the azimuth of

polarization by approximately 90◦ when the sign of the

phase shift δ34 is reversed. When recording of phase gratings

at δ34 = −π/2, the highest values of the reflectance are

achieved at azimuth 45◦ (points F1 and F2 in Fig. 6, b),
which differs by 1 from the value ψ corresponding to

the points B1 and B2 in Fig. 3, b. A similar situation is

observed when recording mixed gratings: the highest values

of the reflectance achieved at δ34 = π/2 for the polarization

azimuth ψ = 162◦ (points A1 and A2 in Fig. 4, b), at

δ34 = −π/2 correspond to ψ = 72◦ (points E1 and E2 in

Fig. 7, b). The polarization azimuths corresponding to the

local maxima of the dependence Rmin(d) also change by

90◦ for both phase and mixed gratings.

Conclusion

A system of coupled wave equations is obtained that

is suitable for finding the vector amplitudes of linearly
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polarized light beams with an contra-directional degenerate

FWM in a cubic photorefractive crystal. The consideration

of the phase-amplitude structure of holographic gratings

recorded in a nonlinear medium is a distinctive feature of

the obtained mathematical model distinguishing it from the

previously known models. When deriving the equations, it

was assumed that three primary mixed gratings are formed

in the crystal as a result of the interaction of the pump

and signal beams, and a secondary recording of three

mixed gratings takes place when these beams interfere with

the phase-conjugated beam. The conditions for achieving

the highest diffraction efficiency in FWM were studied by

assuming in the theoretical model that the spatial shifts of

the mixed gratings relative to the corresponding interference

patterns have arbitrary values.

The efficiency of diffraction at FWM in a cubic photore-

fractive crystal depends on the structure of the recorded

dynamic gratings and can be increased by an appropriate

choice of crystal thickness and the input azimuth of

polarization of light beams. The reflectance achieved for

mixed gratings will be greater than for phase gratings in the

case of an optimal choice of the polarization azimuth for any

thickness value in the range 0 < d ≤ 20mm. The diffraction

contributions of the phase and amplitude components of

the mixed grating can be subtracted for the remaining

values of the polarization azimuth, and the reflectance

achieved for it will be less than the reflectance for the

phase grating. If the crystal thickness is in the vicinity of

d = wπ/ρ (w = 1, 3, . . .), then the diffraction contribution

of the phase component of the grating is practically zero

with any azimuth of polarization and the intensity of the

phase-conjugated beam is determined by the diffraction

efficiency on its amplitude component. The values of the

crystal thickness, which correspond to the local maxima

of the dependence of the azimuth-optimized polarization

values of the reflectance, for mixed and phase gratings are

approximately equal to each other. At the same time, the

values of the polarization azimuth, for which the maximum

values of the phase-conjugated beam intensity for mixed

and phase gratings are achieved, differ by 27◦, which is

attributable to the diffraction contribution of the amplitude

component of the mixed grating.

The values of the crystal thickness and the input azimuth

of the polarization of light beams, at which the highest

values of the reflectance Rmax are achieved, depend on

the magnitude of the spatial shift of the phase and mixed

gratings relative to the interference pattern induced in the

crystal. It is shown using the example of the reflection

grating 34 that a change of the spatial shift from π/2 to

−π/2 can result in an almost twofold decrease of the values

in the local maxima of the dependence of the reflectance

values optimized by azimuth of polarization of light beams.

At the same time, the values of the polarization azimuths

at which the maximum intensity of the phase-conjugated

beam is achieved, change by 90◦ for both mixed and phase

gratings.

The results obtained can be used for the selection of

conditions for a holographic experiment (crystal thickness,
polarization of light beams, orientation of the wave vectors

of holographic gratings relative to the crystallographic axes

of the recording medium) to increase the efficiency of

diffraction in devices using photorefractive crystals.
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