03

Осаждение и испарение облака бидисперсных капель в нагретом воздухе

© В.А. Архипов, С.А. Басалаев, Н.Н. Золоторёв, К.Г. Перфильева, В.И. Романдин

Национальный исследовательский Томский государственный университет, Томск, Россия E-mail: k.g.perfiljeva@yandex.ru

Поступило в Редакцию 12 июля 2024 г. В окончательной редакции 4 октября 2024 г. Принято к публикации 4 октября 2024 г.

Представлены результаты экспериментального исследования динамики осаждения и испарения облака бидисперсных капель в нагретом воздухе. Получена качественная картина осаждения облака. Установлены характеристики его движения и испарения в диапазоне температур 473–633 К. Проведено сравнение с характеристиками осаждения и испарения одиночных капель, размеры которых соответствуют дисперсности входящих в облако капель.

Ключевые слова: облако бидисперсных капель, гравитационное осаждение, нагретый воздух, испарение капель, экспериментальное исследование.

DOI: 10.61011/PJTF.2025.03.59817.20057

Изучение характеристик осаждения и испарения облака капель с контролируемыми значениями их размеров и объемной концентрации представляет интерес при проведении экспериментальных исследований взаимодействия капель при столкновениях [1], испарения в высокотемпературной среде [2] и других физических процессов, характеризующих движение газокапельных сред. Большинство публикаций по характеристикам движения и испарения относится к одиночным каплям, потоку последовательно движущихся капель или облаку полидисперсных капель, образующихся при распыливании жидкости форсунками [3-5]. Результаты экспериментального исследования закономерностей движения и испарения бидисперсного облака капель позволяют детально изучить механизмы отдельных "элементарных" процессов, оценить адекватность используемых для их описания моделей и в конечном счете повысить достоверность создаваемых физико-математических моделей и компьютерных программ расчета двухфазных течений с деформируемыми частицами дисперсной фазы [1].

В настоящей работе представлены методика и результаты экспериментального исследования закономерностей осаждения и испарения облака бидисперсных капель при свободном падении в нагретом воздухе.

Для экспериментального исследования использовалась установка, включающая устройство для получения облака бидисперсных капель, нагреватель и аппаратуру для визуализации процесса осаждения и измерения массы капель. Устройство для получения капель [6] состоит из двух цилиндрических камер с рабочей жидкостью, разделенных перегородкой. Устройство позволяет формировать два горизонтальных слоя капель с помощью двух наборов капилляров (медицинские инъекционные иглы фирмы Vogt Medical) разного диаметра, равномерно размещенных на нижних крышках камер. В ходе эксперимента медленно повышали избыточное давление в каждой из камер до значений Δp_1 , Δp_2 , обеспечивающих заданное время формирования капель при течении жидкости через капилляры, и обнуляли давление в камерах при образовании устойчивых капель на концах капилляров. Для одновременного отрыва капель каждого слоя от капилляров в камерах создавали импульсы давления.

Для расчета диаметров капилляров, обеспечивающих получение капель заданных диаметров $D_i(i = 1, 2)$, использовалась формула Тэйта [7]:

$$d_i = \frac{\rho g D_i^3}{3.6\sigma},\tag{1}$$

где d_i — внутренний (для несмачивающих жидкостей) или внешний (для смачивающих жидкостей) диаметр капилляра; ρ , σ — плотность и коэффициент поверхностного натяжения жидкости; g — ускорение свободного падения.

Для определения значений Δp_1 и Δp_2 предварительно были проведены расчеты значений массовых секундных расходов, обеспечивающих заданное время образования капель:

$$G_i = \frac{m_i}{t_i},\tag{2}$$

где *m_i* — масса капель диаметром *D_i*; *t_i* — время образования капли на конце капилляра.

Величина $t_i = 50$ s выбиралась из условия отсутствия возмущающих воздействий на каплю при ее медленном образовании из поступающей через капилляр жидкости. По рекомендации [7] при значениях времени образования $t_i \sim 1$ min отклонение измеренного диаметра образующейся капли от рассчитанного по формуле Тэйта не превышает 0.5%.

31

Объемный секундный расход жидкости *Q* через капилляр определяется формулой Пуазейля [8]:

$$Q = \frac{\pi r^4 \Delta p}{8\mu l},\tag{3}$$

где *г* — внутренний радиус капилляра, *µ* — коэффициент динамической вязкости жидкости; *l* — длина капилляра.

Массовый секундный расход жидкости *G* через капилляр определяется формулой

$$G = \rho Q = \rho \frac{\pi r^4 \Delta p}{8\mu l} = \frac{\rho S^2 \Delta p}{8\pi \mu l},\tag{4}$$

где *S* — площадь поперечного сечения канала капилляра.

Из (4) следует соотношение для определения Δp_i :

$$\Delta p_i = \frac{8\pi\mu l_i}{\rho S_i^2} G = \frac{8\pi\mu l_i}{\rho S_i^2} \frac{m_i}{t_i}.$$
(5)

Значения амплитуды $P_i \ge 10\Delta p_i$ и длительности $\Delta t_i = 70 \,\mathrm{ms}$ импульсов давления для каждой из камер, обеспечивающие стабильный и одновременный отрыв каждого слоя капель, получены по результатам отладочных экспериментов.

Для определения закономерностей испарения облака бидисперсных капель в нагретом воздухе использовалась установка, аналогичная описанной в [9]. В области осаждения кластера размещался нагреватель, состоящий из керамической трубы с внутренним диаметром 250 mm и высотой 1 m. На внутренней поверхности нагревателя установлены проволочные нихромовые спирали, соединенные с источником электропитания. Тепловая изоляция обеспечивается за счет покрытия наружной поверхности нагревателя тонколистовой сталью, на входе и выходе из нагревателя установлены асбестовые прокладки. В нижней части установки размещена приемная емкость, установленная на аналитических лабораторных весах марки ВК-150.1 с погрешностью ±10 mg.

Аппаратура для визуализации процесса осаждения облака капель и измерения его скорости осаждения включает две скоростные видеокамеры марки MER2-502-79U3C с темпом съемки 450 fps, установленные на разных расстояниях от исследуемой области. Одна из камер регистрировала поле съемки размером 10×10 сm, что позволяло оценить размер капель. Другая камера регистрировала исследуемую область осаждения облака капель и использовалась для экспериментального определения скорости осаждения центра масс кластеров монодисперсных капель путем покадровой обработки результатов видеосъемки по программе CorelDRAW с погрешностью $\sim 4\%$.

На данной установке проведена серия экспериментов по исследованию динамики осаждения и испарения кластера бидисперсных капель дистиллированной воды. Для получения капель контролируемых размеров

Рис. 1. Качественная картина образования и гравитационного осаждения бидисперсного облака капель (20 капель диаметром 3.7 mm и 20 капель диаметром 2.9 mm). a — образование двух слоев капель в плоскостях A-A и B-B ($x \approx 0$ cm); b — движение бидисперсного облака капель ($x \approx 1.5$ cm); c — расслоение бидисперсного облака на два монодисперсных кластера ($x \approx 5.0$ cm).

 $D_1 = 2.9$ mm, $D_2 = 3.7$ mm использовались медицинские инъекционные иглы калибра 21G и 16G соответственно.

Для сравнительного анализа были проведены исследования динамики осаждения и характеристик испарения одиночных капель, диаметры которых соответствовали исследуемому бидисперсному облаку. Размеры и характеристики испарения одиночных капель определялись экспериментально по результатам измерения массы 200–300 идентичных капель, прошедших через нагреватель с заданной температурой. Скорость одиночных капель и зависимость пройденного расстояния от времени определялись численным решением уравнения осаждения капли [9].

На рис. 1 представлена качественная картина образования и гравитационного осаждения бидисперсного облака капель на разных расстояниях x от плоскости нижнего слоя капель (плоскость B-B на рис. 1). Из

Рис. 2. Зависимости пройденного расстояния от времени. 1, 2 — рассчитанные зависимости x(t) для одиночных капель диаметром 2.9 и 3.7 mm соответственно. Светлые кружки измеренные значения для центра масс кластера монодисперсных капель диаметром 2.9 mm, темные кружки — измеренные значения для центра масс кластера монодисперсных капель диаметром 3.7 mm.

Рис. 3. Экспериментальные зависимости скорости испарения капель от температуры воздуха в нагревателе. *1* — одиночная капля диаметром 2.9 mm, *2* — одиночная капля диаметром 3.7 mm, *3* — бидисперсное облако (20 капель диаметром 3.7 mm и 20 капель диаметром 2.9 mm), *4* — монодисперсный кластер (40 капель диаметром 2.9 mm).

рис. 1 следует, что в начальный момент времени образуются два слоя монодисперсных капель в плоскостях A-A и B-B (рис. 1, *a*). После отрыва капель от капилляров на расстоянии $x \approx 1.5$ ст происходит формирование облака бидисперсных капель (рис. 1, *b*), которое на расстоянии $x \approx 5.0$ ст начинает расслаиваться на два

отдельных монодисперсных кластера (рис. 1, c). При разделении облака на два кластера концентрация капель в каждом из них уменьшается, и дальнейшее осаждение каждого из кластеров происходит в режиме "продуваемого" облака [10] со скоростью одиночной капли, диаметр которой равен диаметру входящих в кластер капель (рис. 2).

Интенсивность испарения капель в облаке оценивалась по скорости испарения W капель при их прохождении через нагреватель при варьировании средней температуры внутри его полости. Скорость испарения W рассчитывалась по формулам [9]:

$$W = \rho \frac{\Delta R}{t}, \Delta R = R_0 - R_k = R_0 \left[1 - \sqrt[3]{1 - \Delta m} \right],$$
$$\Delta m = \frac{m_0 - m_k}{t}$$

 m_0

где ΔR — уменьшение радиуса капли от R_0 до R_k за счет испарения; m_0 , m_k — масса капли до и после нагревателя; Δm — относительное изменение массы капли в процессе испарения.

Для бидисперсного кластера в качестве R_0 использовалось значение радиуса эквивалентной капли $R_e = \sqrt[3]{0.5(R_1^3 + R_2^3)}$. Время прохождения через нагреватель длиной 1 m определялось в соответствии с графиками (рис. 2).

На рис. 3 представлена зависимость скорости испарения одиночных капель, моно- и бидисперсного кластеров от температуры воздуха в нагревателе. Количественные данные по скорости испарения одиночных капель и ее зависимость от температуры согласуются с результатами исследований [11,12], которые проводились в аналогичных условиях. Из рис. 3 следует, что скорости испарения одиночных капель диаметром 2.9 и 3.7 mm различаются незначительно в диапазоне температур 475-600 К. Интенсивность испарения кластера монодисперсных капель существенно меньше, чем для одиночной капли. Данный эффект наблюдался также в работе [4] и связан, по-видимому, с наличием прослойки из водяных паров между каплями в кластере. Для бидисперсного облака капель эффект влияния паров на скорость испарения менее выражен (рис. 3), чем для монодисперсного кластера. Рассчитанные по результатам прямых измерений Δm более высокие значения скорости испарения бидисперсного кластера (линия 3 на рис. 3) по сравнению со скоростью испарения монодисперсного кластера (линия 4 на рис. 3) могут быть связаны с процессами столкновения капель разных размеров во время осаждения, их коагуляцией, дроблением и образованием вторичных капель [1]. Эти процессы могут влиять как на скорость осаждения образующихся полидисперсных капель, так и на скорость их испарения.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-19-00307 (https://rscf.ru/project/22-19-00307/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.А. Шрайбер, Итоги науки и техники. Комплексные и специальные разделы механики, **3**, 3 (1988).
- [2] В.И. Терехов, М.А. Пахомов, *Тепломассоперенос и гидродинамика в газокапельных потоках* (Изд-во НГТУ, Новосибирск, 2008).
- [3] P.C. Волков. C.A. Керимбекова, П.А. Стрижак, Письма в ЖТФ, 47 (22),28 (2021).DOF 10.21883/PJTF.2021.22.51723.18791 R.S. Volkov. S.A. Kerimbekova, P.A. Strizhak, Tech. Phys. Lett., 48, 142 (2022). DOI: 10.1134/S1063785022040137].
- [4] О.В. Высокоморная, Г.В. Кузнецов, П.А. Стрижак, Испарение и трансформация капель и больших массивов жидкости при движении через высокотемпературные газы (Изд-во СО РАН, Новосибирск, 2016).
- [5] С.А. Керимбекова, Р.С. Волков, П.А. Стрижак, Письма в ЖТФ, 49 (20), 3 (2023).
 DOI: 10.61011/PJTF.2023.20.56337.19676
 [S.A. Kerimbekova, R.S. Volkov, P.A. Strizhak, Tech. Phys. Lett., 49 (10), 41 (2023).
 DOI: 10.61011/TPL.2023.10.57056.19676].
- [6] В.А. Архипов, С.А. Басалаев, Н.Н. Золоторёв, В.И. Романдин, С.Н. Поленчук, Способ получения облака бидисперсных капель, заявка на патент № 2024111059 (заявл.: 23.04.2024).
- [7] А. Адамсон, Физическая химия поверхностей (Мир, М., 1979).
- [8] Л.Г. Лойцянский, Механика жидкости и газа (Наука, М., 1973).
- [9] В.А. Архипов, С.А. Басалаев, А.И. Коноваленко, К.Г. Перфильева, Письма в ЖТФ, 46 (12), 40 (2020).
 DOI: 10.21883/PJTF.2020.12.49527.18300 [V.A. Arkhipov, S.A. Basalaev, A.I. Konovalenko, K.G. Perfil'eva, Tech. Phys. Lett., 46 (6), 610 (2020).
 DOI: 10.1134/S1063785020060176].
- [10] В.Г. Хоргуани, Х.М. Калов, Изв. АН СССР. Физика атмосферы и океана, **11** (3), 278 (1975).
- [11] В.И. Терехов, В.В. Терехов, Н.Е. Шишкин, К.Ч. Би, Инж.-физ. журн., 83 (5), 829 (2010). [V.I. Terekhov, V.V. Terekhov, N.E. Shishkin, K.Ch. Bi, J. Eng. Phys. Thermophys., 83 (5), 883 (2010). DOI: 10.1007/s10891-010-0410-7].
- [12] Г.В. Кузнецов, П.А. Куйбин, П.А. Стрижак, ТВТ, 53 (2), 264 (2015). DOI: 10.7868/S0040364415020131
 [G.V. Kuznetsov, P.A. Kuybin, P.A. Strizhak, High. Temp., 53 (2), 254 (2015). DOI: 10.1134/S0018151X15020133].