06

Измерение коэффициента ВКР-усиления различных кристаллов методом резонатора

© Ю.А. Кочуков^{1,3}, П.Д. Харитонова¹, Д.Н. Селезнев¹, К.А. Губина^{1,3}, Д.П. Терещенко¹, Н.А. Хохлов², Е.С. Барканова², А.Г. Папашвили¹, В.Е. Шукшин¹, И.С. Воронина¹, С.Н. Сметанин^{1,3}

¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия ² Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия ³ Национальный исследовательский технологический университет "МИСиС", Москва, Россия e-mail: ko4ukovura@yandex.ru

Поступила в редакцию 12.09.2024 г. В окончательной редакции 15.01.2025 г. Принята к публикации 16.01.2025 г.

Развит метод резонатора для обеспечения простого измерения коэффициента ВКР-усиления различных кристаллов. В формулах обработки экспериментальных результатов учтены длительность импульса накачки и гауссов профиль пучка. Под действием наносекундного лазера с длиной волны 1064 nm проведены измерения коэффициента ВКР-усиления для ряда кристаллов: SrMoO₄, Sr(MoO₄)_{0.8}(WO₄)_{0.2}, Sr_{0.86}Ba_{0.14}MoO₄, Sr_{0.9}Ba_{0.1}MoO₄ и LiNa₅Mo₉O₃₀. Для известного ВКР-кристалла SrMoO₄ полученный результат согласуется с литературными данными (5.6 cm/GW). Для твердых растворов на основе SrMoO₄ снижение коэффициента ВКР-усиления для SrMoO₄ коррелирует с увеличением ширины линии колебательной моды. Впервые получено ВКР в кристаллах Sr_{0.86}Ba_{0.14}MoO₄, Sr_{0.9}Ba_{0.1}MoO₄ и LiNa₅Mo₉O₃₀ при сравнимом коэффициенте их ВКР-усиления 2.4–2.5 cm/GW под действием накачки с длиной волны 1064 nm.

Ключевые слова: вынужденное комбинационное рассеяние, коэффициент ВКР-усиления, оптический резонатор, порог генерации.

DOI: 10.61011/OS.2025.01.59879.7060-24

1. Введение

Вынужденное комбинационное рассеяние (ВКР) в кристаллах является простым и доступным способом преобразования частоты лазерного излучения, не требующим поддержания фазового синхронизма [1]. Выбор ВКР-кристаллов с различными комбинационными частотами позволяет подобрать требуемый сдвиг частоты лазерного излучения для конкретного применения, например, для задач флюоресцентной микроскопии живых тканей [2]. Другой важной характеристикой, определяющей успешное применение ВКР-кристалла, является коэффициент ВКР-усиления, но известные данные его измерения для различных кристаллов, полученные различными методами, ограничены или имеют высокую погрешность. Например, прямой метод измерения метод однопроходного усилителя [3,4] — является технически наиболее сложным, требующим учета пространственного, временного и спектрального перекрытия излучения накачки и стоксова ВКР-излучения, поэтому он редко используется на практике. В большинстве случаев измерения проводят технически более простым методом — методом однопроходного генератора [5-10]. Здесь для получения ВКР-генерации за один проход ВКР-кристалла интенсивность накачки приходится сильно увеличивать, а для предотвращения лучевого пробоя ВКР-кристалла при этом приходится укорачивать импульсы возбуждающего лазерного излучения, используя пикосекундные лазеры накачки. Однако при этом режим ВКР в кристаллах, имеющих пикосекундные времена фазовой релаксации, становится нестационарным, что приводит к необходимости использования сложных косвенных оценок, приводящих к высокой погрешности измерения стационарного коэффициента ВКР-усиления [9,10]. В работе [11] для определения коэффициента ВКР-усиления кристалла СаСО3 был использован оригинальный экспресс-метод измерения метод резонатора, заключающийся в помещении ВКРкристалла в резонатор, что позволило снизить порог ВКР-генерации по сравнению с порогом лучевого пробоя ВКР-кристалла под действием наносекундных импульсов накачки.

Настоящая работа посвящена развитию метода резонатора для обеспечения более точного измерения коэффициента ВКР-усиления различных кристаллов. В формулах обработки экспериментальных результатов произведен учет длительности импульса накачки и гауссова профиля пучка. Проведены измерения коэффициента ВКР-усиления как для известного ВКРкристалла SrMoO4, так и для новых ВКР-кристаллов Sr(MoO₄)_{0.8}(WO₄)_{0.2}, Sr_{0.86}Ba_{0.14}MoO₄, Sr_{0.9}Ba_{0.1}MoO₄ и LiNa₅Mo₉O₃₀.

2. Теоретическое обоснование метода резонатора

Как это было отмечено еще в обзоре Н. Бломбергена [12], усиление ВКР-лазера, как и любого другого лазера, на пороге генерации должно быть равно потерям резонатора, что лежит в основе метода резонатора для измерения коэффициента ВКР-усиления. Однако таким образом ранее были получены лишь относительные значения коэффициента ВКР-усиления в зависимости от длины волны накачки для кристалла алмаза [13]. Абсолютные измерения требуют учета длительности импульса накачки, так как в ВКР-лазерах в отличие от лазеров с инверсией населенности усиление прекращается в конце действия импульса накачки. При этом для измерения целесообразно использовать наносекундные импульсы излучения накачки, простые в реализации, обеспечивающие стационарный режим ВКР в кристаллах и являющиеся более длинными по сравнению со временем обхода резонатора ВКР-лазера при длине резонатора менее 10 cm.

Метод резонатора для измерения коэффициента ВКРусиления, учитывающий длительность импульса накачки, предложенный в работе [11], основан на плосковолновой модели ВКР в резонаторе, изложенной в работе [14]. Существует также более точная модель, использующая приближение сфокусированного гауссова пучка [15], которая обосновывает определение эффективной интенсивности накачки.

Для теоретического обоснования метода резонатора приведем здесь вывод формулы определения коэффициента ВКР-усиления в приближении коллимированного гауссова пучка, достаточном для описания ВКР в резонаторе. Основываемся на известной модели стационарного ВКР-усиления [16]:

$$\frac{dI_S(z,r)}{dz} = g_R I_p(z,r) I_S(z,r) - k_S I_S(z,r),$$
$$\frac{dI_p(z,r)}{dz} = -g_R \frac{\lambda_p}{\lambda_s} I_p(z,r) I_S(z,r) - k_p I_p(z,r), \quad (1)$$

где g_R — искомый коэффициент ВКР-усиления активной среды ВКР-лазера; $I_p(z, r)$ и $I_S(z, r)$ — интенсивности излучения накачки и стоксова ВКР-излучения, зависящие от продольной (z) и поперечной (r) координат; k_p и k_S — коэффициенты потерь излучения накачки и ВКР-излучения, λ_p и λ_S — длины волн излучения накачки и ВКР-излучения.

В приближении коллимированного гауссова пучка пучки излучения накачки и ВКР-излучения имеют гауссов профиль с неизменным радиусом пучка, а зависимостью интенсивности излучения накачки от продольной координаты на пороге ВКР можно пренебречь:

$$I_S(z,r) = P_S(z) \frac{2}{\pi r_S^2} \exp\left(-2\frac{r^2}{r_S^2}\right),$$

$$I_p(z,r) \approx P_p \frac{2}{\pi r_p^2} \exp\left(-2\frac{r^2}{r_p^2}\right),\qquad(2)$$

где $P_{p,S} = \int_{0}^{\infty} I_{p,S} 2\pi r dr$ — мощность излучения накачки и ВКР-излучения; $r_{p,S}$ — радиус пучка излучения накачки и ВКР-излучения по уровню $1/e^2$.

Интегрирование первого уравнения системы уравнений (1) по поперечной координате $\left(\int_{0}^{\infty} 2\pi r dr\right)$ с учетом выражений (2) дает уравнение для мощности ВКР-излучения:

$$\frac{dP_{S}(z)}{dz} = g_{R}P_{p}P_{S}(z)\frac{2}{\pi r_{p}^{2} + \pi r_{S}^{2}} - k_{S}P_{S}(z).$$
 (3)

Для описания многопроходного ВКР во внешнем (относительно лазера накачки) двухзеркальном резонаторе перейдем к кинетическому рассмотрению, которое может быть использовано при длительности импульса накачки, многократно превышающей время обхода резонатора:

$$\frac{n_R}{uc} \frac{P_S(t)}{dt} = g_R P_p P_S(t) \frac{2}{\pi r_p^2 + \pi r_S^2} - k_S P_S(t), \quad (4)$$

где $\mu = n_R L_R / L_c$ — коэффициент заполнения лазера активной средой (отношение оптической длины активной среды к оптической длине резонатора) [17], n_R — показатель преломления активной среды ВКРлазера, L_R — длина активной среды ВКР-лазера, $L_c = L_g - L_R + L_R n_R$ — оптическая длина резонатора ВКР-лазера, L_g — геометрическая длина резонатора ВКР-лазера, c — скорость света в вакууме,

$$k_S = \frac{1}{L_R} \ln \frac{1}{\sqrt{T_R^2 R_S^{in} R_S^{out}}} \tag{5}$$

— коэффициент потерь резонатора ВКР-лазера, T_R — коэффициент пропускания среды ВКР-лазера за проход на длине волны ВКР-излучения, $R_S^{in, out}$ — коэффициент отражения входного (in) и выходного (out) зеркала резонатора ВКР-лазера на длине волны ВКР-излучения. Мощность излучения накачки внутри активной среды ВКР-лазера с внешним двухзеркальным резонатором можно определить как

$$P_{p} = \frac{E_{p}}{\tau_{p}} (1 - R_{p}^{in}) \sum_{i=1}^{N} \left[\left(R_{p}^{in} R_{p}^{out} \right)^{i-1} + \left(R_{p}^{in} \right)^{i-1} \left(R_{p}^{out} \right)^{i} \right],$$
(6)

где E_p — энергия импульса излучения накачки на входе ВКР-лазера, τ_p — длительность импульса излучения накачки, $R_p^{in, out}$ — коэффициент отражения входного (in) и выходного (out) зеркала резонатора ВКР-лазера на длине волны накачки, $N \approx \tau_p / \tau_c$ — число обходов резонатора за время действия накачки, $\tau_c = 2L_c/c$ — время обхода резонатора. При $R_p^{in} \approx 0$ формула (6) упрощается до $P_p \approx (1 + R_p^{out}) E_p / \tau_p$, как в работе [15].

Рис. 1. Оптическая схема эксперимента: 1 — лазер накачки; 2 — изолятор Фарадея; 3 — полуволновая пластина; 4 поляризатор; 5 — фокусирующая система; 6 — ВКР-кристалл; 7 — входное зеркало резонатора; 8 — выходное зеркало резонатора; 9 — зеркальный фильтр; 10 — регистратор.

Решение уравнения (4) в конце действия импульса накачки можно записать в виде

$$P_S(\tau_p) = P_S(0)e^G,\tag{7}$$

где инкремент экспоненциального ВКР-усиления определяется как

$$G = \left(g_R I_p L_R - \ln \frac{1}{\sqrt{T_R^2 R_S^{in} R_S^{out}}}\right) \frac{c \tau_p}{L_c}.$$
 (8)

Здесь $I_p = P_p/S$ — эффективная интенсивность накачки, $S = (\pi r_p^2 + \pi rs^2)/2$ — эффективное сечение пучка. Получаем выражение для эффективной интенсивности накачки $I_p = 2P_p/(\pi r_p^2 + \pi r_s^2)$.

Условие порога ВКР можно определить как [18] G = 25, тогда, приравнивания выражение (8) этому значению, получаем искомую формулу для коэффициента ВКР-усиления

$$g_R = \frac{1}{L_p^{th} L_R} \left(\frac{25L_c}{\tau_p c} + \ln \frac{1}{\sqrt{T_R^2 R_S^{in} R_S^{out}}} \right), \qquad (9)$$

которая совпадает с полученной в плосковолновом приближении [11]. Здесь пороговое значение эффективной интенсивности накачки внутри ВКР-среды определяется по формуле

$$I_{p}^{th} = \frac{E_{p}^{th}}{\tau_{p}S} (1 - R_{p}^{in}) \sum_{i=1}^{N} \left[\left(R_{p}^{in} P_{p}^{out} \right)^{i-1} + \left(R_{p}^{in} \right)^{i-1} \left(R_{p}^{out} \right)^{i} \right],$$
(10)

где E_p^{th} — измеряемое пороговое значение энергии импульса излучения накачки на входе ВКР-лазера. В случае очень длинного импульса накачки первым слагаемым в скобках выражения (9) можно пренебречь, тогда придем к исходной формуле из обзора Н. Бломбергена [12], справедливой в случае непрерывной накачки [15].

3. Проведение измерений

Оптическая схема эксперимента показана на рис. 1. Излучение лазера накачки 1 проходило через изолятор Фарадея 2 для развязки лазера накачки и ВКР-лазера. Далее были установлены полуволновая пластина 3 и поляризатор 4 для плавного регулирования энергии импульса излучения накачки Е_p на входе ВКР-лазера при повороте полуволновой пластины 3. Далее фокусирующая система 5 на основе пары линз, в фокусе которой установлен исследуемый ВКР-кристалл 6. ВКР-лазер состоял из ВКР-кристалла 6, помещенного в оптический резонатор на основе плоских зеркал 7 и 8, расстояние между которыми составляло $L_g = 9.5 \, \text{сm}$. Входное зеркало 7 имело коэффициенты отражения $R_{1064} = 3.5\%$, $R_{1175} = 99.8\%$ и $R_{1183} = 99.9\%$ на длинах волн 1064, 1175 и 1183 nm соответственно, а выходное зеркало 8 — $R_{1064} = 83.7\%$, $R_{1175} = 80.2\%$ и $R_{1183} = 79.6\%$. На выходе ВКР-лазера устанавливался зеркальный фильтр 9, отражающий излучение накачки (1064 nm) и пропускающий ВКР-излучение (1175–1183 nm). ВКР-излучение, пропущенное фильтром 9, направлялось на регистратор 10, в качестве которого использовался спектрометр видимого диапазона с удвоителем частоты, либо измеритель энергии излучения.

Измерения проводились для ВКР-кристаллов SrMoO₄ ($L_R = 5.7 \text{ cm}, n_R = 1.9$), Sr(MoO₄)_{0.8}(WO₄)_{0.2} $(L_R = 7.0 \text{ cm}, n_R = 1.9), \text{ Sr}_{0.86}\text{Ba}_{0.14}\text{MoO}_4 \ (L_R = 4.4 \text{ cm},$ $n_R = 1.9$, Sr_{0.9}Ba_{0.1}MoO₄ ($L_R = 6.5 \text{ cm}$, $n_R = 1.9$) и LiNa₅Mo₉O₃₀ ($L_R = 5.7 \text{ cm}$, $n_R = 1.8$). Кристалл SrMoO₄ является широко известной и эффективной ВКР-средой [19-22], кристалл Sr(MoO₄)_{0.8}(WO₄)_{0.2} был лишь однократно использован ранее для ВКР [23], а оставшиеся три кристалла — Sr_{0.86}Ba_{0.14}MoO₄, $Sr_{0.9}Ba_{0.1}MoO_4$ и LiNa₅Mo₉O₃₀ — являются новыми ВКР-средами, в которых ВКР в настоящей работе получено впервые. Первые три кристалла имели антиотражающие покрытия на плоскопараллельных торцах, последние два — не имели. Все кристаллы были вырезаны вдоль кристаллооптической оси У.

Как показала проведенная нами поляризованная спектроскопия комбинационного рассеяния света, твердые растворы Sr(MoO₄)_{0.8}(WO₄)_{0.2}, Sr_{0.86}Ba_{0.14}MoO₄ и Sr_{0.9}Ba_{0.1}MoO₄, как и исходный кристалл SrMoO₄ [21], должны накачиваться в конфигурации Y(ZZ)Y, отличающейся более высокой интенсивностью моды симметричных валентных колебаний анионной группы, чем для Y(XX)Y. Нужно отметить, что в анионном твердом растворе $Sr(MoO_4)_{0.8}(WO_4)_{0.2}$ эта мода ($\nu_R = 887 \, \mathrm{cm}^{-1}$) имеет спектральную ширину $\Delta v_R = 4.3 \, {\rm cm}^{-1}$, что в 1.7 раза больше, чем в SrMoO₄. В катионных твердых растворах Sr_{0.86}Ba_{0.14}MoO₄ и $Sr_{0.9}Ba_{0.1}MoO_4$ уширение этой моды ($\nu_R = 888 \text{ cm}^{-1}$) еще больше — до $\Delta v_R = 6.5 \,\mathrm{cm}^{-1}$ (в 2.6 раза), что объясняется комбинацией валентных колебаний с близкими частотами в SrMoO₄ ($\nu_R = 887 \, \mathrm{cm}^{-1}$) и ВаМоО₄ ($\nu_R = 892 \, \mathrm{cm}^{-1}$) [24]. Последний кристалл — LiNa5M09O30 — нужно наоборот накачивать в конфигурации Y(XX)Y, для которой интенсивность моды симметричных валентных колебаний анионной группы $v_R = 947 \, \text{cm}^{-1}$ более высока, чем для Y(ZZ)Y.

В качестве лазера накачки использовался одномодовый ИАГ:Nd³⁺-лазер с электрооптической модуляцией

Рис. 2. Спектры излучения накачки (кривая I) и ВКРизлучения для новых ВКР-кристаллов Sr_{0.86}Ba_{0.14}MoO₄ (кривая 2) и LiNa₅Mo₉O₃₀ (кривая 3).

добротности резонатора, генерирующий на длине волны 1064 nm импульсы излучения длительностью 15 ns с энергией импульса 130 mJ. С помощью фокусирующей системы радиус пучка излучения накачки в ВКРкристалле устанавливался как можно большим, равным $r_p = 1.9 \,\mathrm{mm}$ по уровню $1/e^2$, ограниченным апертурой ВКР-кристалла, чтобы можно было считать его неизменным на всей длине ВКР-кристалла и минимизировать дифракционные потери на плоских зеркалах резонатора ВКР-лазера (рэлеевская длина перетяжки пучка накачки в воздухе $z_R \approx 1$ m на порядок превышала длину резонатора ВКР-лазера). В настоящей работе мы реализовали экспресс-метод, в котором использовали плоские зеркала резонатора, чтобы радиус ВКР-пучка был наибольшим и приближенным к радиусу пучка накачки $(r_p \approx r_S)$, тогда можно считать $S \approx \pi r_p^2$, как в плосковолновом приближении [11]. Действительно, измеренное значение r_S было лишь на 9% меньше, чем r_p (в пределах погрешности измерения).

Сначала с помощью лазера накачки для каждого из ВКР-кристаллов измерили величину их пропускания T_R , убрав зеркала 7 и 8 из схемы рис. 1. Она составила $T_R = 93$, 92, 95, 77 и 79% для кристаллов SrMoO₄, Sr(MoO₄)_{0.8}(WO₄)_{0.2}, Sr_{0.86}Ba_{0.14}MoO₄, Sr_{0.9}Ba_{0.1}MoO₄ и LiNa₅Mo₉O₃₀ соответственно. Малое пропускание последних двух кристаллов обусловлено отсутствием на них антиотражающих покрытий. Далее установили и съюстировали зеркала 7 и 8. При получении ВКР-генерации торцы каждого ВКР-кристалла слегка разьюстировали так, чтобы они не давали вклада в генерацию.

На рис. 2 приведены измеренные спектры излучения накачки (кривая I) и ВКР-излучения для новых ВКР-кристаллов Sr_{0.86}Ba_{0.14}MoO₄ (кривая 2) и LiNa₅Mo₉O₃₀ (кривая 3). Длины волн ВКР-излучения составили $\lambda_S = 1175$ и 1183 nm для кристаллов Sr_{0.86}Ba_{0.14}MoO₄ и LiNa₅Mo₉O₃₀ соответственно. Для оставшихся кристаллов (SrMoO₄, Sr(MoO₄)_{0.8}(WO₄)_{0.2} и Sr_{0.9}Ba_{0.1}MoO₄) спектры и длины волн ВКР-излучения были аналогичны

Рис. 3. Зависимости энергии импульса ВКР-излучения от энергии импульса накачки для кристаллов SrMoO₄ (зависимость 1), Sr(MoO₄)_{0.8}(WO₄)_{0.2} (зависимость 2), Sr_{0.86}Ba_{0.14}MoO₄ (зависимость 3), Sr_{0.9}Ba_{0.1}MoO₄ (зависимость 4) и LiNa₅Mo₉O₃₀ (зависимость 5).

Результаты измерения характеристик ВКР-кристаллов: v_R — частота моды валентных колебаний анионного комплекса, Δv_R — ее спектральная ширина, g_R — коэффициент ВКР-усиления при $\lambda_p = 1064$ nm

ВКР-кристалл	v_R, cm^{-1}	Δv_R , cm ⁻¹	g_R , cm/GW
SrMoO ₄	887	2.5	5.6 ± 0.2
$Sr(MoO_4)_{0.8}(WO_4)_{0.2}$	887	4.3	2.9 ± 0.1
$Sr_{0.86}Ba_{0.14}MoO_4$	888	6.5	2.5 ± 0.1
$Sr_{0.9}Ba_{0.1}MoO_4$	888	6.5	2.4 ± 0.1
LiNa ₅ Mo ₉ O ₃₀	947	4.0	2.4 ± 0.1

представленным для Sr_{0.86}Ba_{0.14}MoO₄, т.е. имели примерно одинаковый сдвиг частоты $\nu_R = 887-888 \text{ cm}^{-1}$, характерный для симметричного валентного колебания тетраэдрического анионного комплекса MoO₄ исходного кристалла SrMoO₄ [9]. Кристалл LiNa₅Mo₉O₃₀ обеспечил больший сдвиг частоты $\nu_R = 947 \text{ cm}^{-1}$, соответствующий симметричному валентному колебанию октаэдрического анионного комплекса MoO₆ данного кристалла [25].

На рис. З показаны полученные экспериментальные зависимости энергии импульса ВКР-излучения от энергии импульса накачки для всех исследуемых кристаллов. Линейная аппроксимация результатов измерений в пересечении с осью абсцисс дала искомые пороговые значения энергии накачки E_p^{th} : 29 ± 1 mJ для SrMoO₄, 49 ± 2 mJ для Sr(MoO₄)_{0.8}(WO₄)_{0.2}, 76 ± 3 mJ для Sr_{0.86}Ba_{0.14}MoO₄, 74 ± 3 mJ для Sr_{0.9}Ba_{0.1}MoO₄, 77 ± 3 mJ для LiNa₅Mo₉O₃₀. При подстановке данных значений в формулы (9) и (10) получены значения коэффициента ВКР-усиления для всех исследуемых кристаллов, которые занесены в таблицу.

Из таблицы видно, полученное что значение $(g_R = 5.6 \pm 0.2 \,\mathrm{cm/GW})$ для известного кристалла SrMoO₄ согласуется проведенным с ранее измерением методом генератора ($g_R = 5.6 \text{ cm/GW}$) [9]. В анионном твердом растворе $Sr(MoO_4)_{0.8}(WO_4)_{0.2}$ коэффициент ВКР-усиления $(g_R = 2.9 \pm 0.1 \text{ cm/GW})$ оказался в 1.9 раза ниже, а в катионных твердых растворах $Sr_{0.86}Ba_{0.14}MoO_4$ ($g_R = 2.5 \pm 0.1 \text{ cm/GW}$) и $Sr_{0.9}Ba_{0.1}MoO_4$ ($g_R = 2.4 \pm 0.1 \text{ сm/GW}$) — примерно в 2.3 раза ниже, чем для SrMoO₄. Это коррелирует с увеличением спектральной ширины колебательной моды (Δv_R) в твердых растворах по сравнению с SrMoO₄, что описано выше (см. также таблицу). Благодаря относительно узкой линии колебательной моды ($\Delta v_R = 4 \, \mathrm{cm}^{-1}$) коэффициент ВКР-усиления в новом ВКР-кристалле LiNa5Mo9O30 оказался довольно высоким $(g_R = 2.4 \pm 0.1 \text{ cm/GW})$ и сравнимым с таковым для представленных твердых растворов на основе SrMoO₄. Нужно отметить, что полученные значения g_R относятся к длине волны накачки 1064 nm. При увеличении длины волны накачки коэффициент ВКР-усиления уменьшается [3,4,13].

4. Заключение

Таким образом, развит метод резонатора для обеспечения простого измерения коэффициента ВКР-усиления различных кристаллов. В формулах обработки экспериментальных результатов учтены длительность импульса накачки и гауссов профиль пучка. Проведены измерения коэффициента ВКР-усиления для ряда ВКР-кристаллов при накачке наносекундным лазером с длиной волны 1064 nm. Для известного ВКР-кристалла SrMoO₄ полученный результат согласуется с литературными данными (5.6 cm/GW). Для твердых растворов на основе SrMoO₄ снижение коэффициента ВКР-усиления по сравнению с таковым для SrMoO₄ коррелирует с увеличением ширины линии колебательной моды. Впервые получено ВКР в кристаллах Sr_{0.86}Ba_{0.14}MoO₄, Sr_{0.9}Ba_{0.1}MoO₄ и LiNa5Mo9O30 при сравнимом коэффициенте их ВКРусиления 2.4-2.5 cm/GW под действием накачки с длиной волны 1064 nm.

Финансирование работы

Работа выполнена при финансовой поддержке грантом РНФ № 24-12-00448.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

Т.Т. Басиев, В.В. Осико. Усп. химии, **75** (10), 939 (2006).
 [Т.Т. Basiev, V.V. Osiko. Rus. Chem. Rev., **75** (10), 847 (2006).
 DOI: 10.1070/RC2006v075n10ABEH003626].

- [2] E.P. Perillo, J.W. Jarrett, Y.-L. Liu, A. Hassan, D.C. Fernee, J.R. Goldak, A. Bonteanu, D.J. Spence, H.-C. Yeh, A.K. Dunn. Light: Science & Appl., 6, e17095 (2017). DOI: 10.1038/lsa.2017.95
- [3] V.A. Lisinetskii, S.V. Rozhok, D.N. Bus'ko, R.V. Chulkov, A.S. Grabtchikov, V.A. Orlovich, T.T. Basiev, P.G. Zverev. Laser Phys. Lett., 2 (8), 396 (2005).
 DOI: 10.1002/lapl.200510007
- [4] A. Sabella, D.J. Spence, R.P. Mildren. IEEE J. Quantum Electron., 51 (12), 1000108 (2015).
 DOI: 10.1109/JQE.2015.2503404
- [5] А.З. Грасюк, С.В. Курбасов, Л.Л. Лосев, А.П. Луценко, А.А. Каминский, В.Б. Семенов. Квант. электрон., 25 (2), 170 (1998). [A.Z. Grasyuk, S.V. Kurbasov, L.L. Losev, A.P. Lutsenko, A.A. Kaminskii, V.B. Semenov. Quantum Electron., 28 (2), 162 (1998). DOI: 10.1070/QE1998v028n02ABEH001162].
- [6] A.A. Kaminskii, H.J. Eichler, K. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, R. Balda. Appl. Opt., **38** (21), 4533 (1999). DOI: 10.1364/AO.38.004533
- [7] A.A. Kaminskii, K. Ueda, H.J. Eichler, Y. Kuwano, H. Kouta, S.N. Bagaev, Th.H. Chyba, J.C. Barnes, G.M.A. Gad, T. Murai, J. Lu. Opt. Commun., **194**, 201 (2001).
 DOI: 10.1016/S0030-4018(01)01274-3
- [8] H.-L. Zhou, Q.-H. Zhang, B. Wang, X.-G. Xu, Zh.-P. Wang, X. Sun, F. Zhang, L.-S. Zhang, B.-A. Liu, X.-X. Chai. Chin. Phys. B, 24 (4), 044206 (2016).
 DOI: 10.1088/1674-1056/24/4/044206
- [9] Т.Т. Басиев, П.Г. Зверев, А.Я. Карасик, В.В. Осико, А.А. Соболь, Д.С. Чунаев. ЖЭТФ, **126** (5), 1073 (2004).
 [Т.Т. Basiev, P.G. Zverev, А.Ya. Karasik, V.V. Osiko, A.A. Sobol', D.S. Chinaev. J. Exp. Theor. Phys., **99**, 934 (2004). DOI: 10.1134/1.1842874].
- [10] С.Н. Сметанин. Опт. и спектр., 121 (3), 430 (2016).
 DOI: 10.7868/S0030403416080213 [S.N. Smetanin. Opt. Spectrosc., 121 (3), 395 (2016).
 DOI: 10.1134/S0030400X1608021X].
- [11] S.N. Smetanin, M. Jelínek, D.P. Tereshchenko, V. Kubeček. Optics Express, 26 (18), 22637 (2018). DOI: 10.1364/OE.26.022637
- [12] N. Bloembergen. Amer. J. Phys., 35 (11), 989 (1967).
 DOI: 10.1119/1.1973774
- [13] V.G. Savitski, S. Reilly, A.J. Kemp. IEEE J. Quantum Electron., 49 (2), 218 (2013).
 DOI: 10.1109/JQE.2012.2237505
- [14] Т.Т. Басиев, М.Н. Басиева, А.В. Гаврилов, М.Н. Ершков, Л.И. Ивлева, В.В. Осико, С.Н. Сметанин, А.В. Федин. Квант. электрон., 40 (8), 710 (2010). [Т.Т. Basiev, М.N. Basieva, А.V. Gavrilov, М.N. Ershkov, L.I. Ivleva, V.V. Osiko, S.N. Smetanin, A.V. Fedin. Quantum Electron., 40 (8), 710 (2010).

DOI: 10.1070/QE2010v040n08ABEH014376].

- [15] V.A. Lisinetskii, A.S. Grabtchikov, P.A. Apanasevich, M. Schmitt, B. Kuschner, S. Schlücker, V.A. Orlovich. J. Raman Spectrosc., 37 (1-3), 421 (2006). DOI: 10.1002/jrs.1447
- [16] O. Kitzler, A. McKay, D.J. Spence, R.P. Mildren. Optics Express, 23 (7), 8590 (2015). DOI: 10.1364/OE.23.008590
- [17] Л.В. Тарасов. Физика процессов в генераторах когерентного оптического излучения (Радио и связь, М., 1981), с. 354.

- [18] A. Penzkofer, A. Laubereau, W. Kaiser. Prog. Quantum Electron., 6 (2), 55 (1979).
 DOI: 10.1016/0079-6727(79)90011-9
- [19] А.А. Каминский, С.Н. Багаев, К. Ueda, К. Takaichi, H.J. Eichler. Кристаллография, 47 (4), 711 (2002).
 [А.А. Kaminskii, S.N. Bagaev, K. Ueda, K. Takaichi, H.J. Eichler. Crystallography Reports, 47 (4), 653 (2002).
 DOI: 10.1134/1.1496066].
- H. Yu, Zh. Li, A.J. Lee, J. Li, H. Zhang, J. Wang, H.M. Pask,
 J.A. Piper, M. Jiang. Opt. Lett., 36 (4), 579 (2011).
 DOI: 10.1364/OL.36.000579
- [21] M. Frank, S.N. Smetanin, M. Jelínek, D. Vyhlídal, A.A. Kopalkin, V.E. Shukshin, L.I. Ivleva, P.G. Zverev, V. Kubeček. Opt. Laser Technol., **111**, 129 (2019). DOI: 10.1016/j.optlastec.2018.09.045
- [22] С.Н. Сметанин, Д.П. Терещенко, А.Г. Папашвили, Е.В. Шашков, Е.А. Пеганов, К.А. Губина, В.Е. Шукшин, С.А. Солохин, М.Н. Ершков, Е.Э. Дунаева, И.С. Воронина, Л.И. Ивлева. Квант. электрон., **53** (5), 379 (2023). [S.N. Smetanin, D. P. Tereshchenko, A.G. Papashvili, E.V. Shashkov, E.A. Peganov, К.А. Gubina, V.E. Shukshin, S.A. Solokhin, M.N. Ershkov, E.E. Dunaeva, I.S. Voronina, L.I. Ivleva. Bull. Lebedev Physics Institute, **50** (suppl. 9), S984 (2023). DOI: 10.3103/S1068335623210108].
- [23] Д.П. Терещенко, С.Н. Сметанин, А.Г. Папашвили, К.А. Губина, Ю.А. Кочуков, С.А. Солохин, М.Н. Ершков, Е.В. Шашков, В.Е. Шукшин, Л.И. Ивлева, Е.Э. Дунаева, И.С. Воронина. ЖТФ, 93 (4), 488 (2023).
 DOI: 10.61011/OS.2025.01.59879.7060-24
 [D.P. Tereshchenko, S.N. Smetanin, A.G. Papashvili, K.A. Gubina, Yu.A. Kochukov, S.A. Solokhin, M.N. Ershkov, E.V. Shashkov, V.E. Shukshin, L.I. Ivleva, E.E. Dunaeva, I.S. Voronina. Technical Physics, 69 (5), 1427 (2024). DOI: 10.1134/S1063784224040431].
- [24] T.T. Basiev, A.A. Sobol, Yu.K. Voronko, P.G. Zverev. Opt. Mater., 15, 205 (2000).
 DOI: 10.1016/S0925-3467(00)00037-9
- [25] X. Du, Z. Gao, F. Liu, X. Guo, X. Wang, Y. Sun, X. Tao. CrystEngComm., 22, 7716 (2020). DOI: 10.1039/D0CE01129K