10

Оптические свойства нестехиометрических оксидов титана

© А.К. Герасимова¹, В.А. Воронковский¹, Д.А. Калмыков¹, В.Ш. Алиев^{1,3}, В.А. Володин^{1,2}, М.А. Демьяненко¹

¹ Институт физики полупроводников им. А.В. Ржанова Сибирского отделения РАН,

Новосибирск, Россия

² Новосибирский государственный университет,

Новосибирск, Россия

³ Новосибирский государственный технический университет,

Новосибирск, Россия

e-mail: aliev@isp.nsc.ru

Поступила в редакцию 22.10.2024 г. В окончательной редакции 08.12.2024 г. Принята к публикации 08.12.2024 г.

Исследованы оптические свойства нестехиометрических оксидов титана $\text{TiO}_{2-\delta}$ с различным отклонением от стехиометрии δ . Пленки синтезированы методом ионно-лучевого распыления-осаждения. Состав пленок определен методом рентгеновской фотоэлектронной спектроскопии. Установлена взаимосвязь оптических параметров (n, k) пленок с параметром δ . Обнаружено, что отжиг пленок состава $\delta \sim 0.58 \pm 0.02$ при температурах 350–600°С приводит к существенному возрастанию поглощения в терагерцовой области спектра из-за роста в пленках (по данным сканирующей электронной микроскопии) кристаллов пластинчатой формы микронных размеров.

Ключевые слова: тонкие пленки, нестехиометрические оксиды титана, рентгеновская фотоэлектронная спектроскопия, спектральная эллипсометрия, оптические потери.

DOI: 10.61011/OS.2025.01.59880.7201-24

Введение

Пленки оксидов переходных металлов нашли широкое практическое применение в микроэлектронике и являются постоянным объектом исследования [1-3]. Оптические свойства тонких пленок диоксида титана радикально зависят от метода их синтеза и последующей обработки [4-7]. Это связано со структурным многообразием оксидов титана, которое влечет за собой и многообразие оптических свойств. Интерес к пленкам оксидов титана нестехиометрического состава обусловлен тем, что при их частичной или полной кристаллизации возможно образование кристаллических фаз, обладающих высокой электропроводностью по сравнению с высшим оксидом TiO₂ [8]. В результате кристаллизации аморфные пленки $TiO_{2-\delta}$ ($\delta < 2$) превращаются в композитный материал: кластеры с металлической проводимостью, заключенные в диэлектрическую матрицу. Такой материал обладает высоким коэффициентом поглощения и высоким температурным коэффициентом сопротивления, который определяется эффективной шириной запрещенной зоны диэлектрической матрицы [9]. Несмотря на то, что пленки оксидов титана давно практически используются в качестве теплочувствительных слоев и существует ряд работ [10], посвященных синтезу таких слоев, в литературе отсутствуют данные о связи параметра отклонения от стехиометрии δ с их оптическими свойствами. Целью данной работы являлось исследование влияния параметра δ на оптические свойства как однородных по составу,

так и композитных пленок на основе нестехиометрических оксидов титана в широком спектральном диапазоне от оптического до терагерцового. Композитные пленки в данной работе формировались путем термического отжига однородных по составу пленок нестехиометрического состава. Исследование представляет практический интерес для создания теплочувствительных слоев матриц микроболометров.

Синтез пленок

Для синтеза тонких аморфных пленок нестехиометрических оксидов титана TiO₂₋₆ с прецизионным контролем состава ($\delta = 0.02 - 1.18$) использовался метод ионно-лучевого распыления-осаждения (IBSD — ion beam sputtering deposition). Данный метод подробно описан в работе [11]. Остаточное давление в вакуумной камере перед нанесением пленок составляло 10^{-4} Pa. Для распыления использовалась металлическая мишень титана особой чистоты (Ti > 99.92%). Мишень распылялась ионами Ar⁺ с энергией 1200 eV. Плотность ионного тока на мишень выдерживалась постоянной и составляла 1.0 mA/cm². Для получения оксидов в камеру подавался кислород особой чистоты (O₂ > 99.999%). Различные значения параметра δ задавались путем варьирования подачи кислорода. Парциальное давление кислорода в зоне роста варьировалось в диапазоне от $0.6 \cdot 10^{-3}$ до 10⁻² Ра. В качестве подложек использовались: пластины Si(100) КЭФ-4.5 (для эллипсометрии) и двусторонне полированные пластины БЗП Si(100) (для измерения оптических свойств в инфракрасной (ИК) области спектра) и пластины Ge (для терагерцовой (ТГц) области спектра). Температура подложек в процессе роста не превышала 70°С. Скорость напыления и толщина пленок контролировались кварцевыми микровесами (Maxtek, Inc.). Скорость роста по кварцевому датчику зависела от парциального давления кислорода и составляла ~ 0.08 nm/s. Типичная толщина пленок по ланным эллипсометрии составляла около 50 nm. Отжиг пленок проводился в печи с оптическим разогревом при температурах от комнатной до 600°C в атмосфере особо чистого аргона с 2% объемной добавкой кислорода. Скорость разогрева (охлаждения) составляла около 10°С/тіп. После разогрева до заданной температуры образец выдерживался при этой температуре от 15 до 180 min, а затем охлаждался.

Методы исследования

Состав выращенных пленок был определен методом рентгеновской фотоэлектронной спектроскопии (РФ-ЭС) на спектрометре SPECS UHV-Analysis-System со сферическим энергоанализатором PHOIBOS 150 и источником излучения Al K_{α} ($E = 1486.74 \, \text{eV}$). Шкала энергоанализатора была откалибрована по пикам Au $4f_{7/2}$ ($BE = 84.00 \pm 0.05 \,\mathrm{eV}$) и Cu $2p_{3/2}$ $(BE = 932.66 \pm 0.05 \text{ eV})$. Для учета зарядки поверхности пленок спектры РФЭС были выровнены по положению пика углерода С 1s при 285.0 eV. Разложение экспериментальных спектров РФЭС в области энергий Ті 2р и О 1s осуществлялось функциями Гаусса после вычитания фона по методу Ширли. Отношение атомных концентраций О к Ті определялось по интегральным интенсивностям фотоэлектронных линий О 1s и Ti 2p с учетом соответствующих коэффициентов атомной чувствительности элементов [12].

Для определения оптических констант пленки (показателя преломления *n* и коэффициента поглощения *k*) в диапазоне длин волн (350-1100 nm) был использован спектральный эллипсометр "ЭЛЛИПС-1891-САГ" (ИФП СО РАН) [13]. Спектральное разрешение прибора составляло 2 nm, угол падения луча света на образец 70°. Использовалась четырехзонная методика измерений с последующим усреднением по всем четырем зонам. Экспериментальные спектры эллипсометрических углов Ψ и Δ далее сравнивались с расчетными спектрами, полученными путем решения обратной задачи эллипсометрии. Для эллипсометрических расчетов использовалась однослойная оптическая модель. Подгонка спектральных зависимостей эллипсометрических углов во всем спектральном диапазоне для *т* точек спектра осуществлялась при помощи минимизации функции ошибки σ:

$$\sigma^2 = rac{1}{m} \sum_{i=1}^m \Big[(\Delta_{ ext{exp}} - \Delta_{ ext{calc}})^2 + (\Psi_{ ext{exp}} - \Psi_{ ext{calc}})^2 \Big],$$

Таблица 1. Образцы пленок $\text{TiO}_{2-\delta}$: P_{O2} — парциальное давление кислорода в камере при росте, δ — отклонение химического состава от стехиометрического, полученное из анализа данных РФЭС

N₂	$P_{O2} \ (imes 10^{-3} Pa)$	δ
T1	0.65	1.18
T2	1.22	0.58
Т3	1.52	0.18
T4	1.77	0.11
T5	2.98	0.05
T6	9.23	0.02

Таблица 2. Параметры аппроксимации данных РФЭС: ВЕ (binding energy) — энергетическое положение гауссовой линии, FWHM — полная ширина линии на полувысоте

РФЭС-пик	Компонент	BE, eV	FWHM, eV
Ti 2 <i>p</i> _{3/2}	Ti ⁴⁺	458.75	1.09
	Ti ³⁺	458.30	1.09
	Ti ²⁺	457.10	1.09
	Ti ¹⁺	455.71	1.30
	Ti ^{ads}	454.20	1.30
O 1 <i>s</i>	TiO ₂	530.14	1.18
	Ti_2O_3	530.20	1.18
	TiO	531.80	1.18
	O _{ads}	531.10	2.63

где Ψ_{exp} , Δ_{calc} и Ψ_{calc} , Δ_{calc} — экспериментальные и расчетные значения эллипсометрических углов Ψ и Δ соответственно, m — число точек спектра. В ИК диапазоне $(2-20\,\mu\text{m})$ оптические параметры пленок были измерены на спектрофотометре Infralum FT-801, а в ТГц диапазоне на спектрометре Bruker VERTEX 80v.

Структурные свойства пленок TiO_{2-δ} были исследованы с помощью метода комбинационного рассеяния света (КРС) на спектрометре T64000 (Horiba Jobin Yvon). Спектральное разрешение спектрометра КРС не превышало 2 cm⁻¹. Для возбуждения использовалась линия твердотельного волоконного лазера с длиной волны 514.5 nm. Измерения спектров КРС проводились при комнатной температуре в геометрии обратного рассеяния. Анализ поляризации рассеянного света не проводился. Мощность лазерного пучка на образце составляла 1 mW. Для того чтобы минимизировать нагрев структур под лазерным пучком, образец помещался чуть ниже фокуса, размер пятна составлял около 8 µm. В дополнение к методу КРС для визуализации кластеров в пленках была использована сканирующая электронная микроскопия (СЭМ) на приборе Hitachi SU8220.

Рис. 1. Экспериментальные РФЭС-спектры (точки) пленок $TiO_{2-\delta}$ и их аппроксимация в диапазоне энергий уровней Ti 2p: a - T1, b - T2, c - T3, d - T4, e - T5, f - T6.

Экспериментальные результаты и обсуждение

Состав пленок

Для сопоставления условий роста и параметра δ , характеризующего отклонение состава от стехиометрического, были выращены пленки оксида титана различного состава (табл. 1). Далее эти пленки исследованы методом РФЭС.

Для определения параметра δ экспериментальные пики Ti 2p и O 1s были аппроксимированы гауссовыми линиями, каждая из которых отвечала определенной степени окисления титана. Из-за спин-орбитального расщепления пик Ti 2p представлен дуплетом двух гауссовых линий. Энергетический зазор в дуплете был взят равным 5.8 eV, а соотношение интенсивностей пиков Ti 2p_{1/2} и Ti 2p_{3/2} — 1:2 [14]. Подбор количества компонентов проводился таким образом, чтобы аппроксимировать экспериментальные РФЭС-пики минимальным количеством компонентов, беря их в различных пропорциях (рис. 1). Были использованы 4 компонента со следующими степенями окисления: Ti⁴⁺ в оксиде титана TiO₂, Ti³⁺ в оксиде Ti₂O₃, Ti²⁺ в оксиде титана TiO, компонент Ti⁰, отвечающий металлическому титану.

Рис. 2. Зависимость коэффициента стехиометрии $x = 2 - \delta$ от парциального давления кислорода в камере роста пленок TiO_x.

Кроме этого, учитывая нестехиометрический состав и аморфную структуру пленок, был добавлен пик Ti¹⁺. Аналогичное разложение на гауссовы линии было проведено для экспериментальных пиков O 1s. Подбор параметров гауссовых линий был проведен самосогла-

Рис. 3. Экспериментально полученные спектральные зависимости показателей преломления и поглощения пленок TiO_{2-δ} (точки) и их аппроксимация (сплошные линии). Данные для металлического титана взяты из базы данных [17] и показаны штриховой линией.

сованно для обоих пиков Ті $2p_{3/2}-2p_{1/2}$ и О 1s и для всех образцов. Параметры гауссовых линий, отвечающие минимальному отклонению экспериментальных точек от теоретических кривых, представлены в табл. 2. Уширение пиков Ti⁰ и Ti¹⁺ по сравнению с другими пиками титана, вероятно, связано с адсорбцией кислорода на поверхности образцов. Уширение наблюдалось также для компонента O_{ads} кислородного пика О 1s. Данный компонент кислородного пика, так же как это сделано в работе [15], не учитывался при расчете параметра δ . Подобранные параметры гауссовых линий (табл. 2) хорошо аппроксимируют экспериментальные результаты и согласуются с известными табличными данными РФЭС по TiO₂ [16]. Полученная зависимость δ от парциального давления кислорода в зоне роста (рис. 2) позволила в дальнейшем задавать состав пленок, не прибегая к измерениям РФЭС.

60

Оптические свойства в видимой и ближней ИК областях

Оптические константы (n, k) — соответственно действительная и мнимая части комплексного показателя преломления) неотожженных пленок в видимой и ближней ИК областях спектра показаны на рис. 3 и 4. Пленки Т1 и T2 являются сильно поглощающими с аномальной дисперсией, что характерно для металлических пленок. Для сравнения представлены оптические константы металлического титана [17]. Показатель поглощения k металлического титана близок к показателю поглощения для пленки T1, а показатель преломления n — к пленкам T2-T4.

Оптические константы пленок T1 и T2 хорошо аппроксимируются осцилляторной моделью Лоренца-

Рис. 4. Спектральные зависимости $n(\lambda)$ для пленок $\text{TiO}_{2-\delta}$ при $\delta < 0.05$ (точки) и аппроксимация их моделью Коши (сплошные линии).

Друде [18]:

$$\dot{\boldsymbol{\varepsilon}}(\mathbf{E}) = \boldsymbol{\varepsilon}_{\infty} - \frac{E_{1\rho}^2}{E^2 - jE_{2\rho}E} + \sum_{i=1}^{\theta} \frac{A_i E_i^2}{E_i^2 - E^2 + j\Gamma_i E_i E}, \quad (1)$$

где $\dot{\varepsilon}(E)$ — функция комплексной диэлектрической проницаемости от энергии фотона, $E = hc/\lambda$ — энергия фотона, h — постоянная Планка, c — скорость света в вакууме, j — мнимая единица, ε_{∞} — значение $\dot{\varepsilon}(E)$ при $E \to \infty$. Второй член выражения (1) отражает вклад свободных носителей заряда, $E_{1\rho}$, $E_{2\rho}$ — константы. Третье слагаемое описывает вклад межзонных переходов как возбуждение затухающих гармонических осцилляторов: A_i , E_i и Γ_i — соответственно сила, энергия и функция уширения *i*-го осциллятора из θ принятых в расчет. Оказалось, что для удовлетворительной аппроксимации экспериментальных спектров достаточно было использовать только один член в сумме, описывающей меж-

N⁰	δ	Модель Лоренца-Друде					
		e_{∞} , eV	E_{1D} , eV	E_{2D} , eV	A_i	E_i , eV	Γ_i
T1 T2	1.18 0.58	2.0 3.0	19 12	15 17	9.5 19.0	1.7 1.1	1.1 1.2

Таблица 3. Параметры модели для аппроксимации оптических свойств металлических пленок

Таблица 4. Параметры модели для аппроксимации оптических свойств диэлектрических пленок

N⁰	δ	Модель Коши		
		а	b	С
T5 T6	0.05 0.02	2.30 2.20	$\begin{array}{c} 1.00\cdot10^4\\ 8.33\cdot10^4\end{array}$	$\frac{130 \cdot 10^8}{1.98 \cdot 10^{10}}$

зонные переходы ($\theta = 1$). Дисперсионные функции $n(\lambda)$ и $k(\lambda)$ для поглощающих пленок рассчитывались по соотношению: $\dot{\varepsilon}(E) = \dot{N}(E)^2$, где $\dot{N}(E) = n(E) - jk(E)$ — комплексный показатель преломления. Полученные параметры представлены в табл. 3.

Для образцов T5 и T6 дисперсия имела нормальный вид (показатель преломления n уменьшался с ростом длины волны, а показатель поглощения k = 0). Данная зависимость хорошо описывается с помощью полиномиальной дисперсионной модели Коши, которая используется для описания прозрачных диэлектриков:

$$n(\lambda) = a + \frac{b}{\lambda^2} + \frac{c}{\lambda^4},$$

где *a*, *b*, *c* — коэффициенты Коши (табл. 4).

Отжиг пленок не влиял на их оптические свойства при температурах вплоть до 300°С, что указывает на достаточно высокую стабильность пленок нестехиометрического состава. Существенные изменения оптических констант (n, k) наблюдались только после отжига при температуре 600°С и только для образцов пленок с $\delta > 0.11$ (T2, T3) (рис. 5). Оптические константы образцов пленок с $\delta \leq 0.11$ (T4–T6) слабо изменились.

Оптические спектры $n(\lambda)$ и $k(\lambda)$ для пленок Т3 и Т4 не удалось аппроксимировать ни моделью Коши, ни моделью Лоренца-Друде (рис. 3). По характеру оптических спектров они занимают переходную область между металлическими и диэлектрическими пленками. Образец Т3 по свойствам ближе к металлическим и содержит металлические кластеры, а Т4 — к диэлектрическими и не содержит металлических кластеров, что подтвердилось плазмонными пиками в спектрах КРС.

Спектры КРС

При большом отклонении от стехиометрии пленка образца Т1 ($\delta = 1.18$) оказалась непрозрачной для возбуждающего излучения ($\lambda = 514.5$ nm) (рис. 6, *a*). Поэтому сигнал в спектре КРС от подложки кремния не наблюдался. С уменьшением б и увеличением прозрачности пленки проявился пик, отвечающий в кремнии за длинноволновой оптический фонон 520.6 cm^{-1} , а также особенности, связанные с двухфононным рассеянием два акустических фонона (2TA, 300 cm $^{-1}$), оптический и акустический фононы (TO + TA, 650 cm $^{-1}$). Кроме этого, в образцах Т2-Т3 спектры КРС показали присутствие широкого пика, предположительно отвечающего плазмонам. В образце Т4 плазмонный пик явно не проявился. Плазмонные пики можно связать с присутствием в пленках кристаллических кластеров с высокой проводимостью. Дальнейшее уменьшение параметра δ (образцы T5 и Тб) привело к исчезновению плазмонов. Отжиг пленок при температуре 330°С показал возрастание плазмонных пиков в образцах Т2 и Т3. Исходным материалом для роста кластеров в пленках нестехиометрического состава являются избыточные по сравнению со стехиометрическим составом атомы титана (или вакансии кислорода), которые обладают, по-видимому, способностью диффундировать даже при низких температурах (330°С). Вероятно, с уменьшением параметра δ таких атомов Ti (вакансий кислорода) начинает не доставать для роста кластеров.

Спектры КРС показали, что в пленках Т2 и Т3 как до, так и после отжига присутствуют кластеры. Неожиданным оказалось то, что методом СЭМ такие кластеры не удалось визуализировать. Вероятной причиной являлось недостаточное разрешение СЭМ, которое составляло около 10 nm.

Структура по данным СЭМ

Спектры КРС показали, что в образцах с металлическим характером спектральных зависимостей оптических констант присутствуют кластеры (рис. 6). Поэтому для структурных исследований были выбраны образцы с $\delta > 0.11$ (T1–T3). Исходная структура синтезированных пленок по данным СЭМ была аморфной и оставалась таковой при отжигах до температур 300°С. Так как было обнаружено, что существенные различия в оптических спектрах наблюдаются при отжиге при более высоких температурах (рис. 5), то образцы были отожжены при температуре 600°С в течение 15 min.

Наиболее явно кристаллическая структура проявилась после отжига для образцов состава Т2 и Т3 (рис. 7). На изображении СЭМ видно появление в пленках кристаллов микронных размеров. Учитывая толщину исходных

Рис. 5. Зависимости (*a*) показателя преломления *n* и (*b*) показателя поглощения *k* по данным эллипсометрии на длине волны света $\lambda = 532.8$ nm для пленок TiO_{2- δ} от парциального давления кислорода и значения параметра δ .

Рис. 6. Спектры КРС до отжига (a) и после отжига (b) при 330°С в течение 3 h.

пленок, которая была равна 80 nm, очевидно, кристаллы имеют пластинчатую форму.

Оптические потери в ИК и ТГц областях

62

Наиболее интересными с практической точки зрения являются пленки композитного состава, т.е. состоящие из проводящих кластеров в диэлектрической матрице [9]. Такими являются пленки состава $\delta > 0.11$. Необходимо отметить, что в этих пленках при отжиге наиболее ярко проявляются изменения в оптических свойствах: наблюдалось многократное увеличение показателя поглощения k (рис. 5, b). Для исследования оптических потерь в ИК и терагерцовой областях спектра были использованы пленки толщиной 300 nm, выращенные на двухсторонне полированных подложках Si (БЗП) и Ge. Оптические потери (A) вычислялись по формуле A = 1 - R - T, где R и T — коэффициенты отражения и пропускания соответственно.

На рис. 8, *а* показаны спектры оптических потерь для образцов пленок, выращенных с составами $\delta = 0.18, 0.58$ для ИК области спектра и (*b*) — с составом $\delta = 0.58$ для ТГц области спектра. Спектры представлены после сглаживания интерференционных пиков. Видно, что отжиг пленок увеличивает оптические потери как в ИК, так и в терагерцовом диапазонах электромагнитного излучения. Очевидно, рост оптических потерь является следствием формирования композитного материала из-за кристаллизации пленок. В терагерцовой области спектра влияние отжига на оптические потери более существенно, вероятно, из-за формирования кластеров пластинчатой

Рис. 7. СЭМ-изображения поверхности пленок $TiO_{2-\delta}$ после отжига при 600°С с отклонением от стехиометрии $\delta = 0.58$ (*a*), 0.18 (*b*).

Рис. 8. Оптические потери (A) для пленок TiO_{2- δ}: (a) на подложке Si (БЗП, толщина подложки 380 μ m) в ИК области спектра; (b) на подложке Ge (толщина подложки 1 mm) в ТГц области спектра.

формы с размерами, достигающими несколько микрон.

Заключение

Разработана лабораторная технология синтеза тонких аморфных пленок нестехиометрических оксидов титана $\text{TiO}_{2-\delta}$ с прецизионным контролем состава в широком диапазоне ($\delta = 0.02 - 1.18$). Определена взаимосвязь между параметром δ и оптическими константами $n(\lambda)$ и $k(\lambda)$ в видимом и ближнем ИК диапазонах длин волн ($\lambda = 0.35 - 1.0 \,\mu$ m). Пленки с отклонением от стехиометрии $\delta > 0.18$ проявляют металлические свойства, а оптические константы хорошо описываются в рамках модели Лоренца-Друде. Пленки с отклонением $\delta < 0.05$ ведут себя как диэлектрические, а оптические константы описываются моделью Коши. Отжиг пленок при тем-

пературе 600°С в атмосфере аргона с 2% объемной добавкой кислорода приводит к существенному изменению оптических свойств металлических пленок, а на диэлектрические пленки не влияет. В ИК и ТГц диапазонах отжиг пленок с $\delta > 0.18$ увеличивает оптические потери в пленках, что является, вероятно, следствием увеличения размера проводящих кластеров в диэлектрической матрице. Пленки с $\delta = 0.11-0.58$ представляют наибольший интерес для создания теплочувствительных слоев микроболометрических матриц.

Благодарности

Авторы выражают благодарность сотрудникам ИФП СО РАН А.С. Ярошевичу за помощь в определении оптических потерь в ТГц области спектра, Ю.А. Живодкову за анализ образцов методом СЭМ (Центр коллективного пользования "Наноструктуры" ИФП СО РАН) и В.А. Голяшову за измерение спектров РФЭС.

Финансирование работы

Работа была поддержана грантом Российского научного фонда, проект № 24-29-00344.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.Н. Кручинин, В.Ш. Алиев, А.К. Герасимова, В.А. Гриценко. Опт. и спектр., **121** (2), 260–265 (2016). DOI: 10.7868/S0030403416080092
- [2] В.Н. Кручинин, В.А. Володин, Т.В. Перевалов, А.К. Герасимова, В.Ш. Алиев, В.А. Гриценко. Опт. и спектр., **124** (6), 777–782 (2018). DOI: 10.21883/OS.2018.06.46080.39-18
- [3] В.Н. Кручинин, Т.В. Перевалов, В.Ш. Алиев, Р.М.Х. Исхакзай, Е.В. Спесивцев, В.А. Гриценко, В.А. Пустоваров. Опт. и спектр., **128** (10), 1467–1472 (2020). DOI: 10.21883/OS.2020.10.50016.12-20
- [4] Y. Ashok Kumar Reddy, Y.B. Shin, I.K. Kang, H.C. Lee,
 P. Sreedhara Reddy. Appl. Phys. Lett., 107 (2), 023503 (2015). DOI: 10.1063/1.4926604
- [5] С.А. Гаврилов, А.А. Дронов, В.И. Шевяков, А.Н. Белов, Э.А. Полторацкий. Российские нанотехнологии, 4(3-4), 123-129 (2009).
- Y. Ju, Z. Wu, S. Li, X. Dong, Y. Jiang, J. Nanoelectron. Optoelectron., 7 (3), 317–321 (2012).
 DOI: 10.1166/jno.2012.1308
- [7] А.А. Гончаров, А.Н. Добровольский, Е.Г. Костин, И.С. Петрик, Е.К. Фролова. ЖТФ, 84 (6), 98–106 (2014). URL: https://journals.ioffe.ru/articles/viewPDF/ 27261
- [8] H. Malik, S. Sarkar, S. Mohanty, K. Carlson. Sci. Rep., 10 (1), 8050 (2020). DOI: 10.1038/s41598-020-64918-0
- [9] Y. Reddy, Y.B. Shin, I.K. Kang, H.C. Lee. J. Appl. Phys., 119 (4), 044504 (2016). DOI: 10.1063/1.4940957
- [10] L. Li, Z. Wu, Y. Ju, C. Chen. Energy Procedia, 12, 456–461 (2011). DOI: 10.1016/j.egypro.2011.10.061
- [11] V.A. Shvets, V.Sh. Aliev, D.V. Gritsenko, S.S. Shaimeev, E.V. Fedosenko, S.V. Rykhlitski, V.V. Atuchin, V.A. Gritsenko, V.M. Tapilin, H. Wong. J. Non-Crystall. Sol., 354, 3025–3033 (2008). DOI: 10.1016/j.jnoncrysol.2007.12.013
- [12] J.H. Scofield. J. Electron Spectrosc. Rel. Phenomena, 8 (2), 129–137 (1976). DOI: 10.1016/0368-2048(76)80015-1
- [13] С.В. Рыхлицкий, Е.В. Спесивцев, В.А. Швец, В.Ю. Прокопьев. ПТЭ, 2, 161 (2012).
 - DOI: 10.21883/OS.2019.11.48513.136-19
- [14] J.F. Moudler, W.F. Stickle, P.E. Sobol, K.D. Bomben. Handbook of X-ray photoelectron spectroscopy (Perkin-Elmer, Eden Prairie, 1992).
- [15] V.S. Aliev, A.K. Gerasimova, V.N. Kruchinin, V.A. Gritsenko,
 I.P. Prosvirin, I.A. Badmaeva. Mater. Res. Expr., 3 (8), 085008 (2016). DOI: 10.1088/2053-1591/3/8/085008
- [16] Fundamental XPS Data from Pure Elements, Pure Oxides, and Chemical Compounds. URL: http://www.xpsdata.com/fundxps.pdf

- [17] S. Adachi. Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer Science + Business Media, 2013).
- [18] W.S. Werner, K. Glantschnig, C. Ambrosch-Draxl. J. Phys. Chem. Ref. Data, 38 (4), 1013–1092 (2009).
 DOI: 10.1063/1.3243762