¹⁸ Фотодеградация ИК люминесценции коллоидных квантовых точек Ag₂Se

© С.В. Асланов, И.Г. Гревцева, Т.С. Кондратенко, А.М.Н. Hussein, О.В. Овчинников, М.С. Смирнов [¶], А.Н. Латышев

Воронежский государственный университет, Воронеж, Россия [¶]e-mail: smirnov_m_s@mail.ru

Поступила в редакцию 31.10.2024 г. В окончательной редакции 31.10.2024 г. Принята к публикации 25.11.2024 г.

Установлена фотодеградация экситонной и рекомбинационной люминесценции гидрофильных коллоидных квантовых точек (KT) Ag_2Se , пассивированных молекулами 2-меркаптопропионовой кислоты ($Ag_2Se/2MPA$), в полосах с максимумами 705 и 905 nm соответственно. При этом для экситонной полосы люминесценции характерно полное тушение по мере засвечивания образцов КТ $Ag_2Se/2MPA$. Рекомбинационная люминесценция испытывает тушение на 40-60%. Тушение рекомбинационной люминесценции сопровождается ускорением кинетики люминесценции и уменьшением времени затухания с 280 до 210 ns. При этом фотодеградация люминесценции в этой полосе носит обратимый характер. За 24 h выдерживания экспонированного коллоидного раствора КТ $Ag_2Se/2MPA$ происходит длинноволновый сдвиг полосы рекомбинационной люминесценции в область 960–1200 nm при еще большем уменьшении времени ее затухания до 170 ns. Полученные закономерности объяснены формированием соге/shell-систем Ag_2Se/SeO_2 с гетеропереходом I типа.

Ключевые слова: люминесценция, время затухания люминесценции, фотодеградация, квантовая точка, core/shell-система, селенид серебра.

DOI: 10.61011/OS.2025.01.59883.7279-24

Введение

В последние годы большой практический интерес при разработке оптических сенсоров различного назначения вызывают полупроводниковые коллоидные квантовые точки (КТ), обладающие размерно-зависимой люминесценцией [1-3]. Важной проблемой, определяющей возможности ее применения в различных приложениях современной фотоники, является прогнозирование квантового выхода люминесценции коллоидных КТ [4]. Существенное значение при этом приобретают процессы фотоактивации [5,6] и фотодеградации [7] люминесценции КТ, происходящие в результате фотохимических реакций как с участием полупроводникового нанокристаллического ядра, так и органической оболочки. Эти реакции изменяют структуру и размеры КТ вследствие фотокоррозии и фототравления КТ [6,8]. Под действием возбуждающих квантов в одних случаях наблюдают разгорание фотолюминесценции КТ, а в других ее тушение (деградацию или "усталость"). При этом фотодеградация может носить как обратимый, так и необратимый характер [6,7,9]. Вопросы фотоактивации и фотодеградации люминесценции достаточно подробно рассмотрены для коллоидных КТ CdS, CdSe, CdTe, Ag₂S [5-8,10-15]. Основные обсуждаемые механизмы процессов, приводящих к изменению квантового выхода люминесценции: фотодеструкция и фотодесорбция молекул пассиваторов, фотолиз нанокристаллов, фотокаталитические реакции окисления и растворения в присутствии молекул O₂ [6,7,11,12,14,15].

В одних из первых экспериментов, посвященных обсуждаемой проблеме, был продемонстрирован процесс увеличения квантового выхода (фотоактивация) люминесценции KT CdSe при длительном освещении естественным светом [10,11]. Этот процесс связывают с устранением оборванных связей на интерфейсах КТ CdSe при фотокаталитическом образовании SeO2 оболочки. После поглощения кванта излучения происходит инжекция фотовозбужденного электрона на молекулу кислорода (O₂), находящуюся в растворе вблизи интерфейса КТ, и образование иона О₂⁻⁻. Захваченная на оборванную связь Se дырка способствует формированию SeO₂. Таким образом, формируются ярко люминесцирующие КТ типа "ядро-оболочка" CdSe/SeO2, где безызлучательный распад экситонов больше не доминирует над излучательным [11]. Для коллоидных КТ Ag₂S и CdS размерами 2.6-3.2 nm, пассивированных тиогликолевой кислотой (TGA) [12-13], установлено уменьшение интенсивности фотолюминесценции по мере экспонирования образцов излучением с длиной волны 445 nm, начиная со значений действующей мощности 10 mW. Также установлено, что уменьшение оптической плотности по всему контуру спектра поглощения связано с фотодеградацией пассивирующей оболочки. К тому же для КТ Ag₂S установлены признаки фотохимической реакции, сопровождающейся формированием каналов безызлучательной рекомбинации [7,12].

При длительном воздействии облучения на KT core/shell (KT CdSe/ZnS) обнаружено разрушение оболочки ZnS, которое приводит к увеличению вероятности безызлучательных переходов и уменьшению интенсивности люминесценции KT CdSe [16,17]. В работе [18] установлено, что в условиях вакуума при отсутствии кислорода и водяного пара активации фотоиндуцированных процессов CdSe/ZnS не происходит. При этом деградация на воздухе происходит из-за преобладания фотокоррозии (уменьшения эффективности люминесценции) над пассивацией поверхностных дефектов (увеличение интенсивности люминесценции).

Перенос возбужденных носителей заряда из ядра КТ в поверхностные лиганды или окружающие их молекулы также является эффективным путем гашения люминесценции. Фотоиндуцированную деградацию или стабильность люминесценции связывают с взаимным расположением энергетических уровней HOMO-LUMO поверхностных лигандов и КТ. В работах [10,11] отмечается, что в присутствии кислорода и нанокристаллов халькогенидов металлов могут протекать реакции образования супероксида в результате фотопереноса электрона согласно механизму $\mathrm{O}_2 + e^- o \mathrm{O}_2^{(-)}$. В свою очередь дырка может окислять как атомы халькогена [14], так и молекулы пассиватора [15]. Этот процесс влияет на соотношение концентраций центров свечения и безызлучательной рекомбинации, а также приводит к десорбции пассиватора и ухудшению стабильности КТ. Однако в работах [10,11] обнаружено, что аналогичный процесс приводит к усилению люминесценции КТ CdTe и CdSe за счет формирования core/shell-структур CdTe/TeO₂ и CdSe/SeO₂.

В последние годы возрастает интерес к вопросам управления ИК люминесценцией коллоидных КТ из узкозонных полупроводников, таких как Ag_2Se , Ag_2Te , PbS, PbTe и др. В частности, благодаря размерному эффекту для КТ Ag_2Se имеется возможность для управления абсорбционными и люминесцентными свойствами в области 800-2000 nm [19–23]. Однако глубокий анализ закономерностей в люминесценции КТ Ag_2Se , включая проблему ее фотостабильности, пока не выполнен. Имеющиеся в литературе данные о размерных зависимостях спектров люминесценции КТ Ag_2Se , синтезированных разными способами с использованием разных прекурсоров о стоксовом сдвиге и достижимых значениях квантового выхода противоречивы [20–24].

Представленные в настоящей работе результаты исследований посвящены выяснению закономерностей фотопроцессов, определяющих деградацию экситонной и рекомбинационной ИК люминесценции КТ Ag₂Se/2MPA.

Образцы

Все использованные реактивы (нитрат серебра (AgNO₃), 2-меркаптопропионовая кислота (2MPA), гидроксид натрия (NaOH), селен (Se), сульфит натрия (Na₂SO₃)) имели чистоту XЧ или ОСЧ и использовались без дополнительной очистки.

Коллоидные КТ Ag_2Se синтезировали в воде в рамках единого подхода [19]. В качестве пассиватора использовали 2MPA, для которой характерен минимальный выход ионов серы, что препятствует образованию фазы Ag_2S .

Синтез КТ Ag₂Se базировался на использовании двух прекурсоров: прекурсора серебра Ag⁺/2MPA, полученного из раствора 1 mmol AgNO₃ в 50 ml воды и 2 mmol 2MPA при pH 10, и прекурсора селена — из селена (Se) и сульфита натрия (Na₂SO₃) в соотношении 1:0.5. Стоит отметить, что без внесения прекурсора селена раствор Ag⁺/2MPA оставался бесцветным и прозрачным, что указывает на отсутствие выхода ионов серы из 2MPA. Прекурсор селена каплями вносили в раствор Ag⁺/2MPA. Было получено три образца КТ Ag₂Se/2MPA с соотношениями концентраций [Ag]: [Se], равными 1:0.2 (далее КТ Ag₂Se(0.2)), 1:0.3 (далее Ag₂Se(0.3)) и 1:0.4 (далее Ag₂Se(0.4)). Последующее внесение прекурсора селена приводило к потере коллоидной стабильности раствора и выпадению осадка.

Для выяснения влияния молекулярного кислорода на фотостабильность КТ Ag₂Se синтезировали серию КТ Ag₂Se(0.3)/2MPA с разным содержанием сульфита натрия, выступающего в роли антиоксиданта [25]. Использованные соотношения концентраций [Na₂SO₃]: [Na₂SeSO₃] составляли 0.5: 1, 1: 1 и 5: 1.

На рис. 1 представлены ПЭМ-изображения КТ Ag_2Se , полученных при использовании различных концентраций селена. Анализ ПЭМ-изображений КТ $Ag_2Se(0.2)/2MPA$ показал, что средний размер нанокристаллов составляет 2.1 nm при разбросе по размеру, составляющем 7–10%. Для КТ $Ag_2Se(0.3)/2MPA$ средний размер увеличивался до 2.3 nm, а дисперсия - до 20%. Для КТ $Ag_2Se(0.4)/2MPA$ наблюдали нанокристаллы средним размером 2.6 nm с дисперсией по размеру 35%.

Методики исследований

Структурную аттестацию синтезированных КТ Ag₂Se осуществляли методом просвечивающей электронной микроскопии на ПЭМ Libra 120 (CarlZeiss, Германия) с ускоряющим напряжением 120 kV. Данные о распределении КТ по размерам получали путем цифрового анализа ПЭМ-изображений.

Для регистрации спектров оптического поглощения и люминесценции в диапазоне 200–900 nm применяли волоконный спектрометр USB2000+ (OceanOptics, CIIIA) с источником излучения USB-DT. Регистрацию спектров оптического поглощения в диапазоне 900–1400 nm осуществляли при помощи спектрометра G9203-256

Рис. 1. ПЭМ-изображения и гистограммы распределения по размеру исследованных образцов КТ Ag₂Se/2MPA.

(Vision2Go, Россия) с лампой накаливания в качестве источника излучения. Для регистрации спектров люминесценции, возбуждаемой излучением с длиной волны 660 nm в области 900-1400 nm, применяли автоматизированный комплекс на основе дифракционного монохроматора с решеткой 600 mm⁻¹, оснащенный фотоприемником PDF10C/M (Thorlabs, США). Спектры корректировались на функцию спектральной чувствительности детектора, измеренную при помощи эталонной лампы накаливания. Для записи спектров возбуждения в области 500–1300 nm применяли второй дифракционный монохроматор с решеткой 1200 mm⁻¹ с лампой накаливания.

Время-разрешённую люминесценцию в области до 900 nm регистрировали при помощи модуля ФЭУ РМС-100-20 (Becker&Hickl, Германия), а в области 900–1400 nm — модуля с однофотонным лавинным диодом InGaAs KIT-IF-25C (Micro Photon Devices, Италия) с использованием платы время-коррелированного счёта фотонов TimeHarp 260 (PicoQuant, Германия). Временное разрешение в видимой области составляло 0.2 ns, в ИК области — 0.5 ns. Возбуждение образцов осуществляли полупроводниковым импульсным лазером PICOPOWER LD660 (Alphalas, Германия) с длиной волны 660 nm и длительностью импульса 60 ps.

Регистрацию фотодеградации люминесценции осуществляли путем измерения интенсивности фотолюминесценции КТ Ag₂Se в максимуме полосы люминесценции под воздействием излучения с длинами волн 462, 532 и 660 nm и мощностью 50 mW в течение 1 h. Контроль мощности излучения осуществляли измерителем оптической мощности PM100A Thermal Power Sensor Head S401C (Thorlabs, CIIIA). Источниками возбуждения служили полупроводниковые лазерные диоды NDB7675 (Nichia, Япония) с длиной волны 462 nm, PM-G80 (CST, Китай) — 532 nm и LPC-826 (Mitsubishi, Япония) — 660 nm. Измерения проводились при комнатной температуре, в процессе возбуждения образец КТ перемешивался, площадь образца, освещенная возбуждающим излучением, составляла 0.5 cm², луч падал на образец перпендикулярно плоскости кюветы. Концентрация КТ в растворе составляла порядка 10¹⁶ QDs/ml.

Результаты и их обсуждение

На рис. 2 представлены спектрально-люминесцентные свойства образцов КТ $Ag_2Se/2MPA$ до и после засветки излучением с длинами волн 462, 532 и 660 nm и мощностью 50 mW/cm².

В спектрах оптического поглощения образцов КТ Ag₂Se/2MPA наблюдали широкие, сдвинутые в корот-коволновую область относительно края фундаментального поглощения монокристаллов Ag₂Se ($E_g = 0.4 \,\mathrm{eV}$) полосы с характерными особенностями в области основного экситонного перехода. Для КТ Ag₂Se(0.2)/2MPA в спектре поглощения наблюдали выраженную структуру

Рис. 2. Спектры люминесценции (вверху) и поглощения (внизу) КТ Ag₂Se/2MPA до засветки (красные линии), после засветки (синие линии) и через 24 h в темноте (зеленые линии, для образцов, засвеченных излучением 462 nm). Штриховые линии — восстановление люминесценции после засветки излучением 660 nm.

экситонного поглощения в области 640 nm. Наличие структуры в спектре свидетельствует о малой дисперсии КТ по размерам, что согласуется с данными ПЭМ.

При увеличении соотношения [Ag]: [Se] до 0.3 наблюдали размытие экситонной структуры и длинноволновое смещение края поглощения на 20–30 nm с незначительным увеличением среднего размера и дисперсии нанокристаллов по размеру. Дальнейшее увеличение соотношения [Ag]: [Se] до 0.4 приводило к сдвигу экситонной структуры в спектре поглощения к 720 nm вследствие размерного эффекта и ещё большему ее размытию из-за увеличения разброса нанокристаллов по размеру. Таким образом, наблюдается корреляция между данными ПЭМ и спектрами поглощения КТ.

В спектрах люминесценции КТ Ag₂Se(0.3)/2MPA наблюдали две полосы люминесценции с максимумами, расположенными в области 705 и 905 nm. Для первой полосы стоксов сдвиг относительно пика экситонного поглощения составил 0.15 eV и время затухания люминесценции — 2.43 µs, а для второй — 0.54 eV и

Рис. 3. Нормированная зависимость интенсивности люминесценции КТ Ag₂Se/2MPA в максимуме полосы от времени экспонирования излучением с длинами волн из диапазона 462–660 nm.

290 пѕ соответственно. Полученные значения указывают на экситонный характер люминесценции в первой полосе и рекомбинационный во второй. Для коллоидных КТ Ag₂Se, синтезированных при соотношении [Ag]: [Se], уменьшенном до 0.2, наблюдалось разгорание коротковолновой экситонной полосы люминесценции в области 705 nm и исчезновение полосы рекомбинационной люминесценции с максимумом в области 905 nm. Увеличение соотношения [Ag]: [Se] до 0.4, наоборот, приводило к полному тушению экситонной полосы с сохранением рекомбинационной люминесценции с максимумом при 905 nm.

На рис. 3 представлены результаты, демонстрирующие изменения спектрально-люминесцентных свойств КТ Ag_2Se по мере их экспонирования излучением с длинами волн 462, 532 и 660 nm и мощностью 50 mW. Обнаруженные закономерности в люминесценции были схожими. В течение часа наблюдалось полное тушение экситонной люминесценции и снижение интенсивности рекомбинационной люминесценции на 60, 40 и 20% соответственно для длин волн 462, 532 и 660 nm. При этом кинетика фотодеградации люминесценции носила сложный, не экспоненциальный характер (рис. 3).

Таким образом, интенсивность как экситонной, так и рекомбинационной люминесценции испытывала максимальную фотодеградацию в течение первых 10–15 min экспонирования. После этого скорость тушения люминесценции снижалась. Спустя 30–40 min экспонирования фотодеградация рекомбинационной люминесценции практически прекращалась. Экситонная полоса полностью тушилась в течение 40–50 min. Скорость деградации люминесценции для образцов с большим содержанием селена была выше, чем у образцов с меньшим содержанием селена. Экспонирование КТ не приводило к смещению максимума полосы рекомбинационной люминесценции.

После экспонирования коллоидные КТ Ag₂Se выдерживали в темноте при комнатной температуре в течение 24 h. В результате для всех образцов наблюдали увеличение интенсивности рекомбинационной люминесценции и смещение пика в длинноволновую область к 930-1230 nm. Экситонная люминесценция не восстанавливалась. Величина смещения пика рекомбинационной люминесценции при ее восстановлении возрастала по мере роста концентрации прекурсора Se. При этом полуширина полосы рекомбинационной люминесценции уменьшалась с 0.35 до 0.26 eV. Для образцов КТ Ag₂Se(0.2)/2MPA, не обладавших рекомбинационной люминесценцией изначально, наблюдали ее появление в области 910-1025 nm. Перечисленные особенности указывают на участие в механизме деградации/восстановления люминесценции фотохимических реакций с участием селена. Длинноволновой сдвиг максимума полосы люминесценции сопровождается сдвигом максимума экситонного поглощения в область 730-1040 nm, что свидетельствует об увеличении размера нанокристаллов на 15-20%. При этом стоксов сдвиг в полосе рекомбинационной люминесценции уменьшался с 0.55 до 0.25-0.3 eV (в зависимости от концентрации селена и длины волны экспонирования).

Кинетика затухания люминесценции КТ Ag_2Se также претерпевает изменения в результате экспонирования. На рис. 4 представлены кривые затухания люминесценции КТ $Ag_2Se(0.3)/2MPA$, записанные на длинах волн 705 и 905 nm вблизи пиков обеих полос люминесценции. Все кривые затухания люминесценции неэкспоненциальны. Среднее время затухания люминесценции определяли путем аппроксимации эмпирических кривых затухания суммой нескольких экспонент:

$$I(t) = \sum_{i=1}^{3} a_i \exp[-t/\tau_i],$$
 (1)

Рис. 4. Кривые затухания люминесценции для КТ Ag₂Se(0.3)/2MPA до, после воздействия излучения 462 nm и после темнового восстановления.

Рис. 5. Гистограммы интенсивности люминесценции для KT $Ag_2Se(0.3)$ после 60 min экспонирования излучением с длиной волны 462 nm, 50 mW: слева — при разной концентрации Na_2SO_3 и постоянном соотношении $[Ag^+]$: [MPA] = 1:2; справа - при разном соотношении $[Ag^+]$: [MPA] и постоянной концентрации Na_2SO_3 .

$$\langle \tau \rangle = \sum_{i=1}^{n} a_i \tau_i / \sum_{i=1}^{n} a_i, \qquad (2)$$

где a_i и τ_i — амплитуда и постоянная времени *i*-й компоненты.

Среднее время затухания люминесценции для КТ Ag₂Se составляло порядка 2400 ns для экситонной полосы и 280 ns для рекомбинационной. Экспонирование коллоидных растворов приводило к полному тушению полосы экситонной люминесценции, частичному уменьшению интенсивности и времени затухания рекомбинационной люминесценции до 210 ns. После выдерживания экспонированных КТ в темноте, несмотря на увеличение квантового выхода люминесценции в три раза, наблюдалось дальнейшее ускорение кинетики затухания люминесценции (" τ " = 170 ns). Несоответствие между кинетикой затухания и квантовым выходом люминесценции здесь, по-видимому, определяется самим механизмом свечения. Действительно, для рекомбинационной люминесценции простая двухуровневая модель, в рамках которой квантовый выход люминесценции и время затухания связаны прямо пропорционально, неприменима. Процесс излучения напрямую не конкурирует с безызлучательной рекомбинацией на этом же центре. Многообразие фотопроцессов перед рекомбинационной люминесценцией делают связь кинетики свечения с квантовым выходом нетривиальной.

Следующим этапом исследований закономерностей фотодеградации ИК люминесценции КТ Ag₂Se/2MPA было выяснение влияния на нее процессов с участием кислорода, в частности фотопереноса носителей заряда к молекулам кислорода, разрушения/десорбции пассиватора и последующее окисление поверхности КТ. Для проверки данной гипотезы синтезировали серию образцов КТ Ag₂Se(0.3)/2MPA с различным содержанием пассиватора 2MPA и различной концентрацией антиоксиданта

Na₂SO₃ и провели исследование фотостабильности синтезированных образцов. Результаты приведены на рис. 5.

Внесение в коллоидный раствор антиоксиданта Na_2SO_3 и увеличение его концентрации приводит к улучшению фотостабильности люминесценции. Так, при отношении $[SO_3] : [SeSO_3] = 0.5$ наблюдается полное тушение полосы экситонной люминесценции в области 705 nm. Увеличение отношения $[SO_3] : [SeSO_3]$ до 1 привело к тому, что ИК люминесценция КТ $Ag_2Se(0.3)/2MPA$ в полосе экситонного свечения (705 nm) при воздействии излучения с длиной волны 462 nm (в течении 60 min) фотодеградировала только на 31%. Увеличение отношения $[SO_3] : [SeSO_3]$ до 5 способствовало сохранению интенсивности экситонной люминесценции без её падения при возбуждении КТ $Ag_2Se(0.3)/2MPA$.

Аналогично увеличение концентрации пассиватора постоянном антиоксиданта при количестве $([SO_3] : [SeSO_3] = 1)$ приводило К улучшению фотостабильности КТ. Так, при отношении концентраций [Ag]: [2MPA], равному 1:1, тушение экситонной люминесценции составило только 47% в течение часа. При отношении [Ag]:[2MPA], равному 1:2, тушение полосы экситонной люминесценции составило 31%, а при соотношении 1:3 оно составило 10%. Таким образом, сделан вывод о том, что в процессах фотодеградации ИК люминесценции КТ Ag₂Se/2MPA участвует не только молекулярный кислород, но и процесс десорбции пассиватора.

Улучшение фотостабильности ИК люминесценции КТ Ag₂Se/2MPA в присутствии антиоксиданта, связывающего молекулярный кислород, указывает в пользу участия в фотодеградации свечения КТ молекулярного кислорода. При этом, поскольку при хранении образца в темноте не наблюдается самопроизвольной деградации ИК люминесценции КТ Ag₂Se/2MPA, ее возникновение результат фотохимической реакции. Замедление фотодеградации ИК люминесценции с ростом концентрации пассиватора в растворе указывает на то, что первой стадией в процессе деградации люминесценции является фоторазрушение/фотодесорбция пассиватора. Этот процесс замедляется в присутствии больших концентраций пассиватора, поскольку в этом случае происходит смещение равновесия сорбции/десорбции пассиватора в сторону сорбции. В свою очередь при низкой концентрации пассиватора происходит его десорбция и окисление поверхности КТ кислородом с формированием слоя диоксида селена SeO2. Диоксид селена является широкозонным полупроводником с шириной запрещенной зоны 3.7 eV. Таким образом, полученные результаты свидетельствуют в пользу окисления поверхности КТ и формирования вокруг неё оболочки SeO₂.

Формирование из широкозонного оксида селена оболочки приводит к образованию core/shell-систем Ag₂Se/SeO₂, энергетические свойства которых указывают на гетеросистему I типа. Это предположение также подтверждается закономерностями в кинетике затухания

люминесценции. При восстановлении люминесценции наблюдается уменьшение среднего времени жизни при увеличении интенсивности свечения. Это в свою очередь указывает на увеличение эффективности излучательной рекомбинации за счёт формирования широкозонной оболочки.

Заключение

В работе представлены результаты исследований процесса фотодеградации и темнового восстановления для экситонной (705 nm) и рекомбинационной люминесценции (905 nm) гидрофильных коллоидных квантовых точек (КТ) Ag₂Se, покрытых молекулами 2MPA. Обнаружено, что экситонное свечение особенно чувствительно к экспонированию коллоидного раствора — для него характерно полное исчезновение фотолюминесценции при освещении в течение 1 h излучением с длинами волн в диапазоне 462–660 nm и мощностью 50 mW. При этом рекомбинационное излучение при аналогичных экспозициях испытывает тушение на 40–60%.

Исследования кинетики затухания рекомбинационной люминесценции методом время-коррелированного счёта одиночных фотонов показали, что тушение свечения сопровождается сокращением времени затухания с 280 до 210 пs. Обнаружено, что выдерживание экспонированных коллоидных растворов КТ Ag₂Se без освещения 24 h сопровождается ростом квантового выхода люминесценции. При этом пик рекомбинационной люминесценции смещается в длинноволновую область к 960–1200 nm, а время затухания люминесценции сокращается до 170 ns.

Обнаруженные закономерности в люминесценции объяснены фотохимическими реакциями, в результате которых формируются core/shell-системы Ag₂Se/SeO₂ с гетеропереходом I типа.

Благодарности

Результаты просвечивающей электронной микроскопии на микроскопе Libra 120 были получены на оборудовании Центра Коллективного Пользования ФГБОУ ВО "Воронежский государственный университет".

Финансирование работы

Исследование выполнено при финансовой поддержке Российского научного фонда в рамках научного проекта № 22-12-00232.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Quantum Dots Fundamentals, Synthesis and Applications, ed. by Rakshit A., Jayesh P. Bhatt Suresh C. Ameta (Elsevier, 2022).
- [2] Fundamentals of Sensor Technology Principles and Novel Designs, ed. by Ahmed Barhoum, Zeynep Altintas (Elsevier, 2023).
- [3] Sensors Based on Nanostructured Materials, ed. by F. Arregui (Springer, 2009).
- [4] J. Kim, J. Roh, M. Park, C. Lee. Adv. Mater., 36, 2212220 (2024). DOI: 10.1002/adma.202212220
- [5] M.G. Spirin, S.B. Brichkin, V.Yu. Gak, V.F. Razumov. J. Lumin., 226, 117297 (2020).
 DOI: 10.1016/j.jlumin.2020.117297
- [6] O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, I.G. Grevtseva, A.S. Perepelitsa. RSC Adv., 9, 37312–37320 (2019).
 DOI: 10.1039/c9ra07047h
- [7] O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko. J. Lumin., 207, 626–632 (2018).
 DOI: 10.1016/j.jlumin.2018.12.019
- [8] D.G. Kim, N. Teratani, M. Nakayama. Jpn. J. Appl. Phys., 41, 5064 (2002). DOI: 10.1143/JJAP.41.5064
- [9] R. An, F. Zhang, X. Zou, et al. ACS Appl. Mater. Interfaces, 10 (45), 39222–39227 (2018). DOI: 10.1021/acsami.8b14480
- [10] M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, G. Rumbles. J. Phys. Chem. B, 107 (41), 11346–11352 (2003). DOI: 10.1021/jp035598m
- [11] Y. Wang, Z. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N.A. Kotov, L.M. Liz-Marzán. J. Phys. Chem. B, 108 (40), 15461–15469 (2004). DOI: 10.1021/jp048948t
- [12] М.С. Смирнов, О.В. Овчинников, И.Г. Гревцева, А.И. Звягин, А.С. Перепелица, Р.А. Ганеев. Опт. и спектр., **124** (5), (2018). DOI: 10.61011/OS.2025.01.59883.7279-24
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Optical and Quantum Electronics, 52 (4), 1998 (2020).
 DOI: 10.61011/OS.2025.01.59883.7279-24
- [14] A. Henglein. Electrochemistry II. Topics in Current Chemistry, 143 (1988). DOI: 10.1007/BFb0018073
- [15] V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii, A.A. Chistyakov, I. Nabiev. Proc. SPIE, 9126, 91263N-8 (2014). DOI: 10.1117/12.2057828
- [16] K.V. Vokhmintcev, C. Guhrenz, N. Gaponik, I. Nabiev, P.S. Samokhvalov. IOP Conf. Series: J. Physics: Conf. Series, 784, 012014 (2017). DOI: 10.1088/1742-6596/784/1/012014
- [17] J.A. Kloepfer, S.E. Bradforth, J.L. Nadeau. J. Phys. Chem. B, 109, 9996–10003 (2005). DOI: 10.1021/jp044581g
- [18] E.V. Klyachkovskaya, S.V. Vashchenko, A.P. Stupak, S.V. Gaponenko. J. Appl. Spectrosc., 77 (5), (2010).
 DOI: 10.1007/s10812-010-9395-4
- I. Grevtseva, O. Ovchinnikov, M. Smirnov, S. Aslanov, V. Derepko, A. Perepelitsa, T. Kondratenko. J. Lumin., 257, 119669 (2023). DOI: 10.1039/d1ra08806h
- [21] A. Sahu, A. Khare, D.D. Deng, D.J. Norris. Chem. Commun., 48, 5458 (2012). DOI: 10.1039/c2cc30539a
- [22] A. Tubtimtae, M.W. Lee, G.J. Wang. J. Power Sources, 196, 6603–6608 (2011). DOI: 10.1016/j.jpowsour.2011.03.074
- [23] L.J. Shi, C.N. Zhu, H. He, D.L. Zhu, Z.L. Zhang, D.W. Pang, Z.Q. Tian. RSC Adv. 6, 38183–38186 (2016).
 DOI: 10.1039/c6ra04987g

- [24] A. Langevin, D. Lachance-Quirion, A.M. Ritcey, C.N. Allen.
 J. Phys. Chem. 117, 5424–5428 (2013).
 DOI: 10.1021/jp311206e
- [25] B. Ramezanloo, M. Molaei, M. Karimipour. J. Lumin., 204, 419–423 (2018). DOI: 10.1016/j.jlumin.2018.08.049
- [26] M. Shi, J. Ding, X. Liu, Q. Zhong. Atmospheric Pollution Research, 10 (2), 412–417 (2019).
 DOI: 10.1016/j.apr.2018.08.010