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Anisotropy of polarization of interband photoluminescence
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The degree of linear polarization of interband photoluminescence in an InAs crystal doped with donors in an

electric field was calculated. The polarization anisotropy arises due to the anisotropy of the electron distribution

function over states in momentum space, associated with the electron drift in the electric field, and the dependence

of the optical matrix elements on the angle between the polarization vector and the electron wave vector. A quasi-

equilibrium distribution function shifted in velocity space was used. The electron temperature was determined

from the power balance equation. The effect of nonequilibrium phonon accumulation was taken into account in

calculating the rate of energy loss by hot electrons. The nonparabolicity of the conduction band was taken into

account using the Kane dispersion law.
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1. Introduction

Photoluminescence (PL) is a powerful non-destructive

tool for the characterization of semiconductors and semi-

conductor nanostructures [1]. The analysis of photolumines-

cence spectra makes it possible to determine such important

characteristics as the energy spectrum of charge carriers [2],
the binding energy of excitons [3], and the lifetimes of

nonequilibrium charge carriers [4]. The characteristic times

of the electron-electron and electron-phonon interactions in

graphene were determined using the analysis of photolumi-

nescence spectra [5]. The temperature maps of the crystal

lattice and hot electrons of were simultaneously determined

in GaN HEMT devices [6]. The study of photoluminescence

during interband optical pumping is the initial stage of

the development of many optoelectronic devices (quantum
cascade and injection lasers, LEDs, photodetectors, single

photon sources, etc.).
The study of photoluminescence and other optical

phenomena under highly nonequilibrium conditions is of

particular interest. The study of optical phenomena re-

lated to nonequilibrium charge carriers is of considerable

interest, since many optoelectronic devices (cascade and

injection semiconductor lasers, cascade photodetectors, ra-

diation modulators) operate under conditions of heating

of charge carriers. Hot electron detectors of radiation

based on metal−semiconductor plasmonic structures were

created [7–9]. The sensitivity of such detectors is still low

compared to classical devices based on InAs, GaAs and

CdHgTe, however, there are prospects for its increase [7].
The absorption of radiation with a photon energy sig-

nificantly exceeding the band gap is one of the ways to

create nonequilibrium distributions of charge carriers. The

nonequilibrium distribution of photoexcited electrons by

states, which is formed in the processes of thermalization

and recombination, is theoretically considered in Ref. [10],
taking into account the heating of electrons, holes, and

phonons.

The so-called
”
hot photoluminescence“ [11] is a striking

example of the anisotropic effect when electrons are heated

by light. It can be observed if the photon energy of

linearly polarized exciting radiation significantly exceeds

the band gap of a semiconductor. In this case, the

momenta of nonequilibrium electrons are aligned at the

initial stage of energy relaxation, due to the dependence of

the optical matrix element on the angle between the electron

momentum and the radiation polarization vector. The

anisotropic distribution of nonequilibrium electrons leads to

anisotropy of the polarization of recombination radiation.

Such anisotropy is observed for the short-wavelength edge

of the radiation spectrum.

An anisotropic momentum distribution of nonequilibrium

electrons is created by anisotropic excitation in the case

of hot photoluminescence. The momentum distribution of

electrons becomes symmetrical during the time of energy

relaxation to the bottom of the conduction band, and the

linear polarization of photoluminescence disappears. An

anisotropic momentum distribution of thermalized electrons

can be formed by applying an electric field that causes

heating and electron drift. The drift of electrons in

an electric field means that they have an average drift

momentum directed along the electric field. The intensity of

recombination radiation polarized parallel and perpendicular

to the applied field will vary in accordance with the

dependence of the optical matrix elements on the angle
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between the electron momentum and the polarization

vector.

The anisotropy of the polarization of luminescence of hot

electrons in an electric field should be most noticeable in

semiconductors with high mobility. Previously, this effect

was observed in n-InSb [12], but this phenomenon and

its spectral dependence have not been studied in detail.

Photoluminescence in n-InN under conditions of an applied

electric field was studied in Ref. [13]. However, only the

effect of heating of electrons in an electric field on the

luminescence spectrum was analyzed in this paper, and the

polarization characteristics of PL were not studied. The

results of an experimental study of the infrared photolu-

minescence spectra of a doped epitaxial layer of gallium

arsenide under conditions of heating of charge carriers by

an electric field are presented in Ref. [14]. The anisotropy

of the polarization of photoluminescence radiation, which

occurs due to the anisotropy of the hot electron distribution

function and the angular dependence of the interband

optical matrix element in the momentum space, was

discovered and studied. It was shown that the experimental

data are consistent with the theoretical model (calculations
were performed in the parabolic approximation).
The effect of the nonequilibrium distribution of electrons

over states on the optical characteristics of a semiconductor

associated with interband transitions of charge carriers was

also studied in Ref. [15], which demonstrated the effect of

electron drift in n-InSb in an electric field on the interband

absorption of radiation of two polarizations — along of the

applied field and perpendicular to it. The dependence of

radiation absorption on its polarization was described in the

framework of the parabolic approximation.

This paper presents the results of a detailed calculation

of the anisotropy of luminescence polarization in a high-

mobility bulk semiconductor n-InAs. The calculation takes

into account the nonparabolicity of the conduction band

and the effect of accumulation of nonequilibrium optical

phonons. It should be noted that the ability to control the

polarization of photoluminescence radiation is of interest

for the development of radiation sources with a given

polarization.

2. Determination of the temperature
of hot electrons

All calculations in this paper are performed for

a bulk semiconductor n-InAs doped to the level

of n = 2.2 · 1016 cm−3 with the lattice temperature of

T0 = 90K. The anisotropic deformation of the distribution

function in the momentum space is a necessary condition

for observing the anisotropy of photoluminescence polariza-

tion in a cubic semiconductor in an electric field. Electron-

electron collisions effectively redistribute the energy coming

from the electric field between the electrons at sufficiently

high concentrations of free electrons. In this case, it

is possible to use the quasi-equilibrium Fermi−Dirac or

Maxwell−Boltzmann f e(k) distribution function (k —
electron wave vector) with the electron temperature Te > T0

and drift velocity vdr used as parameters [16]. The drift

velocity can be determined experimentally by analyzing the

current-voltage characteristic.

Let’s find the dependence of the electron temperature on

the applied electric field. An external electric field leads to

an increase of the average energy of a free electron with a

velocity of eµeF
2, where e — carrier charge, F — applied

electric field, µe — the mobility of electrons. The steady

state is achieved when the average rate of energy gain by

electrons is balanced by the average rate of its transfer to

the phonon subsystem 〈dE/dt〉:

eµeF
2 = 〈dE/dt〉. (1)

The average rate of energy loss by an electron is

determined by averaging the rate of energy loss dE/dt,
depending on the scattering mechanism, over an ensemble

of electrons. The scattering over longitudinal optical

phonons is the dominant mechanism of free electron energy

relaxation in InAs at liquid nitrogen temperatures and

not too high electron concentrations [17]. The effect of

phonon accumulation becomes noticeable due to the finite

lifetime of nonequilibrium phonons emitted by electrons

with sufficiently high energy, which should be taken into

account in calculations. To do this, it is convenient to use

a different approach to calculating the average energy loss

rate based on using the rate of change in the number of

phonons due to scattering.

The number of phonons is determined by their distribu-

tion function (DF) Nq. The DF of optical phonons corre-

sponds to the Bose−Einstein statistics in the equilibrium

state:

Nq0 =

(

exp

(

~ωLO

kBT0

)

− 1

)−1

, (2)

where ~ωLO = 29.8meV [18] — the energy of the longitu-

dinal optical phonon in InAs, kB — the Boltzmann constant.

The DF can be represented as the sum of the equilibrium

DF and the nonequilibrium additive when taking into

account the accumulation of LO-phonons:

Nq = Nq0 +
dNq

dt
τ LO

q , (3)

where τ LO
q is the lifetime of nonequilibrium LO-phonons.

The lifetime of nonequilibrium optical phonons in InAs

is determined by the decay of a long-wavelength optical

phonon into two short-wavelength acoustic phonons [19].
We used the value τ LO

q = 5.8 ps for calculations, obtained in

Ref. [19] for the lattice temperature of 77K. The lifetime will

slightly decrease with an increase in the lattice temperature

to 90K, which should not significantly change the results

obtained.

Now it is possible to write the average rate of energy loss

by an electron as the product of the rate of change of the

phonon DF dNq/dt by the phonon energy ~ωLO, summed
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over all phonon wave vectors q and divided by the number

of electrons nV , where V — normalization volume:

〈dE/dt〉 =

∑

q ~ωLO
dNq

dt

nV
. (4)

The rate of change of the number of phonons
dNq

dt can be

determined using perturbation theory [16]:

dNq

dt
=

2π

~

∑

k

{

|〈k, Nq + 1|HLO|k + q, Nq〉|
2

× f e(k + q)δ(Ee(k + q) − Ee(k) − ~ωLO)

− |〈k + q, Nq − 1|HLO|k, Nq〉|
2

× f e(k)δ(Ee(k) − Ee(k + q) + ~ωLO)
}

, (5)

where the first term is related to the emission of phonons

by free electrons, and the second term is related to

their absorption; Dirac’s δ-function reflects the law of

conservation of energy.

When calculating dNq/dt according to (5) in this paper,

we take into account the nonparabolicity of the dispersion

law for the conduction band using the Kane model [20]:

Ee(k) =
1

2α





√

1 +
2α~2k2

me
− 1



 , (6)

where α = 1
Eg

(

1− me
m0

)2
— nonparabolicity parameter [21],

Eg = 0.405meV — InAs band gap at 90K [22], m0 —
mass of a free electron, me = 0.026m0 — effective mass of

electrons at the point Ŵ of the conduction band [22]. Using
the Kane model to describe the law of dispersion of the

InAs conduction band in the equilibrium case is a generally

accepted approach. A relatively low concentration of free

electrons is used in this paper, which occupy states near

the bottom of the conduction band, so that interaction with

distant bands can be neglected. The shift of the distribution

function relative to the Brillouin zone is also small in electric

fields not exceeding 1000V/cm.

We use matrix elements corresponding to the parabolic

approximation in (5) to simplify calculations. In this case,

taking into account the screening effects, the squares of

the modules of the matrix elements associated with the

emission and absorption of phonons look as follows [17]:

|〈k, Nq + 1|HLO|k + q, Nq〉|
2

=
2π~

2eE0

V meq2
(1 + (qrD)−2)−2(Nq + 1), (7)

|〈k + q, Nq − 1|HLO|k, Nq〉|
2

=
2π~

2eE0

V meq2
(1 + (qrD)−2)−2Nq, (8)

where E0 = eme~ωLO(ε−1
∞ − ε−1

0 )/~2 — the interaction

constant of an electron with a phonon, ε∞ = 11.91 and

ε0 = 14.55 — high-frequency and low-frequency permit-

tivity [18], rD = (ε∞kBTe/4πe2n)1/2 — Debye screening

radius for a non-degenerate electron gas.

The electron gas is non-degenerate for the considered

electron concentration n. If we do not take into account

the weak anisotropy in the phonon distribution over q
associated with electron drift in the field (and, accordingly,
with the anisotropy of the electron momentum distribution

function), then in (5) the DF of nonequilibrium electrons

can be considered symmetric in momentum space and

obeying Maxwell−Boltzmann statistics:

f e(k) = f e0(k) =
n

Nc
exp

(

−
Ee(k)

kBTe

)

, (9)

where Te is the nonequilibrium temperature of hot electrons,

and Nc =
∫

ZB
exp

(

−Ee(k)
kBTe

)

2dk
(2π)3

is the effective density of

states in the conduction band obtained by integration within

the boundaries of the Brillouin zone (ZB).

Let’s note that the Dirac’s δ-function is symmetric, and

let’s proceed in (5) from summation over all k of the first

Brillouin zone to integration:

dNq

dt
=

2π

~

∫

ZB

{

|〈k, Nq + 1|HLO|k + q, Nq〉|
2

× f e(k + q) − |〈k + q, Nq − 1|HLO|k, Nq〉|
2

× f e(k)
}

δ
(

Ee(k + q) − Ee(k) − ~ωLO

) 2V dk
(2π)3

, (10)

where 2V dk
(2·π)3

is the number of quantum states in the

elementary volume dk = dkxdky dkz , taking into account

the twofold spin degeneracy. Let’s move on to integration

using spherical coordinates (0 ≤ θ ≤ π — polar angle,

0 ≤ ϕ ≤ 2π — azimuthal angle, k — wave vector modulus,

d — the period of the crystal lattice):

dNq

dt
=

2π

~

2π
∫

ϕ=0

π
∫

θ=0

π/d
∫

0

{

|〈k, Nq + 1|HLO|k + q, Nq〉|
2

× f e(k + q) − |〈k + q, Nq − 1|HLO|k, Nq〉|
2 · f e(k)

}

× δ
(

Ee(k + q) − Ee(k) − ~ωLO

) 2k2V sin θdkdθdϕ
(2π)3

.

(11)
Let’s direct the axis OZ in the direction of the vector q.

It should be noted that the integral expression does not

depend on the angle ϕ, but f e(k + q) = f e(k, q, cos θ).

Let us denote the argument of the δ-function in (11) by

I(cos θ) and express the energies Ee(k + q) and Ee(k) using
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the law of dispersion (6):

I(cos θ) =
1

2α

(

√

1 +
2α~2(k2 + q2 + 2qk · cos θ)

me
− 1

)

−
1

2

(

√

1 +
2α~2k2

me
− 1

)

− ~ωLO. (12)

Let us replace the argument of the δ-function in (11) with

cos θ:

δ(cos θ) =
δ(cos θ − cos θroot)
∣

∣

∣

dI
d cos θ

∣

∣

cos θ=cos θroot

∣

∣

∣

=
δ(cos θ − cos θroot)

√

1 + 2α~2(k2+q2+2qk·cos θroot)
me

~2qk
.

(13)

The root of the argument of δ-function in (11) is

cos θroot =

(

(√

1+ 2α~2k2

me
+ 2α~ωLO

)2

−1

)

me
2α~2 −q2−k2

2qk
.

(14)

Thus, the expression for the rate of change in the number

of phonons can be transformed as follows:

dNq

dt
=

4π2

~

π
∫

θ=0

π/d
∫

0

{

|〈k, Nq + 1|HLO|k + q, Nq〉|
2

× f e(k, q, cos θ) − |〈k + q, Nq − 1|HLO|k, Nq〉|
2 · f e(k)

}

×
δ(cos θ−cos θroot)

(√

1 + 2α~2k2

me
+ 2α~ωLO

)

~2q

×
2kV dkd cos θ

(2 · π)3
=

V
π~

k max
∫

k min

{

|〈k, Nq + 1|HLO|k + q, Nq〉|
2

× f e(k, q, cos θroot)−|〈k+q, Nq−1|HLO|k, Nq〉|
2 · f e(k)

}

×

(√

1 + 2α~2k2

me
+ 2α~ωLO

)

~2q
kdk. (15)

It should be noted that f e(k, q, cos θroot) = f e(k)
× exp

(

−~ωLO

kBTe

)

.

The integration interval over k should satisfy the law of

conservation of energy. This law is implemented in the

region (see Figure 1), where the modulus of the phonon

wave vector q ensures non-negativity k for any allowable

angle θ between them. This area is bounded from below by

the intersection of the roots k root of the function I(cos θ) at

k

(θ =
 0)

root
k

(θ = π)

root

k

q

Figure 1. The range of acceptable values of k and q, satisfying
the law of conservation of energy at any allowable polar angle, is

highlighted with a colored gradient. The blue and red solid curves

show the dependencies of kroot at the boundary values of θ = 0

and θ = π, respectively. (A color version of the figure is provided

in the online version of the paper.)

the boundary values θ = 0 and θ = π. As a result

dNq

dt
=

V
π~3q

π/d
∫

|kroot(θ=0)|

{

|〈k, Nq+1|HLO|k+q, Nq〉|
2 · f e(k)

× exp
(

−
~ωLO

kBTe

)

− |〈k + q, Nq−1|HLO|k, Nq〉|
2 · f e(k)

}

×

(

√

1 +
2α~2k2

me
+ 2α~ωLO

)

kdk. (16)

Using expressions for squares of matrix elements (7)
and (8) and the nonequilibrium DF of phonons (3), we

rewrite the expression for (dNq)/dt, getting rid of the

recursion:

dNq

dt
=

(

(

Nq0 + 1
)

· exp
(

−~ωLO

kBTe

)

− Nq0

)

β

1− τ LO
q

(

exp
(

−~ωLO

kBTe

)

− 1
)

β
, (17)

where

β = A

π/d
∫

|kroot(θ=0)|

exp

(

−
Ee(k)

kBTe

)

×

(

√

1 +
2α~2k2

me
+ 2α~ωLO

)

kdk, (18)

A =
1

π~3

2π~
2eE0

meq3

(

1 + (qrD)−2
)−2 n

Nc
. (19)
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Figure 2. Field dependence of electron mobility (according to experimental data from [17]) (a). The results of calculation of the

dependence of the electron temperature on the electric field using the power balance equation in the form (20) (b).

Using (4), we write the power balance equation (1) as

follows:

eµeF
2 =

4π

(2π)3n

π/d
∫

0

~ωLO

dNq

dt
q2dq. (20)

The dependence of mobility µe(F) (see Figure 2, a) was

found from the analysis of the IV characteristic of n-InAs
sample obtained in Ref. [17]. The dependence of the

electron temperature on the electric field is found by

substituting the found dependence µe(F) into the balance

equation (20) and performing a numerical solution (see
Figure 2, b).

3. Calculation of the degree of
anisotropy of spontaneous emission

When nonequilibrium charge carriers in InAs are excited

by radiation with a photon energy of ~ω exceeding the

band gap of Eg , luminescence is observed associated with

the radiative recombination of nonequilibrium electrons and

holes.

The probability of transition per unit of time between the

initial |i〉 and the final | f 〉 states of an electron is determined

by Fermi’s golden rule in the first order of perturbation

theory [23,24]:

P i→ f =
2π

~
|〈 f |Hω |i〉|

2δ(E f − Ei ∓ ~ω), (21)

where Hω is the operator of interaction of a quantum system

with electromagnetic radiation. Dirac’s δ-function reflects

the law of conservation of energy. The term ~ω is taken

with a minus if the system increases energy by absorbing a

photon with energy ~ω, and with a plus if the system loses

energy to emit radiation.

A schematic representation of the InAs energy bands and

interband optical transitions is shown in Figure 3. The

energies of electrons and holes are calculated from the

bottom of the corresponding bands.

The spectral radiation density during recombination of

electrons from the conduction band and holes from the

subbands of heavy and light holes in the valence band,

taking into account the charge carrier distribution functions

is defined in a semiconductor crystal as

Lc→hh =

∫

ZB

2π

~
|〈hh|Hω|c〉|

2 f e(k) f hh(k)

× δ(Ehh(k) + Ee(k) + Eg − ~ω)ρω
2dk

(2 · π)3
,

(22)

Lc→lh =

∫

ZB

2π

~
|〈lh|Hω|c〉|

2 f e(k) f lh(k)

× δ(Elh(k) + Ee(k) + Eg − ~ω)ρω
2dk

(2 · π)3
, (23)

where the indices hh and lh refer to the subbands of

heavy and light holes, respectively; f e(k), f hh(k), f lh(k) —
distribution functions of electrons, heavy and light holes

describing nonequilibrium charge carriers under conditions

of interband photoexcitation and exposure to a homoge-

neous electric field; Ee(k), Ehh(k), Elh(k) — dispersion

dependences of the energy of electrons, heavy and light

holes; ρω =
ω2n3ω
2π2c3 — density of photonic states, nω —

frequency-dependent refractive index, c — speed of light

in vacuum.

The external electric field leads to heating and drift of

free charge carriers, and the distribution function of charge

carriers over states changes. As a result of electron drift in

an electric field, anisotropy of the DF occurs in momentum

Semiconductors, 2024, Vol. 58, No. 9
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Ee

Elh, hh

lh

hh

c →hh c → lh Eg

k

k

Figure 3. InAs band structure (schematically). Arrows c → hh
and c → lh show the radiative transitions of electrons from

the conduction band to the subbands of heavy and light holes,

respectively.

space (a shift of the DF in the direction of electron drift).
Then it follows from (22, 23) that, due to the dependence of

the optical matrix element of the interband transition on the

angle between the electron wave vector and the radiation

polarization vector, the intensities of optical transitions for

radiation polarized parallel and perpendicular to the drift

velocity will differ. Since for the considered concentration

of free electrons, the rate of exchange of momentum and

energy between charge carriers significantly exceeds the

rate of exchange between carriers and scattering centers, the

DF can be considered as a Maxwell−Boltzmann function,

shifted in velocity space by the drift velocity vdr :

f e(k) =
n

Nc
exp

(

−
Ee(k) − ~kvdr

kBTe

)

=
n

Nc
exp

(

−
Ee(k) + ~µekF

kBTe

)

, (24)

where vdr = −µeF. It should be noted that the change

in the concentration of free electrons can be neglected at

low levels of interband excitation of nonequilibrium charge

carriers compared to the equilibrium case.

We will consider the laws of dispersion of heavy and light

holes in InAs in the isotropic and parabolic approximation.

The mobility of heavy holes is 2 orders of magnitude

lower than the mobility of electrons [25], which is why

the DF shift of heavy holes can be neglected. We will

also not take into account the anisotropy of the light hole

distribution function due to the relatively small contribution

of transitions involving light holes to the photoluminescence

intensity. Then

f hh(k) =
p

Nv

exp

(

−
~
2k2

2mhhkBThh

)

, (25)

f lh(k) =
p

Nv

exp

(

−
~
2k2

2mlhkBTlh

)

, (26)

where mhh, mlh — effective masses of heavy and light

holes, p — concentration of free holes, Thh, Tlh — hole

temperatures,

Nv =

∫

ZB

(

exp
(

−
~
2k2

2mhhkBThh

)

+ exp
(

−
~
2k2

2mlhkBTlh

)

)

2dk
(2π)3

— effective density of states in the valence band.

Let’s proceed to integration in spherical coordinates in

(29), (30) (0 ≤ θ ≤ π — polar angle, 0 ≤ ϕ ≤ 2π —
azimuthal):

Lc→hh =

2π
∫

ϕ=0

π
∫

θ=0

π/d
∫

0

2π

~
|〈hh|Hω|c〉|

2

× f e(k)|k=kehh(ω) f hh(k)|k=kehhω

×
δ(k − kehh(ω)

∣

∣

d
dk (Ehh(k) + Ee(k))|k=kehh(ω)

∣

∣

ρω
2k2 sin θdkdθdϕ

(2π)3
,

(27)

Lc→lh =

2π
∫

ϕ=0

π
∫

θ=0

π/d
∫

0

2π

~
|〈lh|Hω|c〉|

2

× f e(k)|k=kelh(ω) f lh(k)|k=kelhω

×
δ(k − kelh(ω)

∣

∣

d
dk (Elh(k) + Ee(k))|k=kelh(ω)

∣

∣

ρω
2k2 sin θdkdθdϕ

(2π)3
,

(28)
where the values kehh,elh(ω) are the roots of the equations

Ehh,lh(k) + Ee(k) + Eg − ~ω = 0.

The optical matrix elements 〈hh|Hω|c〉 and 〈lh|Hω|c〉
depend on the relative position of the polarization vector

of the light wave eω and the vector of the electric field

strength F. For certainty, let’s choose the axis OZ in the

direction of the electric field F (see Figure 4).
Then, according to Ref. [15], the squares of the

matrix elements of interband optical transitions involv-

ing heavy holes with perpendicular |〈hh|Hω|c〉⊥|2 and

collinear|〈hh|Hω|c〉‖|2 vectors eω and F are defined as

|〈hh|Hω|c〉‖|
2 = A sin2 θ, (29)

|〈hh|Hω|c〉⊥|
2 = A

(

cos2 θ cos2 ϕ + sin2 ϕ
)

, (30)

where A is a multiplier independent of the values used for

integration (A = const(k, θ, ϕ)). The squares of the matrix
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Figure 4. Schematic representation of the sample; eω‖ and

eω⊥ — polarization vectors of the light wave directed parallel and

perpendicular to the electric field vector F.
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Figure 5. Spectral dependence of the degree of polarization of

luminescence radiation in n-InAs at electric field magnitudes of

200V/cm (blue curve) and 700V/cm (red curve).

elements of the interband junctions with the participation of

light holes have the following form:

|〈lh|Hω|c〉‖|
2 =

A
3

(

4 cos2 θ + sin2 θ
)

, (31)

|〈lh|Hω|c〉⊥|
2 =

A
3

[

cos2 ϕ
(

4 sin2 θ + cos2 θ
)

+ sin2 ϕ
]

,

(32)
As a result, it is possible to calculate the degree of linear

polarization of radiation with the participation of subbands

of light and heavy holes of the valence band, depending on

the photon energy:

P(ω) =
(L⊥

c→hh + L⊥
c→lh) − (L‖

c→hh + L‖
c→lh)

(L⊥
c→hh + L⊥

c→lh) + (L‖
c→hh + L‖

c→lh)
. (33)

The calculated spectral dependence of the degree of

polarization of luminescence radiation under conditions of

interband photoexcitation and exposure to a homogeneous

electric field is shown in Figure 5. It can be seen that

the radiation is dominated by polarization perpendicular to

the applied field. With an increase of the photon energy

and (or) the electric field, the degree of polarization of

luminescence in n-InAs increases.
The calculations used a non-parabolic dispersion law (6)

and the electron state distribution function shifted in velocity

space (24). As a result, the degree of polarization of

photoluminescence in an electric field (33) was calculated

numerically. It is possible to qualitatively explain the

obtained dependencies shown in Figure 5 using the decom-

position of P(ω) in a series according to the parameter
mehhv

2
dr

kBTe
:

P(ω) ∝
mehhv

2
dr

kBTe

(~ω − Eg)

kBTe
, (34)

where mehh is the reduced effective mass of electrons

and heavy holes. The expression (34) was obtained by

studying the anisotropy of photoluminescence polarization

in n-GaAs in an electric field for c → hh transitions

in the parabolic approximation [14]. The ratio
mehhv

2
dr

kBTe
,

proportional to the square of the ratio of the drift and

thermal velocities, determines the degree of anisotropy of

the distribution function in k-space. It is the anisotropy

of the distribution function that results in the polarization

dependence of photoluminescence. The deviation of the

spectral dependence of the degree of anisotropy from the

linear law (34) with an increase in ~ω can be explained by

an increase of the effective mass in the conduction band,

which depends on the electron energy.

4. Conclusion

The spectral dependence of the degree of linear polariza-

tion of luminescence radiation under conditions of interband

photoexcitation and application of a homogeneous electric

field in a bulk semiconductor n-InAs is calculated. The

model took into account the recombination of electrons

with both heavy and light holes, and the nonparabolicity

of the conduction band was taken into account using the

Kane’s law of dispersion. When determining the electron

temperature, the effect of accumulation of nonequilibrium

optical phonons was taken into account.

It is shown that the application of an electric field leads to

the appearance of anisotropy of radiation polarization. The

luminescence is dominated by radiation polarized in a plane

perpendicular to the direction of the applied field.
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