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We report on the strong anisotropy of the inter-band process of impact ionization in direct-gap cubic

semiconductors with either weak or strong spin-orbit coupling at low effective temperatures of electron

distribution T , and the crossover to isotropic behavior with increasing T . Such anisotropy is related to specific

mechanism of the impact ionization involving coupling of the electron and heavy hole states via remote bands,

which is vanishing for some high-symmetry propagation directions of an initial electron, namely [100] and [111].
At room temperature impact ionization rate in narrow-gap semiconductors InSb, InAs, GaSb and In0.53Ga0.47As is

isotropic while in middle-gap InP, GaAs and CdTe both terms are comparable. We propose simple and justified

analytic generalization of Keldysh formula for the impact ionization rate, which is suitable for incorporation into

modelling software.
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1. Introduction

Interband impact ionization involving the creation of an

electron-hole pair as a result of Coulomb interaction be-

tween a hot conduction electron and valence band electrons

(Figure 1, a), plays an important role in the operation of

many advanced electronics devices. In some of them,

such as semiconductor diodes and field-effect transistors,

avalanche breakdown caused by impact ionization limits the

operating voltage range. Therefore, impact ionization has

traditionally been perceived as a negative effect. At the

same time, carrier multiplication due to impact ionization is

the basis for the operation of impact avalanche transit time

diodes (IMPATT), avalanche photodiodes (APD) [1] and

the transistor with field-effect controlled impact ionization

(I-MOS) [2], which has an extremely steep drain-gate

characteristic. In particular, the operation of I-MOS

has been experimentally demonstrated with the slope of

the subthreshold part of the current-voltage characteristic

∼ 5mV/dec. at T = 400K, which allows a significant

reduction in the switching speed of the device compared

to conventional MOSFET devices.

Numerical modelling of the physical processes occurring

within semiconductor devices has become an inherent part

of device design. However, often the physical models that

are used in simulation programs are phenomenological and

contain a large number of fitting parameters. Since in

practice the output characteristics of devices using impact

ionization depend on many details, such as the specific

type of band structure of the material and the features

of the scattering processes that determine the type of

non-equilibrium distribution function, the calculation of

the I-V characteristic based on a realistic model of the

band structure is conceptually and technically difficult.

Therefore, the most popular way of modelling is the Monte

Carlo [3–13] method, but its results depend on a particular

kind of dependence of the microscopic impact ionization

rate W (E) on the energy of the hot electron that initiates it.

Phenomenologically, the ionization rate grows like a power

of the excess energy above a threshold:

W (E) = C(E − Eth)
n. (1)

The specific form of the parameters n and C, as well as

the limits of applicability (1), are established on the basis of

quantum mechanical calculations. The most popular [14]
is the quadratic dependence (n = 2) first obtained by

Keldysh [15] more than half a century ago on the basis

of considerations of the phase space volume corresponding

to the final states in the elementary act of impact ionization

(Figure 1, a). Existing estimates of C based on the sum

rule [16] give values significantly higher than the results of

numerical calculations based on the 30-band kp-model [17].
In some references (see [18], p. 511), it is recommended

to adjust the prefactor in (1) to agree with experiment at

fixed n = 2. Analytically, the coefficient C for the quadratic

dependence of the form (1) has been calculated only for

the case of narrow-bandgap cubic semiconductors [19].
The difficulty in describing the quadratic contribution to

the impact ionization rate is due to the fact that in the

isotropic band model, the simplest version of which is

the 8-band kp-model, taking into account the interaction

between the s -states of the conduction band and the p-states
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Figure 1. a — a diagram of the elementary process of interband

impact ionization; b — a diagram of the 14-band kp-model.

of the valence band, the prefactor C is zero. Therefore,

to calculate the Coulomb matrix element that determines

prefactor in (1), the interaction with distant bands [19–21]
must be taken into account, and the magnitude of the

quadratic contribution turns out to be small for the case of

narrow-gap semiconductors. This is confirmed by the results

of numerical calculations [22], which indicate that the main

contribution to the impact ionization rate of narrow-bandgap

semiconductors is cubic (n = 3) rather than quadratic.

The analytical expression for the cubic contribution was

first obtained by Gelmont et al. [23]. For direct- and

middle-gap semiconductors like GaSb, In0.53Ga0.47As, InP,

In0.52Al0.48As, GaAs and CdTe there is no reasonable

analytical form of W (E) and in Monte Carlo simulations of

impact ionization processes the expression (1) is used with

arbitrary powers n, for example n = 2.5 and n = 4.3 in [24],
n = 5.2 [3], n = 3 [4,6,25], n = 3.9 [26], n = 1.85 [27].
Some theoretical papers [28,29] have considered optimising

the numerical calculation of the semiconductor band struc-

ture for realistic simulation of impact ionization processes

in devices, but the integration of band structure calculations

with Monte Carlo simulations is too complex for practical

use. To date, most device simulation software at best

uses (1) with loosely fitted parameters n and C leading

to uncontrolled results.

This paper focuses on the study of a reasonable form

of W (E) in direct-gap cubic semiconductors with small to

medium bandgap under practically relevant conditions when

the effective temperature of the nonequilibrium electron

distribution is of the order of a few tens of meV. Explicit

analytical expressions for the coefficients in quadratic and

cubic terms are obtained. An estimate of the T ∗ crossover

temperature is given, at which the carrier generation rates

associated with both contributions become equal under the

conditions of the model isotropic classical distribution of

nonequilibrium electrons. The obtained results provide a

qualitative explanation and a quantitative criterion for the

dominance of the cubic contribution at room temperature

in narrow-gap semiconductors, whereas for middle-gap

semiconductors both terms are comparable.

2. Quantum mechanical theory of the
rate of interband impact ionization

2.1. General expression for the impact
ionization rate

Usually conduction electrons are treated as quasiparticles

that do not interact with the valence band electrons. Within

the framework of this approach, the Auger-recombination

(chcc-type) process inverse to impact ionization can be

represented as the result of an interaction between two

conduction electrons in which one of them moves to a

higher state in the conduction band and the other — to

a free state in the valence band. However, as can be

shown in the Hartree-Fock approximation, the process of

interband impact ionization is determined by the Coulomb

interaction between the hot conduction electron and all the

valence band electrons. Therefore, in order to obtain the

total impact ionization rate for a given hot electron state

”
0“ (see the scheme in Figure 1, a), the partial rates of

elementary processes described by the

W =
2π

~

∣

∣

∣

∣

〈

α1α2

∣

∣

∣

e2

̹|r1 − r2|
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∣
α0α3

〉
∣

∣

∣

∣

2

δ(1E), (2)

must be summed over the possible initial states of the

”
3“ electron in the valence band and the final states of

the
”
1“ and

”
2“ electrons in the conduction band. Here

1E = E1 + E2 − E0 − E3 represents the energy balance,

and αi = {ki , ξi} denotes the set of quantum numbers —
the wave vector ki and the total angular momentum

projection ξi for the states in the conduction band (i = 0, 1

or 2) and in the valence band (i = 3). We consider only

processes involving heavy hole states, since light and spin-

orbit split hole states lie well below in energy for wave

vectors larger than the threshold (for narrow- to middle-

gap semiconductors), so that the corresponding impact

ionization processes involve very hot and few electrons.

Using the Fourier representation of the Coulomb potential

and performing integration of the Bloch amplitudes at

zero k, expression (2) can be rewritten [16,18] as

W =
2π

~

(

4πe2

̹

)2 Icc(α0α1)Icv(α2, α3)

|k0 − k1|4
δ1k,0δ(1E), (3)

where 1k = k0 + k3 − k1 − k2 represents the momentum

balance, and the squares of the Bloch function overlap

integrals Icc and Icv can be written using the state vectors

|F〉 in the Bloch function basis of the point Ŵ of the first

Brillouin zone u(0)
n (r) as Ic,c/v(αi , α j) = |〈Fαi |Fα j 〉|2.

The energy and momentum conservation laws appearing

as delta functions in (3) impose constraints on the possible

values of the kiwave vectors. This leads to the threshold

conditions for impact ionization, which, taking into account

the nonparabolicity of the initial electron dispersion at

µ = me/mhh ≪ 1 are as follows

Eth = Ee(k
th
0 ) = Eg(1 + 2µ), (4)
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The parameters of the band structure (taken from [31–35]) of narrow- to middle-gap semiconductors in the framework of the used

14-band kp-model and the corresponding values of dimensionless parameters β (17) and x = 10/Eg as well as the effective crossover

temperature (28)

Eg , eV
∗∗ 10, eV

∗ P, eV · Å EG , eV Q, eV · Å β∗∗ x∗∗ T∗, K∗∗∗

InSb 0.235 0.81 9.63 3.18 7.83 7.53 4.31 2.8

InAs 0.418 0.38 9.01 4.48 7.72 1.13 0.89 10.2

GaSb 0.81 0.76 9.69 3.11 8.25 0.41 0.93 140

In0.53Ga0.47As 0.817 0.324 9.81 4.51 8.25 0.22 0.33 75

InP 1.423 0.107 8.45 4.78 7.88 0.01 0.03 464

In0.52Al0.48As 1.545 0.295 9.09 4.51 8.25 0.04 0.15 516

GaAs 1.519 0.341 9.88 4.54 8.68 0.06 0.17 440

CdTe 1.61 0.95 9.5 5.4 7.87 0.22 0.56 313

Note. ∗ — at T = 0K; ∗∗ — at T = 300K; ∗∗∗ — are calculated taking into account the temperature dependence of the bandgap in accordance with the

data from [32,33,36].

kth0 = kg(1 + F0(10/Eg)µ), (5)

kth3 = −kth0 (1− 2µ), (6)

kth1 = kth2 = µkg , (7)

where

F0(x) =
3/2

F1(x)F2(x)
,

kg =
2

~

√

F1(10/Eg)meEg

— wave vector of electrons with energy E0(kg) = Eg and

F1(x) =
(1 + 2x/3)(1 + x/2)

(1 + x)(1 + x/3)
, (8)

F2(x) =
(1 + x)2(1 + x

3
)3

(1 + 7
9

x + x2

6
)(1 + 2

3
x)2(1 + x

2
)
. (9)

The values of the F1(10/Eg) and F2(10/Eg) functions are

equal to unity for both 10 ≪ Eg and 10 ≫ Eg limits. Since

kp-interaction between the conduction band Ŵ6c (denoted
by

”
c“ in Figure 1, b) and the valence bands Ŵ8v and Ŵ7v

(or
”
v“ in Figure 1, b) does not contribute to the heavy hole

dispersion, the smallness of µ is equivalent to Eg/EG ≪ 1,

where EG denotes the minimum distance between the v

band and the bands contributing to the inverse mass of

the heavy hole (the second conduction band c ′ within the

14-band kp-model used in this study (see Figure 1, b and

the table). The magnitudes of the spin-orbit splittings of

the c ′ and v bands are also small compared to the distance

c ′−v , 10,G/EG ≪ 1 [30] (see table).

In practice, the distribution function of hot electrons

capable of initiating impact ionization extends on a much

smaller scale (e. g. 25meV) than the threshold energy

Eth. Therefore, to describe impact ionization, it is

convenient to introduce
”
above-threshold“ components of

the ki = ki − kthi wave vectors and to consider only the

(E − Eth)/Eth ≪ 1 domain. Under these assumptions, the

impact ionization rate induced by an electron in the α0 state

reduces to

W =
π~F2(

10

Eg
)

12meE2
g

(

4πe2

̹

)2 ∫

d3q1d3q2

(2π)6
[Ĩcv(q1, q3)

+ Ĩcv(q2, q3)]δ

(

q2
1 + q2

2 −
2me(E0 − Eth)

~2

)

, (10)

where

Ĩcv(qi , q3) =
∑

ξi ,ξ3

Icv(k
th
i + qi, ξi ; k

th
3 + q1 + q2 − q0, ξ3)

(11)
denotes the interband overlap integral summed over the pro-

jections of the total angular momentum (on the direction k3)
of the heavy hole states ξ3 = ± 3

2
and the final electrons

ξi = ± 1
2
. The excess wave vector of the initial electron

above the threshold |q0| =
(

∂E0

∂K0

)−1

th
(E0 − Eth) is assumed

to be collinear to kth0 . Expression (10) shows that the energy
(and angular) dependence of the impact ionization rate W is

determined by the behaviour of the squared overlap integral

Ĩcv near threshold q1,2 = 0. Since Ĩcv expresses the degree

at which the states of the conduction band and valence

bands are overlapping in practice it is strongly dependent

on the particular model of the band structure used.

2.2. Cubic contribution to the impact
ionization rate

The minimal basis of such a model consists of eight

u(0)
n (r) Bloch functions at the Ŵ-point of the Brillouin

band: two of s -type and six of p-type. The interaction

to be considered is the direct kp-interaction between s - and
p-states described by a single Kane matrix element P [37].
This 8-band model describes well the dispersion of electrons

and light holes in narrow-gap semiconductors, but the heavy

holes remain dispersionless. Near the threshold k i ≪ k3 for

the final states (i = 1, 2) and the explicit expression for the

Semiconductors, 2024, Vol. 58, No. 11
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square of the matrix element within the 8-band model takes

the form of

Icv(αi , α3) =
P2|[ki × k3]|2

2E2
g k2

3

δ|ξi−ξ3|,1. (12)

The matrix element (12) vanish for collinear wave vectors,

so given the threshold conditions (6) and (7) Ĩcv can be

represented as

Ĩcv(qi , q3) =
P2q2

i⊥

E2
g

=
~
2q2

i⊥

2me

1 + 10

Eg

Eg + 2
3
10

, (13)

where qi⊥ denotes the component q1,2 in the plane perpen-

dicular to the wave vector of the initial electron. Taking into

account the explicit form Ĩcv (13) the impact ionization

rate W (10) reduces to cubic in E − Eth contribution [19]:

W3(E) = B(E − Eth)
3, (14)

B =
ω∗

B

18E3
g

Eg + 10

Eg + 2
3
10

F2

(

10

Eg

)

, (15)

where ω∗
B = me e4

2~3̹2
denotes the Bohr frequency of the

conduction electrons. In the limiting case of infinite 10

spin-orbit splitting (corresponding to the 6-band kp-model),
this answer reduces to the result (2) of [23], whereas a finite

value of 10 leads to an additional multiplier equal to 2/3 at

10 → 0.

2.3. Quadratic contribution to the impact
ionization rate

Thus, the quadratic contribution to the impact ionization

rate associated with the magnitude of the interband overlap

integral at threshold remains outside the scope of the

minimal band structure model. To describe the quadratic

contribution, it is necessary to use more complex models

that take into account the interaction with distant bands

and the reduction of spherical symmetry to cubic symme-

try (Oh/Td groups), in particular, the 14-band kp-model

(extended Kane model [30]). In this model, in addition

to the kp-interaction of the valence band and conduction

band states, the interaction of the valence band states with

six additional Bloch states of symmetry Ŵ7c and Ŵ8c , which

are a few eV above Ec (the second conduction band, c ′

in Figure 1, b) is explicitly taken into account (first order
by k). The strength of the c ′−v interaction is described by

a matrix element Q having a value of order P (see table).
Inversion asymmetry allows the interaction between the c
and c ′ bands described by the matrix elements P ′ and 1′,

whose value is an order of magnitude smaller than P , Q
and 10 respectively [38].
To take into account the additional interaction between c-

and v-bands by perturbation theory, it is convenient to split

the full kp-hamiltonian into the H0(k) main part, which

is the Hamiltonian of the minimal 8-band model and the

energy of the c ′ states at k = 0, and the V (k), perturbation,

which describes the c ′−v-interaction. The six eigenstates

of H0 at k = kth3 ≃ −kg corresponding to the c ′-band, are

far away in energy from the other eight: electron states with

energy Ee = Ev + 2Eg heavy holes at E(0)
hh = Ev and light

and spin-orbit split hole states with energies

Elh/so = Ev −
Eg

2

(

1 + x ±

√

x3 + x2 − x + 3

x + 3

)

, (16)

where x = 10/Eg . Expression (16) indicates that the

minimum energy distance between heavy holes and other

branches of the valence band exceeds min(Eg , 10)/2 for

x ≥ 1, which corresponds to the case of narrow-bandgap

semiconductors (see the table). Hence, the unperturbed

state of the heavy hole is nondegenerate in this case

and the corresponding perturbation theory can be applied.

The specific method for calculating the multiband Bloch

functions that we follow is described in Appendix I.

However, the true parameter, which must not be small for

the perturbation theory method outlined in Appendix I to

be valid, is

β =
10EG

6Q2k2
g

=
10P2EG

12Q2E2
g

Eg + 10/3

Eg + 10/2
. (17)

The relations (A.I.1)−(A.I.3) show that the kp-perturbation

V (−kg) is applied to the unperturbed state of the |F (0)
hh 〉

heavy hole twice, giving rise to an ∝ (Qkg)
2 ∝ E2

g multiplier

and two energy denominators associated with the Green’s

functions. The first denominator is determined by the

distance between the c ′ and v bands equal to EG , and the

second is determined by the distance between the states of

heavy holes and electrons or light holes or spin-orbit split

holes. When 10 becomes much smaller than Eg , spin-orbit

split holes behave similarly to heavy holes and the energy

gap between them at the finite wave vector k = kth3 ≃ −kg

equal to Ev − Eso, according to (16), tends to the value at

k = 0 equal to 10. From this we can conclude that the

described method of perturbation theory does not work at

β ≪ 1 and its application may lead to divergence at 10 → 0.

However, the latter does not occur due to the fact that

in this limit the unperturbed state of spin-orbit split holes

does not overlap with s -states, since they are transformed

into the second branch of heavy holes. Therefore, for the

case of middle-gap semiconductors, when x = 10/Eg ≪ 1

(or β ≪ 1) becomes a small parameter (see table) in

addition to me/mhh ≪ 1, perturbation theory must account

for the degeneracy of the heavy hole states. In this case,

|F(0)
hh 〉 in Appendix I will have the meaning of the correct

zero approximation wave function, which corresponds to

the upper branch of heavy holes split by kp-interactions

between c- and v-bands.

As a result of squaring the overlap integral and summing

over ξ the explicit expression for the main contribution to

Ĩcv , which determines the quadratic term in the impact

Semiconductors, 2024, Vol. 58, No. 11
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ionization rate, takes the form

Ĩcv(0, 0) =
8E2

g

E2
G

Q4

P4
K(u, β)

1 + x/2
1 + x/3

, (18)

where K(u, β) denotes the cubic invariant, which can

be written in terms of the parameter β and invariant

polynomials of order 4 and 6

I(u) = u2
x u2

y + u2
x u2

z + u2
y u2

z , (19)

J(u) = u2
x u2

y u2
z . (20)

Here u = k0/k0 characterises the direction of propagation of

the initial electron with respect to the crystallographic axes.

The explicit form of the cubic invariant K(u, β) is given in

Appendix II. For large (β → ∞) and small (β → 0) values

of β the anisotropy of the quadratic contribution is described

by the

K∞(u) = I(1−3I) (21)

and

K0(u) = K∞(u) − I2 + 3J +
I2(1− 4I) − J(2− 9I)√

I2 − 3J
,

(22)
respectively. Previously, a similar (18) (for the β ≫ 1

limit) result was obtained in [20] in terms of the Luttinger

parameters γ2 and γ3 and in [19] in the framework of the

14-band kp-model at 10 → ∞ and used for the analysis

of Auger recombination and impact ionization, respectively.

By substituting Ĩcv(qi , q3) of the form (18) into (10), an
analytical expression for the quadratic contribution to the

impact ionization rate can be obtained:

W2(E, u) = A(E − Eth)
2, (23)

A =
3

4

ω∗
B

E2
G

Q4

P4
K(u, β)

Eg + 1
2
10

Eg + 1
3
10

F2

(

10

Eg

)

. (24)

Taking into account the presence of E2
G in the de-

nominator, the quadratic contribution (24) has the 2nd

order of smallness in the parameter µ = me/mhh, which

leads, as shown below, to its competition with the cubic

contribution (15) in semiconductors with small and medium

bandgap for the characteristic excess of the hot electron

energy over the E − Eth threshold of the order of several

tens of meV. The ionization rate described by W2 strongly

depends on the orientation of the motion direction of the

hot electron relative to the crystallographic axes. In both

cases of strong β ≫ 1 and weak β ≪ 1 spin-orbit splitting

of the valence band, the quadratic contribution vanishes in

highly symmetric directions [100] and [111]. However, the

anisotropy W2, described by K∞(u) and K0(u) is different:

in the latter case, the quadratic contribution additionally van-

ishes in the [110] direction. In planes (111), the quadratic

contribution becomes isotropic at strong spin-orbit coupling

since I(u(111)) = 1/4, whereas K0(u(111)) reproduces the

non-trivial angular dependence of J(u). In semiconductors

of the Td group, the absence of an inversion centre and

the spin-orbit interaction lead to an additional contribution

to W2 that does not vanish in the main crystallographic

directions. However, such a contribution is small in 1c′v/10,

where 1c/v — the magnitude of the off-diagonal spin-orbit

c ′−v-interaction [30], so from a practical point of view this

effect is not significant.

3. Results and discussion

In order to compare the significance of the two contribu-

tions to the total impact ionization rate

Wtot(E, u) = A(u)(E − Eth)
2 + B(E − Eth)

3, (25)

we consider an ensemble of non-degenerate electrons taken

out of equilibrium by the application of an electric field

and calculate the carrier generation rates R2 and R3

[corresponding to the impact ionization rates (24) and (15)]
averaged over the electric field directions. Since this

averaging is equivalent to averaging over the directions of

the initial electron u under the assumed isotropy of the

distribution, the carrier generation rate can be written as

Ri = W i N0, (26)

W i =

+∞
∫

Eth

dE
T

du
4π

W (E, u) exp

(

−E − Eth

T

)

, (27)

where N0 = D(Eth)δ f (Eth)T — nonequilibrium concentra-

tion of hot electrons above the impact ionization threshold,

W i — impact ionization rate averaged over the directions

of initial electron propagation and distribution, D(E) —
density of states in the conduction band, δ f (E) — the

nonequilibrium part of the distribution function, T —
the effective temperature of the distribution, which is

determined by the electron energy acquired at the mean free

path eEl or its combination with the optical phonon energy

~ωopt [16]. After integrating (E − Eth)
n with the Boltzmann

distribution, we arrive at the following expression for the

crossover temperature at which W 2 = W 3 (or R2 = R3):

T ∗ =
A
3B

= 8
Q4

P4

E3
g

E2
G

K(β)F1

(

10

Eg

)

. (28)

The value of the averaged (over the u directions) cubic

invariant at arbitrary β is between the two limits at

infinite and zero spin-orbit coupling K∞ < K(β) < K0, with

K∞ = 2/35, and K0 = 0.069. The behaviour of K(β),
calculated based on (A.II.1)−(A.II.6), is shown in Figure 2.

The temperature dependence of the bandgap Eg(T ) leads
to a nonlinear dependence of the W 3/W 2 ratio on the

effective temperature T , and (28) becomes a transcendental

equation. Using the band structure parameters from the ta-

ble and empirical temperature dependences of the bandgaps

(in particular, for CdTe from [32] (Manoogian–Wooley

approximation) and from [33,36] (Varshni approximation)

Semiconductors, 2024, Vol. 58, No. 11
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Figure 2. Average value of the cubic invariant (A.II.1) at arbitrary
parameters β (17).
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Figure 3. Competition between the averaged cubic and quadratic

contributions to the impact ionization rate for the semiconductors

presented in the table at different effective temperatures of the hot

electron distribution above the threshold. The points where the

solid curves intersect the dashed line correspond to the effective

crossover temperatures. (A color version of the figure is provided

in the online version of the paper).
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Figure 4. Dependence of the averaged impact ionization rate on the bandgap at different effective carrier temperatures: 300 (a), 500 (b),
and 800K (c). The solid red curves correspond to the full W tot = W 2 + W 3 rates calculated from the analytical expressions (15) and (24);
the markers correspond to the numerically calculated total rate (green rhombuses), partial quadratic (blue circles), and cubic (orange
triangles) contributions.

for other compounds), we calculated the W 3(T )/W 2(T )
dependences for semiconductors with small and medium

bandgaps (Figure 3), as well as crossover temperatures (see
table). At low effective temperatures, the impact ionization

rate of any semiconductor is described by a quadratic

contribution and is strongly anisotropic. As T increases, the

magnitude of the isotropic cubic contribution grows rapidly

and at room temperature it dominates over W2(E, u) in

narrow-bandgap semiconductors such as InSb, InAs, GaSb

and In0.53Ga0.47As, while for middle-gap, InP, GaAs and

CdTe, both contributions are comparable. In In0.52Al0.48As

the crossover occurs at a much higher temperature on the

order of 500K.

4. Conclusion

Finally, we will briefly discuss the accuracy of the

analytical expressions obtained. Since in describing impact

ionization in direct-gap semiconductors the main difficulty,

and hence inaccuracy, is to obtain a correct expression for

the overlap integrals of the initial and final states, which

are determined by a particular type of multiband wave

functions, we have carried out calculations of the averaged

rate of the impact ionization based on the numerical

diagonalisation of the 14-band kp-model. To reduce the cal-

culation complexity in (10), we omitted the non-significant

dependence of the calculated overlap integrals on q3, used

the main-order approximation by µ ≪ 1 for the threshold

wave vectors (5)−(7) and the Ĩcv(q1,2, q3) expansion by

q1,2/kg ≪ 1, and performed analytical integration of the

total rate by q1,2 and q0. As a result, the 9-dimensional

integration over q0,1,2 was reduced to averaging the total

rate along the directions of the wave vector of the hot elec-

trons. The evolution of the resulting values of the averaged

impact ionization rate with Eg (the other parameters of the

band structure correspond to InAs) at effective temperatures

T = 300, 500, 800K is shown in Figure 4. The simple

analytical expression W tot = 2AT 2 + 6BT 3 for the impact

4 Semiconductors, 2024, Vol. 58, No. 11
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ionization rate derived from (25) and (27) agrees well

with numerical results over a wide range Eg up to 1.4 eV.

In particular, the corresponding value of the mean deviation

is 7%, and the maximum discrepancy is limited to 18%

for all temperatures. The magnitudes of the analytical and

numerical
”
crossover bandgaps“ [when W 2(Eg) = W 3(Eg)]

are also close.

The discrepancy between the analytical and numerical

results is due to the expression (24), which underesti-

mates the quadratic contribution especially for wide-gap

semiconductors when the primary small parameter in our

µ = me/mhh theory approaches unity. Nevertheless, a 5%

agreement with numerical results for the whole range of the

considered bandgaps can be achieved by including in the

analytical expressions higher order corrections (up to the

2nd order) by Eg/EG to (15) and (24). We also expect

that in the case of strong anisotropy of the distribution

of hot electrons in a strong electric field [39], the angular

dependence of the carrier generation rate will follow the

anisotropy of the total impact ionization rate (25). Thus,

the obtained simple analytical generalization (25) of the

conventional Keldysh formula for the impact ionization rate

in direct-gap semiconductors is suitable for incorporation

into device modelling software.
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Appendix I

The method of perturbation theory

for the multiband heavy-hole function

In order to calculate the multiband wave function of

the heavy hole state by perturbation theory, it is con-

venient to introduce
”
non-interacting“ Green’s function

G0(E) = (E − H0)
−1. Then the 1st order correction to

the unperturbed state of the heavy hole |F (0)
hh 〉 can be

represented as

|F (1)
hh 〉 = lim

E→Ẽv

G0(E,−kg)V (−kg)|F (0)
hh 〉. (A.I.1)

According to the definition of V and G0 in section 2,

|F (1)
hh 〉 belongs to the c ′ subspace of basis functions and

is orthogonal to the eight states belonging to the c and v

bands. Therefore, the 1st order approximation does not give

a contribution to the overlap integral Ĩcv(0, 0), nor does the

1st order correction to the energy E(1)
hh = 0. The 2nd order

correction to the heavy hole energy Ehh is

E(2)
hh = lim

E→Ẽv

〈F (0)
hh |V (−kg)|F (1)

hh (E)〉 (A.I.2)

and the corresponding correction to the multiband wave

function |Fhh〉 can be rewritten as

|F(2)
hh 〉 = lim

E→Ẽv

G0(E,−kg)

×
[

V (−kg)|F (1)
hh (E)〉 − E2(E)|F (0)

hh 〉
]

. (A.I.3)

Expression (A.I.2) defines the energy of the heavy hole

and the relation between its mass and parameters of the

14-band model Q and EG , and (A.I.3) leads to the main

approximation for the interband (c−v) overlap integral,

〈Fe(k
th
i , ξi)|Fhh(k

th
3 , ξ3)〉 ≃ 〈F (0)

e (µkg , ξi )|F (2)
hh (−kg , ξ3)〉,

(A.I.4)

where |F (0)
e 〉 denotes the pure s function describing the

low-energy states of the final electrons in the single-band

approximation, whose wave vector is small compared to

the wave vectors of the initial states (0 and 3). Therefore,

corrections to |F (0)
e 〉 do not appear in (A.I.4) in the main

order on µ = m2/mhh .

Appendix II
Cubic invariant describing the anisotropy
of the quadratic contribution

The expression for the cubic invariant describing the

anisotropy of the quadratic contribution to the impact

ionization rate at arbitrary β is

K(u, β) = K1(u, β) + K2(u, β), (A.II.1)

K1(u, β) =
K1(K∞ − K1) + βK2 + β2(K∞ + K1)

√

K1 + β2(β +
√

K1 + β2)
,

(A.II.2)

K2(u, β) =
K2 + β(K∞ − K1)

β +
√

K1 + β2
, (A.II.3)

K∞(u) = I − 3I2, (A.II.4)

K1(u) = I2 − 3I, (A.II.5)

K2(u) = −4I3 + I2 + 9I J − 2J, (A.II.6)

where I(u) and J(u) denote the invariant polynomials of 4th

and 6th orders respectively (Sect. 2.3).
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A. Sužiedėlis. Semicond. Sci. Technol., 34, 075016 (2019).
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W. Schattke, E. Schöll. J. Appl. Phys., 87, 781 (2000).

[22] A.R. Beattie, R.A. Abram, P. Scharoch. Semicond. Sci.

Technol., 5, 738 (1990).

[23] B. Gelmont, K.-S. Kim, M. Shur. Phys. Rev. Lett., 69, 1280

(1992).

[24] K.Y. Choo, D.S. Ong. J. Appl. Phys., 96, 5649 (2004).

[25] C.K. Chia, G.K. Dalapati. IEEE Trans. Electron Dev., 60, 3435

(2013).

[26] D. Dolgos, A. Schenk, B. Witzigmann. J. Appl. Phys., 111,

073714 (2012).

[27] I.C. Sandall, J.S. Ng, S. Xie, P.J. Ker, C.H. Tan. Opt. Express,

21, 8630 (2013).

[28] P. Scharoch, R.A. Abram. Semicond. Sci. Technol., 3, 973

(1988).

[29] S. Brand, R.A. Abram. J. Phys. C: Solid State Phys., 17, L201

(1984).

[30] R. Winkler. Spin-Orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems (Springer Verlag, Berlin–Heidel-

berg, 2003).

[31] M. Cardona, N.E. Christensen, G. Fasol. Phys. Rev. B, 38,

1806 (1988).

[32] G. Fonthal, L. Tirado-Mejı́a, J. Marı́n-Hurtado, H. Ariza-Cal-
derón, J. Mendoza-Alvarez. J. Phys. Chem. Solids, 61, 579

(2000).

[33] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys.,

89, 5815 (2001).

[34] W.H. Lau, J.T. Olesberg, M.E. Flatté. Electronic structures
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