14

Математическая модель определения минимального тока стимуляции по данным телеметрии нервного ответа в системах кохлеарной имплантации

© Н.С. Мельников,¹ Л.В. Маляр,² И.В. Костевич,² А.Г. Козлов³

 ¹Омский государственный университет им. Ф.М. Достоевского, 644077 Омск, Россия
 ²Северо-Западный окружной научно-клинический центр им. Л.Г. Соколова Федерального медико-биологического агентства,
 194291 Санкт-Петербург, Россия
 ³Омский государственный технический университет,
 644050 Омск, Россия e-mail: niklas89@list.ru

Поступило в Редакцию 23 сентября 2024 г. В окончательной редакции 17 января 2025 г. Принято к публикации 22 декабря 2024 г.

> Представлена разработка альтернативной математической модели, позволяющей на основе экспериментальных данных, полученных в ходе операции кохлеарной имплантации, определять минимальный ток стимуляции, генерирующий электрически вызванный потенциал действия слухового нерва у пользователей систем кохлеарной имплантации со слуховыми имплантами производителя Cochlear®. В основу модели положена аппроксимация степенной функцией, построение касательной к серединной точке, введение поправочных коэффициентов. С помощью автоматизированного алгоритма во время тестирования имплантов определен минимальный "визуальный" ток, который использован в качестве истинного при оценке применимости предложенной авторами модели. Дополнительно рассчитан минимальный ток в рамках модели линейной аппроксимации. Использован метод ранговой корреляции Спирмена, тест Колмогорова–Смирнова для проверки на нормальность распределения полученных данных. Модель может применяться в случае несрабатывания автоматизированного алгоритма как в интра-, так и постоперационных периодах.

> Ключевые слова: кохлеарная имплантация, искажение сигналов, аппроксимация, экстраполяция, метод ранговой корреляции Спирмена.

DOI: 10.61011/JTF.2025.04.60019.303-24

Введение

В настоящее время кохлеарная имплантация (КИ) является единственным уникальным высокотехнологичным методом восстановления слуха у пациентов с тяжелой и глубокой сенсоневральной потерей слуха, в основе которого используется высокотехнологичное устройство — система КИ [1-3]. Этот метод применяется в мире на протяжении более 40 лет и в России — более 30. Согласно докладу по проблемам слуха, представленному ВОЗ в 2021 году [4], более 430 миллионов людей в мире нуждаются в реабилитационной помощи по причине нарушения слуха и к 2050 году это количество возрастет до, как минимум, 700 миллионов. Поэтому КИ продолжит быть актуальной и в дальнейшем, безусловно являясь социально значимым направлением и в наши дни [5]. В России КИ входит в программу "Высокотехнологичная медицинская помощь" и проводится в специализированных медицинских учреждениях в соответствии с клиническими рекомендациями по нейросенсорной тугоухости Минздрава России. Устанавливаются системы КИ четырех зарубежных компаний-производителей: Cochlear®(Австралия),

Advanced Bionics®(CША), MED-EL®(Австрия) и Nurotron®(Китай).

Система КИ состоит из двух частей: внутренней и внешней. Первая часть представляет собой кохлеарный (слуховой) имплант, устанавливаемый во время операции. Вторая часть — постоянно носимый речевой процессор (РП). В зависимости от модификации РП бывает двух видов: заушный и внеушной [6].

Операция КИ включает в себя проведение двух последовательных этапов: хирургического и аудиологического. Последний связан с осуществлением тестирования только что установленного импланта, которое проводится в программном обеспечении (ПО) конкретного производителя. В случае с имплантами Cochlear® — ПО Custom Sound®EP v. 6.0 (CSEP), за рубежом также применяется система Nucleus®SmartNav. К обязательной манипуляции тестирования следует отнести вычисление импедансов двадцати двух изолированных внутриулитковых электродов импланта, а также регистрацию электрически вызванного потенциала действия слухового нерва (eCAP), представляющего собой суммарный ответ популяции нервных волокон слухового нерва на стимуляцию конкретного внутриулиткового электрода [7]. Регистрация еСАР интраоперационно [8] позволяет удостовериться в корректном размещении электродной решетки импланта в улитке. Оптимальным местом расположения является барабанная лестница, поскольку именно этот отдел улитки позволяет разместить электродную решетку максимально близко к нервным волокнам для их последующей электрической стимуляции. Для имплантов Cochlear®(в частности, моделей CI 512 и CI 612) искомой считается эквивалентная амплитуда тока стимуляции, позволяющая обнаруживать минимальную арифметическую разницу (в µV) между значениями еСАР в точках максимума Р1 и минимума N1 (далее амплитуда N1P1), при этом пик N1 возникает на графике eCAP через 200-400 µs от начала стимуляции, пик P₁ — через 400-800 µs [6] соответственно, и $N_1P_1 = eCAP_{P1} - eCAP_{N1} > 0.$

На практике при работе со слуховыми имплантами Cochlear®используют относительные единицы измерения (так называемые Current Level, CL), эквивалентные электрическому току стимуляции *I*. Формула перехода имеет вид [9]:

$$I = \begin{cases} 0, & \text{CL} = 0, \\ 17.5 \cdot 100^{\text{CL}/255}, & 1 \le \text{CL} \le 255, \end{cases}$$

где *I* приводится в μ A, значения CL представляют собой целые числа, не имеющие размерности.

В постоперацинном периоде во время подключения и периодических настроек РП регистрация еСАР с минимальной амплитудой N₁P₁, соответствующей эквивалентному току в CL, позволяет сформировать профиль настроечной слуховой карты пациента для каждого внутриулиткового электрода: адекватно установить (в CL) так называемый уровень "Комфорт" (комфортное восприятие громких звуков) и уровень "Порог" слышимости (восприятие тихих звуков едва слышимых пользователю системы КИ). Благодаря функции телеметрии нервного ответа, которая реализована в слуховых имплантах производителя Cochlear®, возможно проводить регистрацию еСАР. Телеметрия нервного ответа (в англоязычной литературе для данного производителя Neural Response Telemetry, NRT) происходит при подаче стимула (электрического импульса с определенными параметрами) на внутриулитковый электрод с последующим возбуждением нервных волокон и дальнейшей регистрацией еСАР с другого близлежащего внутриулиткового электрода (для имплантов моделей CI 512 и CI 612 — это через один или два в направлении апикальной части улитки). Приведенная особенность регистрации еСАР с другого электрода связана, в том числе, с искажениями сигналов (артефактами), возникающих как следствие подачи стимула и включением приемника-стимулятора для регистрации еСАР, а именно встроенного в него усилителя, что является технологической особенностью, вообще говоря, любого слухового импланта. В режиме насыщения усилителя невозможно зарегистрировать еСАР до восстановления активного режима усилителя с целью минимизации искажений усиливаемого сигнала. Это вызывает сложности для регистрации еСАР из-за его короткой латентности. Также к невозможности регистрации еСАР следует отнести недостаточное количество заряда, переданного от внутриулиткового электрода к нервным волокнам, что требует дополнительной коррекции параметров стимуляции. Поскольку зависимость еСАР от времени имеет относительно небольшие минимумы и максимумы по своей морфологии в сравнении с наблюдаемым артефактом, производитель Cochlear®для выделения eCAP применяет следующие основные методики: Alternating Polarity (переменная полярность), Subtraction Template (вычитание подпорогового шаблона), Forward Masking (предшествующая маскировка). Как показывает практика (в том числе авторов), последняя технология может использоваться также для поиска eCAP у пользователей имплантов с гипоплазией слухового нерва [10] и для оценки взаимодействия внутриулитковых электродов[11,12]. Технология Forward Masking, использующая рефрактерные свойства слухового нерва, применяется по умолчанию для исследований имплантов Cochlear®. Сущность заключается в стимуляции одного и того же внутриулиткового электрода разными импульсами "Пробный" и "Маскирующий" (с относительно небольшими временными интервалами между ними); регистрация сигналов для последующего выделения еСАР осуществляется при четырех условиях (А, В, С и D, (табл. 1)). Важно заметить, что при регистрации еСАР всегда возникает артефакт от приемника-стимулятора при его включении для осуществления регистрации. В табл. 1 приводится описание процесса для выделения eCAP при использовании технологии Forward Masking подавления артефактов.

Искомый еСАР определяется, как

$$eCAP = eCAP(A) - eCAP(B) + eCAP(C) - eCAP(D).$$

В ПО CSEP реализован алгоритм Auto Neural Response Telemetry (AutoTMNRT, позволяющий встроенным экспертным системам автоматически определять так называемый Visual T-NRT в CL (среднее значение двух эквивалентных токов стимуляции: значения тока, при котором детектируется минимальное значение N_1P_1 , и максимального значения тока, при котором N_1P_1 не обнаруживается) путем перебора значений эквивалентных токов стимуляции и мамплитуд N_1P_1 во время измерений. Как показывает практика, в некоторых случаях (например, гипоплазия слухового нерва, насыщение усилителя, недостаточность переданного электрического заряда) алгоритм AutoTMNRT может не сработать, вследствие чего Visual T-NRT определить не удастся.

Целью настоящей работы является разработка альтернативной математической модели, позволяющей на основе экспериментальных данных, полученных во время

Условие	Стимуляция исследуемого электрода	Регистрация еСАР (с близлежащего электрода)	Результат регистрации еСАР
А	"Пробный" импульс	Кривая, содержащая искомый eCAP (при условии достаточного электрического заряда, переданного нервным волокнам), артефакт от импульса "Пробный", артефакт от приемника-стимулятора	eCAP (A)
В	"Маскирующий" импульс, "Пробный" импульс	Кривая, содержащая артефакты от импульсов "Пробный", "Маскирующий", артефакт от приемника-стимулятора	eCAP (B)
С	"Маскирующий" импульс	Кривая, содержащая артефакт от импульса "Маскирующий", артефакт от приемника-стимулятора	eCAP (C)
D	Нет	Кривая, содержащая артефакт от приемника-стимулятора	eCAP (D)

Таблица 1. Технология Forward Masking подавления артефактов

телеметрии, определять эквивалентный ток стимуляции (New T-NRT в CL) для внутриулиткового электрода с минимальным значением N_1P_1 на графике eCAP.

1. Материал и методы исследования

В исследование включены интраоперационные данные 69 пациентов (детей) в возрасте от 1 года до 5 лет, которым на базе ФГБУ СЗОНКЦ им. Л.Г. Соколова ФМБА России проведена операция КИ с установкой слухового импланта производителя Cochlear®(Австралия). Все пациенты в анамнезе не имели противопоказаний к КИ, связанных с полной аплазией внутреннего уха, полной облитерацией улитки, наличием тяжелых соматических, неврологических и психических заболеваний, препятствующих проведению хирургической операции под общей анестезией и послеоперационной слухоречевой реабилитации. На предоперационном этапе у пациентов также не выявлены патологии слухового нерва. Введение электродной решетки в улитку осуществлялось преимущественно через круглое окно, а также в меньшем числе случаев через кохлеостому. Во всех случаях опытным врачом-хирургом визуально наблюдалось полное введение решетки из 22 электродов в улитку. Слуховые импланты моделей CI 512 и CI 612 имеют одинаковое строение, в том числе вводимой в улитку электродной решетки, за исключением лишь магнита фиксации, встроенного в катушку импланта. В табл. 2 приводятся демографические и связанные с КИ сведения о пациентах.

Интраоперационные измерения каждого только что установленного слухового импланта проводились на ноутбуке в ПО CSEP прямо во время операции КИ. Для подсоединения к импланту использовались программный модуль, тестовый РП СР 910 с катушкой и встроенным в нее магнитом сильного притяжения, позволяющим установить физический контакт и устойчивый радиосигнал с катушкой импланта. Автоматическое вычисление импедансов в четырех режимах стимуляции ("MP 1", "MP 2", "MP 1+2" и "Общая земля") не выявило короткого замыкания и разомкнутой цепи на всех 22 внутриулитковых электродах [13]. Поэтому для сокращения времени тестирования импланта и, как следствие, времени нахождения пациента (ребенка) под общей анестезией, поиск Visual T-NRT осуществлялся с помощью алгоритма AutoTMNRT на каждом из пяти внутриулитковых электродов (с номерами "22", "16", "11", "6" и "1"), выбранных с почти равным шагом относительно друг друга в улитке. В табл. 3 приводятся параметры алгоритма AutoTMNRT, адаптированные для нашего исследования и используемые для регистрации еСАР с соответствующими им эквивалентными токами стимуляции с целью последующего pacчета Visual T-NRT.

Предложенная авторами модель вычисления New T-NRT на выбранном внутриулитковом электроде включает следующие действия:

1. Нанесение полученных в результате измерения n точек на декартову систему координат, где абсцисса точки — значение тока в эквивалентных клинических единицах в CL (далее x_i , i = 1, ..., n), ордината — значение N₁P₁ (далее y_i). При этом обязательно соблюдение условия при отборе точек: если $x_{i+1} > x_i$, то $y_{i+1} > y_i$. Это условие является следствием того, что в общем виде зависимость тока в эквивалентных клинических единицах от значений N₁P₁ представляет собой сигмоидальную функцию [14].

Характеристика	Числовые показатели
Количество пациентов	69
Пол (мужской / женский)	30/39
Сторона имплантации (левая / правая)	32 / 37
Количество пациентов, которым установлен второй имплант (левая сторона / правая сторона)	7 / 4
Диапазон возраста на момент КИ, год	1-5
Средний возраст (± стандартное отклонение) на момент КИ, год	2.7 (±1.2)
Установленный слуховой имплант (CI 512 / CI 612)	46 / 23

Таблица 2. Демографические и связанные с КИ сведения о пациентах

2. Аппроксимация полученных точек степенной функцией вида $f(x) = b \cdot x^a$, где коэффициенты b, a однозначным образом определяются с помощью метода наименьших квадратов.

3. Определение точки $M(x_M, y_M)$ на графике аппроксимированной функции, где $x_M = (x_1 + x_n)/2$, $y_M = f(x_M)$. В случае дробного значения x_M происходит округление до целого.

4. Построение касательной g(x) к графику функции f(x) в точке M.

5. Нахождение точки $N(x_N, y_N)$ как пересечение графиков функций g(x) и $h(x) = y_1$. Абсцисса x_N точки N представляет собой New T-NRT в CL.

6. Введение для каждого из пяти внутриулитковых электродов пациента поправочного коэффициента k_N , представляющего собой отношение Visual T-NRT к New T-NRT.

На рис. 1 представлена графическая визуализация математической модели.

Выбор абсциссы точки M, к которой построена касательная к графику аппроксимирующей функции, в качестве среднего значения эквивалентных амплитуд токов стимуляции успешных первого и последнего измерений обусловлен особенностями вычислений Visual T-NRT в алгоритме AutoTMNRT (как среднего значения двух эквивалентных амплитуд токов стимуляции: значения тока, при котором детектируется минимальное значение N_1P_1 и максимального значения тока, когда N_1P_1 не обнаруживается) и стартовым значением эквивалентного тока стимуляции для начала измерений на внутриулитковом электроде (которое также определяется как среднее значение двух Visual T-NRT двух электродов, между которыми располагается измеряемый электрод).

Статистическая обработка данных проведена в MS Ехсеl: использован тест Колмогорова–Смирнова с целью проверки на номальность распределения полученных результатов, метод ранговой корреляции Спирмена.

2. Результаты

В общей сложности нами было проведено измерение 345 электродов у 69 пациентов. Определены значения

Visual T-NRT (приняты за истинные) на 334 электродах. Тест Колмогорова–Смирнова не показал нормального распределения Visual T-NRT по электродам "22", "16", "11", "6" и "1". Каждое значение Visual T-NRT установлено при получении амплитуд N_1P_1 с соответствующими им значениями токов в клинических единицах. Из рассмотрения исключены точки, у которых при увеличении тока стимуляции уменьшалась амплитуда N_1P_1 . Визуальный анализ кривых на 11 электродах в ПО СЅЕР показал наличие артефактов, что не позволило определить Visual T-NRT.

Для сопоставления значений New T-NRT, рассчитанных по предлагаемой модели, были также проведены вычисления минимальных токов стимуляции Line T-NRT (в клинических единицах CL) в рамках уже известной науке модели линейной аппроксимации [15], где аргументом линейной функции выступает эквивалентное значение тока в CL, а ее значением — амплитуда N_1P_1 в μ V. Искомое значение Line T-NRT определено как абсцисса точки пересечения графика линейной функции с осью абсцисс, т. е. значение N_1P_1 этой точке обращается в нуль.

В качестве примера на рис. 2 приводятся данные телеметрии нервного ответа (эквивалентный ток стимуляции и соответствующая амплитуда N_1P_1) у одного из пользователей, полученные на внутриулитковом электроде "11" с помощью алгоритма AutoTMNRT, а также графики, аппроксимированные степенной и линейной функциями, демонстрирующие существенные различия между двумя моделями.

Заметим, что алгоритм позволяет установить только Visual T-NRT без определения значения минимальной амплитуды N_1P_1 , поэтому соответствующая точка на графике обозначена "пустой".

На рис. 3 приведены сравнения числовых значений Visual T-NRT с New T-NRT и Visual T-NRT с Line T-NRT для серединного внутриулиткового электрода "11", показывающие визуальную степень совпадения данных физических величин. Похожие графики наблюдались и для остальных электродов с номерами "22", "16" и "1".

В табл. 4 представлены основные результаты исследования.

Описание	Параметр / характеристика			
Технология подавления артефактов	Forward Masking			
Форма электрических импульсов "Пробный", "Маскирующий"	Прямоугольный бифазный двусторонний			
Форма электрического импульса для уменьшения артефакта от импульсов "Пробный", "Маскирующий" (подключается автоматически для минимизации артефакта)	Монофазный прямоугольный (длительность 10 µs, амплитуда не превышает амплитуду импульса "Пробный" в CL)			
Разница амплитуд импульсов "Маскирующий" и "Пробный", CL	10			
Начальная амплитуда импульса "Пробный" для электрода "22", CL	150			
Шаг увеличения амплитуды импульса "Пробный" в эквивалентных клинических единицах для получения двух достоверных кривых eCAP, CL	6			
Шаг уменьшения амплитуды импульса "Пробный", CL	3			
Очередность измерений электродов	"22", "1", "11", "16", "6"			
Начальная амплитуда импульса "Пробный" для электрода "1", CL	Рассчитанное значение Visual T-NRT электрода "22"			
Начальная амплитуда импульса "Пробный" для электродов "11", "16" и "6", CL	Рассчитывается как среднее значение Visual T-NRT между двумя измеренными электродами			
Длительность одной фазы импульсов "Пробный", "Маскирующий", µs	25			
Межфазная задержка для импульсов "Пробный", "Маскирующий", µs	7			
Частота стимуляции импульса "Пробный", Hz	250			
Частота стимуляции импульса "Маскирующий", Hz	100			
Количество измерений для получения одной результирующей кривой eCAP, штук	A: 35, B: 35, C: 35, D: 35			
Количество импульсов "Маскирующий" на один "Пробный" для выделения eCAP в условии "В", штук	1			
Временной интервал между импульсами "Маскирующий", "Пробный", µs	400			
Время задержки между окончанием стимуляции и началом регистрации eCAP, µs	122			
Обнаружение и фиксирование на кривой еСАР минимума N ₁ и максимума P ₁	Экспертная система на основе экспериментальных данных, встроенная в алгоритм			
Длительность регистрации кривых для последующего выделения из них eCAP при включении усилителя приемника-стимулятора, µs	1600			
Коэффициент усиления усилителя приемника- стимулятора, dB	50			

Таблица 3. Параметры алгоритма AutoTMNRT

Описание	Параметр / характеристика		
Внеулитковый электрод, участвующий в осуществлении стимуляции	MP 1		
Внеулитковый электрод, участвующий в регистрации кривых для выделения потенциала	MP 2		
Порядковый номер внутриулиткового электрода, в локации которого происходит регистрация кривых для последующего выделения eCAP	"+2" по отношению к порядковому номеру стимулируемого электрода Исключение: для стимулируемого электрода "22" регистрирующий электрод "20"		

Таблица 3. (продолжение)

Рис. 1. Графическая визуализация математической модели.

Рис. 2. Графические данные телеметрии нервного ответа у пользователя на внутриулитковом электроде "11"; зеленый график — аппроксимация полученных точек степенной функцией, красный график — аппроксимация полученных точек линейной функцией, зеленый кружочек — расчетный эквивалентный ток New T-NRT (137 CL), красный кружочек — расчетный эквивалентный ток New T-NRT (137 CL), пустой синий кружочек — расчетный эквивалентный ток New T-NRT (129 CL).

3. Обсуждения

В результате измерений пяти внутриулитковых электродов у шестидесяти девяти пациентов определен Visual T-NRT в 96.8 % случаев, что превышает чувствительность (96%) алгоритма AutoTMNRT, приводимую в научных данных. Невозможность получения Visual T-NRT на одиннадцати электродах не связана с недостаточностью переданного электрического заряда, что, по всей видимости, подтверждает, в целом, оптимально подобранные параметры в результате всех измерений, а именно достаточный ток стимуляции (до 1750 μ A) и длительность фазы импульсов (25 μ s) для получения еСАР. Автоматическое подключение дополнительного импульса во время стимуляции с целью уменьшения искажений сигналов зафиксировано больше у модели CI 612 слухового импланта (11 раз у 23 штук) в сравнении с моделью CI 512 (4 раза у 46 штук), что

Рис. 3. *а* — сравнение числовых значений Visual T-NRT с New T-NRT для электрода "11"; *b* — сравнение числовых значений Visual T-NRT с Line T-NRT для электрода "11".

Yapa/Tapu/Tu/a	Порядковый номер внутриулиткового электрода				
Ларактеристика	"22"	"16"	"11"	"6"	"1"
Количество точек измерений (общее число 1292), штук	228	255	217	304	288
Количество точек, исключенных из расчетов (общее число 55), штук	6	8	14	12	15
Количество точек, приводящих к образованию плато на графике зависимости амплитуд от эквивалентных токов (общее число 5), штук	2	2	0	1	0
Количество определенных Visual T-NRT	68	69	64	68	65
Количество определенных Visual T-NRT при автоматическом добавлении импульса для уменьшения артефакта от импульсов "Пробный", "Маскирующий" во время стимуляции (CI 512/CI 612)	1/4	0/4	0/3	1/0	2/0
Коэффициент г _{VN} Спирмена при сравнениии Visual T-NRT и New T-NRT	0.9979	0.9980	0.9912	0.9943	0.9941
Сила корреляционной связи между Visual T-NRT и New T-NRT в соответствии со шкалой Чеддока	весьма высокая	весьма высокая	весьма высокая	весьма высокая	весьма высокая
Коэффициент r _{VN} Спирмена при сравнениии Visual T-NRT и Line T-NRT	0.9623	0.9386	0.8937	0.8341	0.8565
Сила корреляционной связи между Visual T-NRT и Line T-NRT в соответствии со шкалой Чеддока	весьма высокая	весьма высокая	высокая	высокая	высокая
Среднее значение поправочного коэффициента (k _N) по всем пациентам в рамках математической модели	0.9799	0.9788	0.9813	0.9728	0.9761
Среднее значение поправочного коэффициента (k _N) по всем пациентам в рамках линейной аппроксимации	1.0377	1.0346	1.1015	1.0954	1.0978

Таблица 4. Основные результаты исследования

может быть исследовано в дальнейшем при развитии этого направления.

3.1. Математическая модель

На основе полученных измерений выбор степенной функции в качестве аппроксимирующей обусловлен

лучшим ее соответствием экспериментальным данным в сравнении с экспоненциальной, логарифмической и полиномиальной функциями. Величина достоверности аппроксимации у степенной функции в сравнении с приведенными оказалась выше. Кроме того, вид графика логарифмической и полиномиальной функций визуально не соответствует полученным точкам в результате исследования. Свойства степенной функции позволяют сравнительно легко проводить экстраполяцию в сторону меньших значений аргумента (тока стимуляции в эквивалентных клинических единицах CL) относительно полученной первой точки измерений, а также достаточно легко находить коэффициенты степенной функции аналитическим способом. Исключение из рассмотрения точек, у которых при увеличении тока стимуляции не возрастает значение N1P1 (с точки зрения математики — асимптотическое приближение к верхней границы амплитуд N₁P₁, вызванное физиологическими особенностями слухового нерва), не показало значимых различий в расчетах New T-NRT. В связи с этим допускается для ускорения процесса отбора и вычислений включать в расчет все точки измерений за исключением тех, у которых с увеличением тока стимуляции происходит уменьшение N1P1 (что и реализовано в данной модели). Последнее, скорее всего, связано с артефактами и нетривиальным математическим подходом для выделения еСАР в целом. Касательную к графику в серединной точке можно рассматривать как приближение аффинной функцией, которая наилучшим образом аппроксимирует исходную степенную функцию в данной точке. Расчетные значения коэффициентов Спирмена имеют лучшую силу корреляционной связи (во всех случаях — "весьма высокая") в сравнении с линейной аппроксимацией. Если в некоторых измерениях вид аппроксимирующей степенной функции приближен к линейной, то касательная в серединной точке (вообще говоря, и в любых других, полученных при измерении) почти совпадает с линейной функцией и New T-NRT определяется абсциссой первой точки измерения, что приводит к модели линейной экстраполяции, за исключением лишь пересечения графика этой функции с осью абсцисс. Средние поправочные коэффициенты по исследованным электродам в рамках предложенной модели имеют лучшую корреляцию в сравнении со средними коэффициентами в случае линейной аппроксимации. Скорее всего, можно использовать единый усредненный коэффициент 0.9778 для всех внутриулитковых электродов ввиду относительно хорошей корреляции средних поправочных коэффициентов для пяти исследованных электродов.

3.2. Применение модели

Данная модель разработана для определения минимального эквивалентного тока стимуляции при проведении расширенной телеметрии в ПО производителя в случае, если полностью автоматизированный машинный алгоритм не позволяет определить искомые величины. Учитывая, что перед проведением новой серии измерений потребуется провести оптимизацию параметров стимуляции и регистрации (табл. 1), занимающую порой большое количество времени, на практике в целях экономии времени (в особенности при работе с маленькими детьми) используют отличные от 1 CL шаги стимуляции (в рамках диапазона, заданного врачом-сурдологом) для определения искомого минимального тока в клинических единицах. Кроме того, полученные данные телеметрии позволяют провести необходимые расчеты в ПО только по модели линейной аппроксимации. В этом случае предложенная модель является актуальной и максимально приближенной к результатам полностью автоматизированного машинного алгоритма.

3.3. Ограничения

Получение значений амплитуд N_1P_1 , соответствующих эквивалентным токам стимуляции, должно проводиться при одних и тех же параметрах стимуляции и регистрации, в особенности если речь идет о проведении измерений в режиме "Расширенная телеметрия" в CSEP. Заметим также, что значение New T-NRT не может обращаться в 0 и превышать 255 CL (верхнюю границу), что обусловлено техническими параметрами слухового импланта. Округление расчетного значения New T-NRT должно проводиться до целого. Оптимальным эмпирически установленным (на основе рассмотренных данных 69 пациентов) шагом стимуляции является значение 6 CL, выбор которого позволит сократить время измерений и вычислений.

Заключение

Представленная в работе математическая модель для получения New T-NRT может также применяться и у других типов имплантов производителя Cochlear®(вне зависимости от строения электродной решетки). По всей видимости, модель можно также использовать для получения New T-NRT в постоперационном периоде (на этапе подключения и очередной настройки РП) у пользователей имплантов, которые не могут дать адекватной оценки, в особенности на восприятие громких звуков (маленькие дети долингвально оглохшие, взрослые с сопутствующими заболеваниями), и у которых не удается получить Visual T-NRT в режиме AutoTMNRT. Скорее всего, предложенную модель можно использовать и для расчета New-TNRT у пользователей имплантов Cochlear®с гипоплазией слухового нерва в режиме "Расширенная телеметрия", у которых регистрация еСАР характеризуется нестабильностью (с увеличением эквивалентного тока стимуляции значения амплитуд могут уменьшаться или не определяться), что потребует существенной вариации параметров стимуляции, регистрации, а также выбора оптимальной технологии подавления артефактов в каждом конкретном случае. Полученные и отобранные точки (у которых с возрастанием тока стимуляции увеличивается амплитуда еСАР) в рамках телеметрии нервного ответа можно использовать для определения минимальных эквивалентных токов стимуляции в рамках предложенной модели.

Поскольку исходными данными в данной модели являются значения тока в эквивалентных единицах (могут

также выступать значения заряда, которые в случае прямоугольных импульсов получаются произведением тока на длительность импульса) и соответствующие им значениям N_1P_1 , модель может быть рассмотрена к применению для слуховых имплантов других производителей.

Соблюдение этических стандартов

Все применимые международные, национальные и/или институциональные принципы использования персональных и медицинских данных пациентов были соблюдены.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] R.P. Carlyon, T. Goehring. JARO, **22**, 481 (2021). DOI: 10.1007/s10162-021-00811-5
- [2] A. Dhanasing, I. Hochmair. Acta Oto-Laringologica, 141, 1 (2021). DOI: 10.1080/00016489.2021.1888193
- [3] I. Boisvert, M. Reis, A. Au, R. Cowan, R.C. Dowell. PLoS ONE, 15 (5), 1 (2020). DOI: 10.1371/journal.pone.0232421
- [4] World Health Organization. World report on hearing (Geneva, Switzerland, 2021), ISBN 978-92-4-002157-0 (electronic version).
- [5] I.T. Brill, T. Stark, L. Wigers, S.M. Brill. Health and quality of life outcomes, 21, Art. Num. 37 (2023). DOI: 10.1186/s12955-023-02118-w
- [6] Г.А. Таварткиладзе. *Клиническая аудиология* (ГЭОТАР-Медиа, М., 2024), т. 3.
- [7] M. Bayri, A. Chiprut. Auris Nasus Larynx, 47 (6), 950 (2020). DOI: 10.1016/j.anl.2020.05.025
- [8] T. Liebscher, J. Hornung, U. Hoppe. In: Sec. Sensory Neuroscience ed. by C. Richard (Frontiers in Human Neuroscience, 2023), DOI: 10.3389/fnhum.2023.1125747
- [9] Custom Sound Pro software version 6.3. Cochlear implant reference guide (Cochlear Limited, Sydney, 2020)
- [10] S. He, X. Chao, R. Wang, J. Luo, L. Xu, H. Teagle, L. Park, K. Brown, M. Shannon, C. Warner, A. Pellittieri, W. Riggs. Ear Hear, 41 (3), 465 (2020).
 DOI: 10.1097/AUD.000000000000782
- [11] E.R. Spitzer, M.L. Hughes. J. American Academy of
- Audiology, 28 (9), 786 (2017). DOI: 10.3766/jaaa.16144
 [12kj] A. Mueller, M.H. Kropp, P. Mir-Salim, A. Aristotelis. Zeitschrift fur Medizinische Physik, 31 (3), 276 (2021). DOI: 10.1016/j.zemedi.2020.07.002
- [13] Custom Sound EP software version 6.0. User guide. Cochlear implant reference guide (Cochlear Limited, Sydney, 2020)
- [14] L. Mens. Trends in Amplification, 11 (3), 143 (2007).
 DOI: 10.1177/1084713807304362
- [15] A. Botros, B. Dijk, M. Killian. Artificial Intelligence Medicine, 40 (1), 15 (2007). DOI: 10.1016/j.artmed.2006.06.003