03

Спектральный анализ высокоскоростного течения при горении предварительно неподготовленной топливо-воздушной смеси

© М.А. Гольдфельд

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск, Россия E-mail: gold@itam.nsc.ru

Поступило в Редакцию 15 октября 2024 г. В окончательной редакции 29 ноября 2024 г. Принято к публикации 29 ноября 2024 г.

Приведены результаты исследования спектральных характеристик высокоскоростного течения в условиях самовоспламенения предварительно неподготовленной топливо-воздушной смеси при интенсивном взаимодействии внешней акустики и горения. В результате термоакустического взаимодействия происходит увеличение мощности пульсаций по сравнению со случаем "холодного" течения на порядок и более, вследствие чего улучшается смешение, происходит интенсификация горения и увеличение тепловыделения. При высоких уровнях тепловыделения возникает неустойчивость течения и вероятность перехода к вибрационному горению.

Ключевые слова: сверхзвуковое течение, горение, пульсации давления, спектр.

DOI: 10.61011/PJTF.2025.07.60069.20148

Колебания потока, вызванные горением, широко известные как неустойчивость горения, вызывают повышение давления и тепловых потоков, вибрации конструкции большой амплитуды и срыв горения. В результате возможны катастрофические последствия при работе камер сгорания и энергетических устройств. Несмотря на то что эти явления исследуются давно и широко, сверхзвуковые реагирующие течения до последнего времени оставались практически неизученными. Для дозвуковых и трансзвуковых течений механизм обратной связи выглядит очевидным просто в силу возможности распространения возмущений вверх по потоку по обширным отрывным областям. При локальных скоростях потока, соответствующих числам Маха 2 и тем более 3 и 4, предполагалось, что такой механизм не реализуется. В последнее время выяснилось, что передача возмущений вверх по потоку возможна при высоких скоростях потока [1]. Этот процесс возможен, если воспламенение реализуется вблизи стенки канала, при интенсивном горении и увеличении размера областей отрыва и толщины дозвуковой части потока. Доминирующими факторами, которые определяют термоакустические осцилляции реагирующего течения, являются условия на входе в канал (пульсации основного потока воздуха и высоконапорной струи топлива). С другой стороны, это неустойчивость процесса воспламенения, взаимодействие аэроакустики потока с акустикой, генерируемой пламенем, и возрастание неустойчивости при обратном распространении пламени. Когда акустические волны начинают взаимодействовать с акустическими волнами, генерируемыми горением, возникает акустическая нестабильность. При повышении давления в зоне горения увеличиваются отрыв пограничного слоя и интенсивность ударных волн,

в результате чего изменяется волновая структура потока в канале и происходит улучшение смешения.

Цель настоящей работы состоит в изучении спектральных характеристик течения с горением при высокой скорости потока и интенсивности акустики на входе в канал. Опыты проводились в импульсной установке на модели прямоугольного канала с поперечным сечением 100×100 mm, состоящей из сверхзвукового сопла, изолятора и канала постоянного поперечного сечения со стабилизатором пламени в виде уступа (рис. 1, a). Модель была оснащена оптическими стеклами для визуализации потока. Топливо подавалось перед уступом на верхней и нижней стенке через восемь круглых отверстий под углом 90°. Описание установки, модели и техника эксперимента приведены в [2,3]. Испытания проводились при статическом давлении 0.08-0.12 МРа, температуре торможения 1760 ± 35 К и общем коэффициенте избытка топлива $\beta = 0.5 - 0.985 \pm 0.016$. Здесь коэффициент избытка топлива определялся по условиям на входе в канал в течение всего времени режима работы импульсной установки как отношение массы топлива к массе воздуха, деленное на стехиометрическое отношение массы топлива и воздуха, т.е. $\beta = (m_f/m_a)/M_{0st}$.

Данные рис. 1, b демонстрируют изменение давления в канале при увеличении коэффициента избытка топлива и одновременно рост амплитуды пульсаций. Здесь X относительное расстояние измерительной точки от уступа стабилизатора пламени, обезразмеренное высотой уступа. Кривая I соответствует течению без горения, но с подачей топлива в атмосферу азота. В этом случае уровень пульсаций минимален и обусловлен только возмущениями на входе в канал. Эти данные показывают исходный уровень пульсаций и используются для количественной оценки пульсаций при горении. Кривые

Рис. 1. Схема модели (*a*) и пульсации давления при увеличении теплоподвода (*b*). $I - \beta = 0, X = 2.94h; 2 - \beta = 0.62, X = 2.94h; 3 - \beta = 0.68, X = 5.34h; 4 - \beta = 0.98, X = 5.34h.$

2-4 иллюстрируют рост пульсаций при интенсификации горения. При $\beta = 0.62$ пульсации давления остаются практически неизменными, и величина давления остается постоянной. Сравнение кривых 2 и 3 свидетельствует о том, что даже при небольшом увеличении β происходит рост давления вследствие увеличения пульсаций перед подъемом давления [2]. Дальнейшее увеличение коэффициента избытка топлива сопровождается существенным изменением давления и пульсаций (кривая 4). На рисунке овалами выделены три характерные области роста пульсаций давления: воспламенение (10-18 ms), скачкообразный подъем давления (48-55 ms) и переход к дозвуковому горению (105-115 ms). Каждая из этих областей предшествует повышению среднего интегрального тепловыделения в соответствующем временном интервале в квазистационарных условиях с учетом полноты сгорания топлива.

Для того чтобы исследовать амплитудно-частотные характеристики пульсаций давления в условиях существенной нестационарности средних значений, пульсационная составляющая выделялась путем вычитания сглаженной функции из исходного сигнала. Осредненное значение получено с помощью сглаживающих сплайнов. Для этого исходный сигнал аппроксимировался кубическим сплайном с использованием подхода, апробированного в [3].

Количественное изменение амплитуды пульсаций давления без горения и с горением при $\beta = 0.98$ иллюстрирует результаты измерений, которые приведены на рис. 2. Здесь сравниваются амплитуды пульсации давления для течения без горения, но в присутствии водородной струи (кривая *I* на рис. 1) и течения с интенсивным горением при $\beta = 0.98$, когда реализовался переход к дозвуковому горению (кривая *4* на рис. 1). Сравнение приведенных данных прежде всего демонстрирует их качественное различие. "Холодное" течение (рис. 2, *a*) характеризуется монотонным широкополосным спектром пульсаций в течение рабочего режима установки без выраженных дискретных значений амплитуды. Такой характер пульсаций давления сохраняется неизменным по всей длине канала с незначительными отклонениями, как это следует из данных рис. 2, *а*.

Картина изменения временной зависимости пульсаций в реагирующем течении разительно отличается как количественно, так и качественно. Можно видеть значительный рост амплитуды пульсаций по времени и по пространству в 4-5 раз, а в экстремальных зонах (воспламенение и интенсификация горения, $\tau \approx 50$ и 110 ms) даже в 8-10 раз. Увеличение пульсаций в выделенной области является следствием роста тепловыделения на начальном участке горения при воспламенении и интенсификации термоакустического взаимодействия. Сравнение повышения давления в канале для $\beta = 0.68$ и 0.98 (кривые 3 и 4 на рис. 1) демонстрирует их качественное соответствие в интервале времени $0-50 \, \text{ms.}$ Однако в последнем случае среднее давление несколько выше, примерно на 10-15%. Это локальное повышение давления являлось достаточным для того, чтобы при взаимодействии внешней турбулентности течения и акустических волн, генерируемых в процессе горения, происходило улучшение смешения и распространения пламени вверх по потоку. В результате этих процессов повышается давление в зоне воспламенения, возрастает тепловыделение и реализуется повышение давления по всему каналу при соответствующем скачкообразном увеличении давления. Эти результаты свидетельствуют о том, что колебания давления в сложных условиях термоакустического взаимодействия сильно отличаются от таковых без горения или при локальном горении.

Для количественной оценки спектральной плотности мощности (PSD) выделенных пульсаций в зависимости от частоты (f) использовалось быстрое преобразование Фурье. Обрабатывалась выборка из 1024 отсчетов (204 ms), что позволяло определять частотный диапазон

Рис. 2. Пульсации давления в потоке без горения (*a*) и с горением (*b*). X = 0.34h(1) и 5.34h(2).

Рис. 3. Плотность спектральной мощности для течения с теплоподводом при различной интенсивности горения. $\beta = 0.68$ (1) и 0.98 (2).

до 2.5 kHz. На рис. 3 приведено сравнение результатов определения PSD для двух значений коэффициентов избытка топлива в точке, которая соответствует координате X = 4.74h, где достигалось максимальное повышение давления. Можно видеть, что увеличение β на 40% приводит к увеличению спектральной мощности в 3-4 раза и изменению положения максимума пульсаций в зависимости от интенсивности горения. При увеличении интенсивности горения максимальные значения PSD смещаются в область пониженных значений частоты 150-470 Hz, как это следует из данных рис. 3, а. При пониженном значении β , т.е. при снижении тепловыделения, максимальные значения PSD достигаются на частотах 620-800 Hz. Этот уровень частот остается практически неизменным в течение всего процесса горения. Для понимания степени изменения уровня пульсаций на рис. 3, b приведено нормализованное значение плотности спектральной мощности для тех же значений PSD, которые приведены на рис. 3, а.

В качестве референсного значения для нормализации зависимости PSD(f) принята соответствующая величина PSD для течения без горения перед входом в канал, обозначенная как PSD_0 . Приведенные данные свидетельствуют о том, что в результате взаимодействия

акустики внешнего течения с акустикой, реализуемой при горении, происходит значительное усиление пульсаций давления, увеличение спектральной плотности мощности может составлять 40–50 раз при стехиометрическом составе смеси и достигать 10–20 раз при умеренном тепловыделении. Полученные данные согласуются с результатами для реагирующих течений при сверхзвуковых скоростях потока [4].

Приведенные выше данные относятся к точкам, в которых достигалось максимальное тепловыделение в течение режима работы установки. Такие зависимости были получены по всей длине канала в различных точках и являются типичными для течения с горением. Однако количественные изменения зависят от общего коэффициента избытка топлива и начальных параметров потока на входе в канал. Поэтому приведенные результаты следует рассматривать как близкие к максимальным значениям, которые получены при различных условиях на входе в измерительный канал, но которые оставались постоянными в течение одного опыта.

Проведенные исследования спектральных характеристик высокоскоростного реагирующего течения позволяют сделать следующее заключение. Несмотря на то что процессы интенсификации пульсаций рассматриваются в основном с точки зрения неустойчивости потока и появления опасных резонансных режимов, тем не менее нельзя исключать возможности их использования для улучшения смешения и эффективного повышения энтальпии высокоскоростного потока.

Процесс перехода к интенсивному горению имеет двухступенчатый характер и обусловлен ростом пульсаций в области инициирования горения. Скачкообразное повышение давления является следствием усиления пульсаций давления при локальной интенсификации горения. Спектральный анализ течения свидетельствует о том, что увеличение тепловыделения при горении, например при увеличении коэффициента избытка топлива, давления подачи топлива или полноты сгорания, приводит к усилению термоакустического взаимодействия и, как следствие, к экстремальному усилению пульсаций давления вплоть до перехода к вибрационному горению.

Благодарности

Эксперименты проведены на базе Центра коллективного пользования "Механика" (ИТПМ СО РАН).

Финансирование работы

Исследование выполнено при поддержке Министерства образования и науки РФ в рамках государственного задания ИТПМ СО РАН (номер гранта 1240215000-0).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- H.T. Luong, Y. Wang, H.S. Han, C.H. Sohn, Aerospace Sci. Technol., **118**, 106994 (2021).
 DOI: 10.1016/j.ast.2021.106994
- M.A. Goldfeld, Int. J. Hydrogen Energy, 48 (53), 20483 (2023).
 DOI: 10.1016/j.ijhydene.2023.02.114
- [3] Н.Н. Федорова, М.А. Гольдфельд, В.В. Пикалов, Физика горения и взрыва, 58 (5), 33 (2022).
 DOI: 10.15372/FGV20220505 [N.N. Fedorova, M.A. Goldfeld, V.V. Pickalov, Combustion, Explosion, Shock Waves, 58 (5), 536 (2022). DOI: 10.1134/S0010508222050057].
- M. Sun, H. Wang, Z. Cai, J. Zhu, Unsteady supersonic combustion (Springer, Singapore, 2020).
 DOI: 10.1007/978-981-15-3595-6