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Estimation of second viral coefficient for polypropylene in organic

solvents by computer simulation
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We present two new methods to estimate the value of the second viral coefficient for dilute polymer solutions.

The first method utilizes the results of molecular dynamics simulation; the second one is based on the hybrid

approach, which combines Monte-Carlo simulation with a numerical solution of the Ornstein-Zernike equation. The

results show that both methods give the correct ascending arrangement of second viral coefficients for polypropylene

solutions in organic solvents. The method based on molecular dynamics has a precision advantage, while the hybrid

approach has better performance.
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1. Introduction

The main problem with the theories claiming to describe

equilibrium and dynamic properties of complex systems,

such as
”
polymer+solvent“, polymer composites etc., con-

sists in the need of correct accounting of the effects of

volume interactions of polymer chain links with solvent

molecules or inclusions at various scales. The central role

in the study of polymer solutions belongs to the Flory-

Huggings theory, where the volume interaction value is

characterized by the value of the second virial coefficient.

The most frequently used method to calculate the second

virial coefficient in polymer solutions is semiphenome-

nological model UNIFAC (UNIQUAC Functional-group

Activity Coefficient) [1,2]. Even though this method

is successfully used to predict the phase equilibrium of

complex systems, it will not always provide the accurate

results and requires experimental verification. Besides,

expanding the applications of UNIFAC method to describe

the new materials requires high-precision experiments to

determine the phenomenological coefficients.

The calculation of the second virial coefficient is of

practical use to determine the mechanical resistance of poly-

mer separators in lithium-ion batteries [3,4]. Experimental

studies [5] have shown that depending on the used solvent,

the polymer separator may swell significantly, losing its

mechanical properties. In connection with the growth of

interest in using new materials to manufacture separators, it

becomes necessary to develop the method for selection of

an ideal solvent.

To estimate the second virial coefficient, the computer

modeling methods may be used. Despite the fact that there

exist multiple papers to calculate the second virial coefficient

by molecular dynamics (MD) method for homogeneous

systems, the use of this method for the solutions is limited

by
”
gas-liquid“ systems [6,7]. The promising approach is

using hybrid circuit MC/RISM (Monte Carlo / Reference

interaction site model) [8]. In this approach a single

chain is modelled by Monte Carlo method, and the solvent

at the same time is described in
”
simplified“ manner,

using integral Ornstein–Zernicke equation (RISM theory

equation). Influence of the solvent on the polymer chain

is described by additional potential 1ψ, which is defined

by self-agreed performance of Monte Carlo modelling and

numerical solution to the integral equation. Even though

this circuit is highly effective for computations, so far it has

been used only within rather simple and coarse of polymer

and solvent models.

This paper proposes two new methods to assess the vo-

lume interactions based on MD and MC/RISM approaches.

The methods were tested on polypropylene solutions with

various organic solvents (acetone, acetonitrile, cyclopentane,
ethyl acetate and benzene). Previously in this paper [9] we
studied the relaxation properties of polypropylene in these

solutions.

2. Models and methods

To describe solvents and polymer molecules, power fields

OPLS-ua and TraPPE-ua were used, where CH-groups

are considered as single power centers. These power

fields on the one hand provide for good accuracy of the

description of experimental properties of substances, such

as density and heat of vaporization, and on the other

hand, are much more effective than full-atom models.

It was assumed that the position of atoms inside the
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solvent molecule is fixed. Intermolecular interaction energy

between the power centers of solvents consisted of Coulomb

energy and Lennard-Jones potential (LD). The parameters of

potentials were taken from papers [10–14]. LD interaction

parameters for various power centers were calculated using

the Lorentz–Berthelot consolidation rules.

To describe polypropylene molecules, a model

TraPPE-ua [15] was used. The Hamiltonian of such model

consists of LD potential, energy of covalent bonds, valent

and torsion angles, and potential of
”
abnormal“ torsion

angles, providing for building side CH3-groups along one

side of the polymer chain. The first of the methods we

developed consists in using MD calculations and assessment

of the volume interaction parameter using the following

formula:

BMD = −2π

∞
∫

0

gpp(r)〈 f M(r)〉r2dr,

f M(r) = exp

[

−
Upp(r)

kBT

]

− 1, (1)

where gpp(r) — radial function of distribution
”
monomer-

monomer“, Upp(r) — potential energy of monomer interac-

tion, f M(r) — Mayer function.

Since in this model the potential energy of interaction

is set not for monomers, but for the CH-groups that make

them, the first step should be the calculation of the averaged

Mayer function 〈 f M(r)〉. For this purpose the preliminary

MD modeling of the single chain in vacuum was performed.

This modeling was performed in LAMMPS packet in

a canonical assembly (NVT) at T = 298.15K, the time

increment was 0.25 fs, the total number of increments to

calculate the radiation distribution functions was 1.6 · 106,
the polypropylene chain consisted of 50monomers. The

value of pair potential energy of interaction of all power

centers of polypropylene molecule and distance between

them was recorded every 1000 increments. The average

value of function f M(r) was calculated by histogram

method. The distance between monomers was the distance

between CH2 groups of polymer chain.

To calculate function gpp(r), MD-modeling of a single

chain was performed in a solution. The total number

of solvent molecules was 5000 min. The box size and

the number of solvent molecules were selected so that

the concentration of solvent molecules corresponds to the

table value at standard pressure. The time increment was

0.25 fs, the total number of increments, when the radial

distribution functions were calculated, was equal to 4 · 105.
Pair potentials

”
were cut“ at the distance of 20 Å, long-

distance Coulomb interaction was taken into account via

summation using Ewald method. To calculate the functions

of radial distribution, standard LAMMPS means were used.

The second method proposed by us is based on the

hybrid scheme MC/RISM, described in detail in paper [8].
To calculate the second virial coefficient, the following

expression is used:

BMC = 2π

∫
[

1− exp

{

−
Upp(r) + 1ψ(r)

kBT

}]

r2dr, (2)

where 1ψ(r) — addition to the potential produced as a

result of MC/RISM-calculations and describing the effect

of the solvent at the polymer. Monte Carlo modeling of a

single chain was implemented in MATLAB packet. At each

step of Monte Carlo a random node of the chain was chosen

and shifted in space within the radius sphere 0.05 Å. Then

the new configuration was accepted with the probability

corresponding to the Metropolis standard criterion. The

histogram of distribution of internodal distances in the chain

was generated every 1000 steps of Monte Carlo. These

calculations were repeated 500 times, and then the final

function of the intramolecular distribution was calculated by

averaging of these histograms.

The self-consistent solution of RISM equations was

carried out according to the algorithm described in paper [8].
However, when correlation functions of the binary systems

were determined, the convergence of this procedure fails

due to a high number of sought functions (total 3 · Ns func-

tions, where Ns — number of power centers in the solvent

molecule). Therefore, to provide for convergence of the

procedure for numerical solution, the mixing parameter τ

was assigned a small value 0.001, and calculations were

interrupted, when the average relative difference between

the current and previous approximations of the function

started increasing.

3. Discussion of results

To check the correct design of the developed methods, the

parameters of volume interactions BMD and BMC calculated

using formulas (1) and (2) were compared to the results of

the calculations of the second virial coefficient using model

UNIFAC-FV — BUNI. Model UNIFAC-FV is an adequate

verification method, since for the compounds in question

the phenomenological coefficients have been well selected

and verified.

The produced values BMD and BMC differ significantly

from the results of method UNIFAC-FV. The cause for

such deviations consists in the following: the polymer chain

model we use contains
”
non-pair“ summands of potential

energy, namely the energy of valence and torsion angles,

which may not be taken into account in formulas (1)
and (2). Nevertheless, one may assume that the contribution

of these interactions hardly depends on the solvent. Then,

if this assumption is correct, there must be correlation be-

tween the values of virial coefficients produced by methods

UNIFAC-FV and MD. Indeed, if one builds dependences

BUNI on BMD and BMC (Figure) for various solvents, the

produced points are aligned well in the linear dependence.

At the same time all three methods provide the correct

comparative characteristic of the volume interaction value

in the solution. In other words, if solvents are located
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Correlation of the values of the second virial coefficient produced by methods UNIFAC-FV (BUNI) and a) of molecular dynamics (BMD),
b) MC/RISM (BMC). The figures specify the value of linear correlation coefficient R .

in the ascending order of the produced virial coefficients,

both methods provide the same row: acetonitrile, ace-

tone, ethyl acetate, benzene and cyclopentane. Linear

approximation in MC/RISM method has inferior agreement

(coefficient of linear correlation R = 0.899), compared to

MD method (R = 0.992). Nevertheless, despite lower

accuracy compared to MD method, MC/RISM method

has higher computational speed, since it uses simplified

”
language“ of intergral equations for description of solvents.

4. Conclusion

Compared to UNIFAC-FV method, both developed

method correctly provide the comparative characteristic of

the second virial coefficients for solutions of polypropylene

with organic solvents. It is shown that there is a linear

correlation between the results of the developed methods

and UNIFAC-FV method, and therefore it is possible to

assess the virial coefficient of polymer solution, knowing

the virial coefficient for two other solutions of this polymer.
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