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Dynamics of a spin nematic with S = 3/2 on a triangular lattice
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The behavior of the spectra of elementary excitations of a spin nematic with a magnetic ion spin of 3/2 on

a triangular lattice in collinear spin states is studied. It is shown that the lattice geometry does not change the
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vector showed a weak dependence on the direction of the wave vector
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1. Introduction

Interest in searching new magnetic states of a substance

has been increasing recently [1–10]. Study of models

at low temperatures, when the quantum nature of mag-

netism is revealed, is of particular interest. Magnetic

lattice configuration frequently plays a significant role.

Thus, compounds with a honeycombed superlattice of

magnetic layers interlaid with non-magnetic alkali metal

atoms are quasi-two-dimensional systems [11]. Due to

the synthesis of such objects, interest in studying the

quantum behavior in real systems not exposed to boundary

conditions has grown. Thus, frustration occurs in the

honeycombed crystal lattice due to the competition of

exchange interactions that ultimately defines the spin state

of a system [12–14]. Thus, dynamic and static properties

of non-Heisenberg magnetic materials with S = 1 having a

triangular lattice, i. e. a three-sublattice magnetic material,

are described in [7–10,15–18]. These states certainly

have specific features associated with the features of a

lattice, but generally retain the dipole and tensor phase

properties [7].
Similar states for the highest spins S > 1 are underex-

plored, but qualitatively new effects, that were not available

for the case of S = 1, have been identified for them. Thus,

for S = 3/2, nematic states were found on the square

lattice, i. e. phases with 〈S〉 = 0for which time reflection

symmetry was impaired due to nontrivial properties of

multipole (three-spin) mean values [7,8,19–22]. Due to

this, for S = 3/2 on the square lattice, antinematic phase

may exist, where director-vector is antiparallel in two

sublattices [20].
Thus, the studies of the simplest spin nematic model

suggest that systems of this kind have several unusual prop-

erties. States of this kind were studied extensively in crys-

tal magnets [7–9,15,16,23–24], including low-dimensional

systems [8,25,26]. Currently, additional interest in such

states has appeared and is associated with the study of

properties of ultracold Fermi gases, examples of which

include the 132Cs, 9Be, 135Ba gases with S = 3/2 in optical

lattices with one atom per cell [27–30]. It is also significant

that strong non-Heisenberg interaction of magnetic ions is

typical of such systems, which is necessary for the existence

of nematic states [31].

Study [32] investigates phase states of the spin nematic

with the magnetic ion spin of 3/2 on a triangular lattice,

including all potential exchange invariants. It is shown that

both dipole(ferro-/antiferromagnetic) and tensor (nematic

and intinematic) phases might be implemented in the

system. This study is devoted to the investigation of

behaviors of elementary excitation spectra of the spin

nematic with the magnetic ion spin of 3/2 on a triangular

lattice in collinear (ferromagnetic and nematic) phases.

2. Model

Let’s consider an isotropic magnet with the magnetic ion

spin S = 3/2 that has a triangular lattice. Hamiltonian

of such system, including all admissible spin invariants, is

written as:

H = −1

2

∑

n6=n′

[

J(SnSn′) + K(SnSn′)
2 + L(SnSn′)

3
]

, (1)

where Sn is the spin operator in the n-th site, J, K and L are

exchange integrals, summing in (1) is conducted by all pairs

of the nearest neighbors on the triangular lattice. The system

will be examined for the low temperature (T → 00 K) case

because this is the case when quantum properties of the

system are most pronounced.

It is more convenient to conduct further calculations

in terms of the Stevens operators [33] because a full set

of Si , Ol
2 and Ol

3 operators is the unitary transformation

generator of group SU(4), and unique mean operators are

the magnet order parameters. In this case, Hamiltonian (1)

2166



Dynamics of a spin nematic with S = 3/2 on a triangular lattice 2167

will be written as:

H = −1

2

∑

n6=n′

{

J̃(SnSn′) + K̃Om
2nOm

2n′ + LOl
3nOl

3n′

}

, (2)

where J̃ = J − K
2

+ 587
80

L, K̃ = K
2
− L, are the combinations

of exchange integrals and the interconnection between the

Stevens operators and spin operators for the system of

interest is described in [32]

We restrict ourselves only to the case of positive values

of J, K and L, i. e. we will discuss the properties of three-

sublattice collinear states with various relations of exchange

integrals.

As shown in [32], when J−K/2+103L/16> 0, then a

state with system order parameters equal to 〈Sz 〉 = 3/2,

q0
2 = 3, q0

3 = 3/2, q3
3 = 0 is advantageous, which corre-

sponds to the ferromagnetic (FM) phase with the maximum

possible magnetic moment on a site equal to 3/2. In case

of J − K/2 + 103L/16 < 0, we have 〈Sz 〉 = 0, q0
3 = 0,

q0
2 = 3, q3

3 = 3, i. e. nontrivial mean values 〈(S+)3〉 and

〈(S−)3〉 occur and q3
3 is non-zero. Thus, with such

relation of constitutive parameters, nematic state (SN) is

implemented with mean magnetic moment on site equal to

zero. Note that this nematic state actually differs from that

of the spin nematic with S = 1. Accordingly, vanishing of

J − L/2 + 103L/16 = 0 defines the phase transition line of

the FM−SN phases.

In mean field approximation, quadrupole mean values in

the FM phase are calculated as follows:

〈(Sz )2〉 =
9

4
, 〈(Sx )2〉 = 〈(Sy )2〉 =

3

4
. (3)

Nontrivial octupole mean value q3
3 is equal to zero and q0

3

is a trivial constant that doesn’t affect the system behavior.

Therefore, quadrupole mean value symmetry is completely

defined by the magnetic moment symmetry. Consideration

of multipole moments is not exhibited in the ground state

symmetry of the FM phase.

quadrupole mean values in the M phase are geometrically

represented by a spheroid in spin space. Symmetry of this

ellipsoid is defined by the magnetic moment direction that

coincides with the major axis of this ellipsoid.

The shape of this quadrupole ellipsoid in SN state is

the same as that in the FM phase and is calculated

by expression (3). However, the symmetry of SN state

actually doesn’t contain the C∞ axes (as the symmetry of

lattice cell); it is lower than the symmetry defined by the

quadrupole ellipsoid. Actually, unlike the FM state, the

following cubic mean values are non-zero in the SN phase:

〈(Sx cos χ + Sy sin χ)3〉 =
3

4
cos 3χ, (4)

where the angle χ defines rotation of the spin system about

the OZ axis. Mean value is 〈(Sz )3〉 = 0. Actually, non-zero

mean cubic values define the triad axis.

3. Dynamic properties

Let’s consider the dynamic properties of the studied

system. Elementary excitation spectrum in the obtained

phases may be obtained from the Green’s function pole

analysis [34]. Matsubara Green’s functions are defined as

follows [22]:

Gλλ′(n, τ ′; n′, τ ′) = −〈T̂ X̃λ
n (τ )X̃λ′

n′ (τ
′)〉. (5)

Calculation was conducted by the diagram technique for

Hubbard operators [35]. Dispersion equation defining the el-

ementary excitation spectra is derived and dispersion equa-

tion for magnet with S = 3/2 is solved considering all pos-

sible spin invariants in [20,36]. Dispersion equation was de-

rived using zero-order inverse interaction radius approxima-

tion, i. e. only loopless diagrams (6αβ(k, ωn) ∼ Gαβ

0 (k, ωn),

where Gαβ

0 (k, ωn) is zero Green’s function [35]) were taken

into account among all irreducible Larkin diagrams.

In low-temperature approximation, three magnon excita-

tion branches will exist, whose spectra are written as:

ε1(k) =
3

4
z

[

J − Jk +
3

2
(K − Kk) +

63

16
(L − Lk)

]

,

ε2(k) =
3

2
z

[

K − Kk −
5

4
(L − Lk) + J − 1

2
K +

103

16
L

]

,

ε3(k) =
9

4
z

[

(L − Lk) + J − K
2

+
103

16
L

]

. (6)

Jk, Kk , Lk are the Fourier components of the corresponding

exchange integrals, k is the dimensionless wave vector.

When looking at the triangular lattice in the XOY plane,

it can be seen that the coordination number is equal to

z = 6. Assuming the interionic distance 1 = 1, the form

of Fourier components of exchange integrals may be found.

For example, for bilinear exchange:

JK =
1

z

∑

1̄

Jn,n+1ei k̄1̄

=
J
3

(

cos kx + 2 cos

(

kx

2

)

cos

(

√
3ky

2

))

. (7)

Figure 1 shows the dependence of the magnon spec-

tra of the studied system on the wave vector in the

FM phase. Far from the phase transition line, the spectrum

branches εi are shown as solid heavy lines. Near the line

J − K/2 + 103L/16 = 0, the excitation spectrum branches

are shown as dashed lines.

The first excitation branch (6) ε1 is a zero-gap Goldstone

mode with the parabolic dispersion law in the long-

wavelength limit k → 0, which is typical of the isotropic

ferromagnetic material. The analysis shows that the

”
transverse“ spin density oscillations are associated with

rotations of the major axis of the quadrupole ellipsoid.

We now discuss the behavior of other excitation

modes (6) ε2 and ε3. Note that, when the bicubic
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Figure 1. Elementary excitation spectra in the FM phase are

shown schematically. Solid lines describe the spectrum behavior

in the center of the phase, dashed lines describe the spectrum

behavior on the phase transition line to the SN phase (K = J and

L = J/10 are selected). The first branch is separated for clarity.

exchange interaction constant is equal to zero L = 0, only

two excitation branches are well defined — ε1 and ε2, and

the frequency ε3 becomes a purely local state at L → 0.

Note that for a magnet with S = 1 at K = 0 [37], the non-

Heisenberg magnet’s specifics disappears: nematic phase

is not implemented, and one the modes in the M phase

becomes a purely local state. In the limiting case L = 0,

ε1 and ε2 are written in the same way as two collective

modes of the spectrum for a magnet with S = 1. All this

suggests that the physical significance of ε2 is the same as

for the ferromagnetic material with S = 1, i. e. the mode

with ε2 describes the
”
longitudinal“ spin behavior [37].

This mode includes longitudinal oscillations of the absolute

magnetization vector, which remains parallel to the major

axis of the quadrupole moment ellipsoid, and deformation

of the other ellipsoid axes without rotation of the major

axes. On the other side, ε3 is defined by the specifics of

magnet behavior with S = 3/2 which is caused by nontrivial

octupole means values.

We consider now the stability of the ferromagnetic phase

with respect to arbitrary elementary disturbances that corre-

spond to spectra (6). As is easily seen from the elementary

excitation spectra in the ferromagnetic phase, at k → 0

(Figure 1), the magnon branches ε2 and ε3 have an energy

gap proportional to J − K/2 + 103L/16. Hence it appears

that condition of stability against uniform disturbances is

written as J − K/2 + 103L/16 > 0. The same result was

obtained above from the free energy analysis (4). Thus,

J − K/2 + 103L/16 = 0 is the phase transition line between

the ferromagnetic and nematic phases.

Near the phase transition line to the SN phase, the gap

in the spectrum of ε2 and ε3 in the long-wavelength limit

k → 0 vanishes (Figure 1).

Analysis of the excitation spectra in the FM phase

depending on the wave vector orientation (Figure 2, three

directions are shown: OM, OP, ON) has shown that

behavior of the excitation branches is almost independent

on the spin wave propagation direction.

We next review the excitation spectra in the SN phase.

However, note that two excited energy levels of the

magnetic ion coincide in this phase, i. e. the system

becomes
”
quasi two-level“. This leads to coincidence of

two excitation branches. Thus, the excitation spectra in the

SN phase are written as:

ε1,2(k) =
3z

2
√
2

√

√

√

√

√

[

K − Kk − 5
4
(L − Lk)

]

×

×
[

K − 5
4
L − 1

2

(

Jk + 3Kk
2

+ 63
16

Lk

)] ,

ε3(k) =
9z
4

√

(L − Lk)

(

L − JK +
Kk

2
− 119

16
Lk

)

. (8)

Dispersion patterns of the first two modes coincide, their

frequencies remain finite at L = 0. From (8), it follows that
at L = 0 the

”
octupole“ branch frequency ε3 = 0, and for

ε1,2 in the limit L → 0 we have

ε1,2(k) =
3z
4

√

(K − Kk)

(

2K −
(

Jk +
3Kk

2

))

, (9)

i. e. their spectrum is similar to the elementary excita-

tion spectrum in the nematic phase of the magnet with

S = 1 [37]. Therefore, ε1,2 describe the quadrupole ellipsoid

oscillations, which defines the double degeneracy of these

modes. Thus, the main specifics of the system with S = 3/2

is defined by ε3 that is associated with the exchange integral

L and caused by the behavior of octupole parameters q3
3,

and represents rotation of the
”
octupole triangle“ about

the OZ axis.

ky

kx

M

P

N

O

Figure 2. The first hexagonal Brillouin zone. Coordinates of

points in the center O(0, 0) and at the boundary M(2π/3, 2π/
√

3),
P(π, π/

√

3), N(4π/3, 0).
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Figure 3. Elementary excitation spectra in the SN phase. Dashed

line shows the spectrum of ε1,2 in the vicinity of the phase

transition to the FM phase.

Figure 3 shows the behavior of elementary excitation

spectra ε1,2 and ε3 in the nematic phase (equation (8)). For
ease of comparison with [20], dependence of the spectra on

the wave vector is plotted in terms of L, and recall that this

phase is only stable at L > 0 [20,32,36]. For plotting εi(k)
(i = 1, 2, 3), K = 2L, J/10 = K was chosen for clarity as

in [20]. Analysis of the dependence of excitation energy

on the wave vector shows weak dependence on the wave

vector direction (Figure 2). Elementary excitation spectrum

also weakly depends on whether far from the phase

transition line in FM or on the line J − K/2 + 103L/16 = 0.

4. Conclusion

Note first that the mean field approximation used in

this work prevents from complete study of the state of

the frustrated system, in particular, in a spin-glass phase.

However, the goal was to study dynamic properties of

collinear states such as ferromagnetic and nematic, for study

of which the mean field approximation is quite sufficient

(at low temperatures). Investigations of dynamic properties

conducted in this work show that the lattice configuration

affects the dispersion patterns in collinear ferromagnetic

and nematic phases. The number of excitation branches

and their behavior throughout the wave vector in the

corresponding phases for the triangular lattice is equivalent

to a simple square lattice [20,36]. In addition, for adequate

comparison of the excitation spectra on the triangular and

square lattices, the same exchange integrals were used as

in [20]. All exchange integrals both in the ferromagnetic and

nematic phases are assumed to be positive. Difference in the

coordination number z for the square and triangular lattices

was also considered. In [20], the coordination number was

taken equal to z = 2 for simplicity of calculations, in our

case z = 6. Differences in the coordination number for

various types of lattices make quantitative comparison a

little more complicated, but nevertheless such comparison

was made. There is a quantitative difference in spectral

behavior of the square and triangular lattices. Thus, for

the triangular lattice, the
”
octupole“ excitation branch ε3 in

the ferromagnetic phase (at L = K, L = J/10 as in [20])
is almost zero-dispersion (Figure 1), while, for the square

lattice, this branch has a pronounced dispersion (Figure 1

in [20]). Moreover, the energy of this excitation branch in

the triangular lattice is significantly lower than the energy

of the same branch for the square lattice. In the nematic

phase (at K = 2L, as in [20]) , such significant quantitative

difference in the excitation spectra for the square and

triangular lattices is not available, which is probably due

to the fact that the mean magnetic moment in this phase

is equal to zero. The absence of qualitative difference in

the excitation spectrum behavior for lattices with various

configurations is presumably associated with the simple

symmetry of collinear phases studied in this work. It

is suggested that the study of dynamic properties in the

antiferromagnetic and antinematic states of the magnet with

S = 3/2 on the triangular lattice taking into account all

allowable spin invariant system symmetries will make it

possible to identify new features in the excitation spectrum

behavior.
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