04,08

Примесные парамагнитные центры в монокристалле вольфрамата цинка, легированном тулием

© В.А. Важенин¹, А.П. Потапов¹, К.А. Субботин^{2,3}, М.Ю. Артёмов¹, Ю.И. Зимина^{2,3}, А.В. Фокин¹, А.И. Титов², Д.А. Лис², П.А. Волков⁴

¹ Уральский федеральный университет (Институт естественных наук и математики), Екатеринбург, Россия
² Институт общей физики им. А.М. Прохорова РАН, Москва, Россия
³ Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия
⁴ Национальный Исследовательский Центр "Курчатовский институт", Москва, Россия
E-mail: vladimir.vazhenin@urfu.ru
Поступила в Редакцию 7 февраля 2025 г.

Поступила в Редакцию 7 февраля 2025 г. В окончательной редакции 11 февраля 2025 г. Принята к публикации 12 февраля 2025 г.

> Методом ЭПР при комнатной температуре исследован кристалл ZnWO₄, легированный тулием, выращенный по методу Чохральского. В кристалле обнаружены случайные примеси парамагнитных ионов Fe³⁺, Mn²⁺, Cr³⁺ и Gd³⁺. Трехзарядные ионы представлены как одиночными моноклинными центрами, так и триклинными димерными ассоциатами. Построены спиновые гамильтонианы всех наблюдаемых центров, достаточно хорошо описывающие экспериментально полученные результаты, оценено соотношение концентраций этих центров.

Ключевые слова: вольфрамат цинка, примесные ионы, группа железа, РЗИ, парамагнитный резонанс.

DOI: 10.61011/FTT.2025.03.60259.26-25

1. Введение

Внимание к кристаллу вольфрамата цинка (ZnWO₄) обусловлено его уникальными свойствами, такими, как высокая эффективность сцинтилляции [1–3], термическая и радиационная стабильность, неплохая теплопроводность [4] и механические прочностные характеристики [5], возможность выращивания из расплава методом Чохральского [2–6], а также высокая влагостойкость. Благодаря этим свойствам он широко используется в физике высоких энергий, космических исследованиях, промышленности и медицине в качестве детектора ионизирующего излучения [7,8]. Изучение кристалла ZnWO₄ также связано с перспективами его применения в качестве криогенного сцинтилляционного детектора для обнаружения редких событий [1,9].

Кроме того, в последнее время кристаллы ZnWO₄, легированные различными редкоземельными ионами (РЗИ), активно изучаются как перспективные лазерные кристаллы [6,10–13]. Они характеризуются большим штарковским расщеплением основного состояния РЗИ, высокими пиковыми сечениями и значительным неоднородным уширением спектральных полос [6,10]. Это очень удобно для полупроводниковой диодной накачки лазеров на основе данных кристаллов, а также для генерации ультракоротких лазерных импульсов в режиме синхронизации мод и для получения плавно перестраиваемой по частоте лазерной генерации. Применительно

к ионам Tm^{3+} большое штарковское расщепление также дает возможность получать лазерную генерацию в диапазоне больше $2\mu m$ [10,12], что весьма актуально для использования таких лазеров в медицине и газоанализе.

Для реализации всех указанных целей необходимы крупные, качественные и оптически однородные кристаллы вольфрамата цинка с высоким световым выходом и низким собственным радиационным фоном, а также с высокими концентрациями легирующих примесей и однородным их распределением по объему образца.

Вместе с тем, гетеровалентное вхождение крупных редкоземельных ионов в структуру данного кристалла является достаточно проблемным. Во-первых, существенная разница между замещающими и замещаемым ионами по размерам, формальному заряду и химической природе не лучшим образом сказывается на коэффициенте распределения примесного иона между кристаллом и расплавом [5,6,10,13-15], а также на возможности получения высоколегированных кристаллов нужного оптического качества. Вторая сложность состоит в том, что введение РЗИ-активаторов без зарядовых компенсаторов приводит к резкому ухудшению механических прочностных характеристик кристаллов [5]. Это легко объяснить тем, что без специально вводимых компенсаторов введение РЗИ в кристалл провоцирует образование значительного количества цинковых вакансий [13], что ослабляет кристаллическую решетку. Изучение характера дефектообразования в кристалле ZnWO₄ при введении в него

Параметры	Fe1 в главных осях тензора D [19]	Mn ²⁺ в главных осях тензора D [20]*	Mn ²⁺ в главных осях центра Fe1, эта работа*	Mn ²⁺ в главных осях тензора D, эта работа*
g	2.0019	2.003	2.005	2.005
$b_{20} = D$	-20961	6288	5809	-6540
$b_{22} = 3E$	14805	4555	-7272	5077
b_{40}	196	28	-146	-97
b_{42}	-107	—	521	716
b_{44}	-1038	—	181	-160
A_x	—	250	-249	-245
A_y	—	248	-248	-248
A_z	—	243	-245	-249

Таблица 1. Параметры СГ моноклинных центров Fe1 и Mn^{2+} в ZnWO₄ при комнатной температуре (значения b_{2m} , b_{4m} и A_i в MHz)

Примечание. * Знаки *b_{nm}* относительные.

редкоземельных активаторов открывает возможность целенаправленной разработки технологических приемов, облегчающих введение существенных концентраций данных активаторов в кристалл без потери оптического качества и снижения механической прочности образца.

Важной особенностью кристалла ZnWO₄, является также гиперчувствительность его спектральных и сцинтилляционных характеристик даже к минимальным количествам случайных примесей 3*d*-ионов, в частности, железа. Уже такие малые их концентрации, как десятые доли ppm дают заметное паразитное оптическое поглощение кристалла в спектральной области от 600 nm до коротковолновой границы окна прозрачности материала, заметный сдвиг самой этой границы в длинноволновую область, снижение интенсивности люминесценции [16] и световыхода сцинтилляции [17,18]. Поэтому весьма актуальной является задача разработки эффективных методов контроля концентраций данных ионов в кристалле ZnWO₄.

Метод электронного парамагнитного резонанса (ЭПР) весьма эффективен для исследования структурной локализации РЗИ-активаторов в кристаллах с учетом образующихся при их гетеровалентном вхождении дефектов, компенсирующих избыточный заряд. Кроме того, ЭПР является эффективным методом обнаружения микроконцентраций случайных 3*d*-примесей в кристаллах. В научной литературе имеется ряд работ [19–27], посвященных исследованию ЭПР в вольфрамате цинка, легированном ионами группы железа и РЗИ.

Так, измерения спектра ЭПР кристалла ZnWO₄ с примесью железа в диапазоне частот 8–70 GHz авторами [19] показали наличие в образце моноклинных центров со спином S = 5/2, возникающих в результате замещения позиций Zn²⁺ ионами Fe³⁺ (электронная конфигурация Ar3d⁵, основное состояние ⁶S_{5/2}) с нелокальной компенсацией заряда. Было обнаружено, что локальная (главная) магнитная ось *z* данного центра повернута на 45.2° от направления кристаллографической оси +**a** в направлении оси +**c**. Параметры спинового гамильтониана (СГ) в главной системе координат (СК) при комнатной температуре, полученные в работе [19], приведены в табл. 1.

Спектры ЭПР кристаллов ZnWO₄, легированных марганцем, на частотах 10 и 40 GHz при комнатной температуре были исследованы в работе [20]. Были обнаружены моноклинные центры ионов Mn^{2+} (3d⁵, ⁶S_{5/2}) с электронным и ядерным спинами S = 5/2 и I = 5/2, соответственно. В результате обработки резонансных положений компонент сверхтонкой структуры (СТС) в двух экстремальных ориентациях магнитного поля получены параметры СГ, которые также приведены в табл. 1.

Авторы работы [21] измерили спектры ЭПР кристаллов ZnWO₄:Сr, выращенных с добавлением в расплав ионов лития для компенсации избыточного заряда ионов трехвалентного хрома. Обнаруженный центр Cr^{3+} (3d³, ⁴F) был описан ромбическим СГ с параметрами, приведенными в табл. 2. Главная магнитная ось *z* этого центра повернута от направления кристаллографической оси +**a** кристалла к оси +**c** на 4.2°. Эти результаты хорошо согласуются с данными [22], полученными на образцах, выращенных из раствора в расплаве. Образцы, выращенные без добавления лития, демонстрировали более сложный спектр Cr^{3+} , который, по-видимому, обусловлен наличием димерных центров $Cr^{3+}-V_{Zn}$.

При исследовании кристаллов ZnWO4:Cr (номинальная шихтовая концентрация хрома 0.1-0.5%) на частоте 9.4 GHz при комнатной температуре в работе [23] кроме основного моноклинного центра хрома (Cr1) были обнаружены также малоинтенсивные ЭПРспектры двух пар триклинных центров Cr³⁺ (Cr2, Cr3 и Cr4, Cr5). Центры в каждой паре связаны друг с другом операцией симметрии кристалла C₂ || b. Для пары триклинных центров Cr³⁺ (Cr2, Cr3), дающей более интенсивный спектр, были определены параметры ромбического СГ в главных осях (табл. 2). Отсутствие в спектре междублетных переходов затрудняет оценку величины расщепления в нулевом магнитном поле (РНП), для этой цели были использованы результаты изучения температурного поведения времени спин-решеточной релаксации. Авторы [23] предполагают, что указанные

Параметры	Сr1-центр [21]	Cr1-центр, эта работа	Сr2, Сr3- центры [23]	Cr2, Cr3- центры, эта работа
g _x	1.958	1.956	1.962	1.957
g_y	1.962	1.966	1.950	1.962
g_z	1.968	1.962	1.967	1.965
$b_{20} = D$	25.47	25.49	+42.8	29.1
$b_{22} = 3E$	-7.26	-7.23	13.5	9.0
РНП	≈ 51	≈ 51	≈ 87.4	≈ 59.0

Таблица 2. Параметры СГ парамагнитных центров Cr^{3+} в ZnWO₄ в главных осях при комнатной температуре (значения b_{2m} и РНП в GHz)

центры соответствуют ассоциатам $Cr^{3+}-V_{Zn}.$ Кристаллы ZnWO4 с моноклинными центрами $Cu^{2+}~(3d^9,\,^2D)$ и Co^{2+} $(3d^7,\,^4F)$ исследованы в работах [24,25].

Также известны две работы по исследованиям методом ЭПР кристаллов ZnWO₄, легированных РЗИ: тулием и гадолинием. Авторы [26] зарегистрировали в вольфрамате цинка при низкой температуре спектр иона Tm^{2+} (Xe4f¹³, ${}^{2}F_{7/2}$), ассоциированного с вакансией Zn. Интенсивность данного спектра сильно растет после облучения образца ультрафиолетовым светом. В работе [27] исследовали центры Gd^{3+} (4f⁷, ${}^{8}S_{7/2}$) и были получены параметры СГ в локальной СК.

Настоящая работа представляет собой начало цикла наших системных исследований парамагнитных центров, реализующихся в кристаллах ZnWO₄, легированных P3И, с использованием различных зарядовых компенсаторов с целью выявления их примесного состава, валентного состояния и структурной локализации парамагнитных примесных ионов. В рамках настоящей работы исследован кристалл, легированный только ионами тулия, без каких-либо зарядовых компенсаторов или иных намеренно вводимых легирующих примесей.

2. Образец и методика эксперимента

Монокристалл Tm:ZnWO4 был выращен методом Чохральского. В качестве реактивов для приготовления исходной шихты использовались ZnO (примесная чистота 99.999% Anhui Toplus Impex Co., LTD, KHP), WO3 (99.999% САЅ # 12036-22-5, ООО "Ланхит", Россия) и Тт₂O₃ (99.99% ТуО-д, ТУ 48-4-524-90, п/я 485, б. СССР). Номинальная концентрация тулия, вводимая в шихту для выращивания кристалла, составила 4 at.% по отношению к цинку. Реактивы прокаливались в течение 5h при 700°C для удаления остаточной влаги. Прокаленные реактивы взвешивались в необходимых количествах на электронных аналитических весах "Ohaus AX523" (OHAUS Adventurer, Швейцария), после чего навески тщательно перемешивались при помощи программируемого мульти-ротатора "Multi RS-60" в течение 5h. Затем полученные смеси прокаливались в

муфельной печи при температуре 700 °C в течение 8 h для прохождения твердофазного синтеза.

Выращивание кристалла из полученной шихты проводилось на установке "Кристалл-2" в воздушной атмосфере с использованием платинового тигля диаметром/высотой 40 × 40 mm. В качестве затравки использовался брусок из номинально-чистого монокристалла ZnWO₄, вырезанный вдоль кристаллографического направления [001]. Скорость вытягивания/вращения составляла 1 mm/h и 6 rpm, соответственно. После завершения роста и отрыва выращенной були от зеркала расплава кристалл медленно, со скоростью 8°C/h охлаждали до комнатной температуры, чтобы снизить риск растрескивания. После выращивания кристалл был дополнительно отожжен на воздухе при температуре 900 °С в течение 2 недель для снятия термомеханических напряжений и восстановления кислородной стехиометрии с последующим охлаждением до комнатной температуры со скоростью 8 °C/h.

Уточнение ориентации кристалла относительно осей оптической индикатрисы N_p , N_m и N_g проводилось методом наблюдения в прямом свете через скрещенные поляризаторы на оптическом поляризационном микроскопе "Биомед-5" (ЛОМО, Россия).

Измерения концентрации Tm^{3+} в кристалле проводили методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) на спектрометре iCAP 6300 duo (Thermo Scientific, США) с использованием набора многоэлементных стандартов (стандартов высокой чистоты). Для изготовления зонда кристаллические образцы измельчали в порошок и растворяли в ортофосфорной кислоте (Suprapur, Merck) при температуре до 400 °C. Измеренная фактическая концентрация тулия в кристалле составила 0.62 ± 0.03 at.% по отношению к цинку.

Концентрации случайных примесей в рамках настоящей работы не измерялись. Однако они измерялись в нашей предыдущей работе [16] для кристаллов номинально-чистого ZnWO₄. Образец, исследованный в настоящей работе, был выращен из тех же реактивов ZnO и WO₃, что и "кристалл-эталон", изученный в работе [16]. По данным указанных измерений, "кристаллэталон" содержал случайную примесь железа в количестве 0.7 wt. ppm, хрома — в количестве 0.15 wt. ppm, а также никеля — в количестве менее 0.1 wt. ppm.

В протоколе измерений имеется также запись об обнаружении примеси меди в количестве 1 wt. ppm, однако к этой записи следует относиться с известной долей осторожности: масс-спектрометрический анализ вполне мог принять за ионы двухзарядной меди ионы соответствующего легкого изотопа двухзарядного цинка, который является компонентом матрицы. Остальные случайные примеси, обнаруженные в образце "кристаллэталон" статьи [16], либо не парамагнитны, либо эти примеси обнаружены в кристалле в совсем мизерных количествах, менее 0.01 ppm.

Очевидно, что главным источником примеси Gd³⁺ в исследованном в настоящей работе образце Tm:ZnWO₄

являлся реактив Tm_2O_3 , применявшийся для синтеза этого образца, но не задействованный ранее в работе [16]. Обнаруженная в "кристалле-эталоне" концентрация Gd^{3+} составляла всего 0.002 wt. ppm. Концентрация марганца в образце "кристалл-эталон" [16] оказалась меньше предела обнаружения этого элемента, составляявшего 0.05 wt. ppm.

Пространственная группа ZnWO₄ — P2/c (C_{2h}^4) № 13, параметры элементарной ячейки a = 4.69 Å, b = 5.72 Å, c = 4.92 Å, $\beta = 90.6^{\circ}$ [28]. Оба катиона в кристалле окружены шестью ионами кислорода, образующими моноклинно искаженные октаэдры, локальная группа симметрии позиций Zn²⁺ и W⁶⁺-2(C_2).

Ориентационное поведение положений ЭПР переходов исследуемых центров в образце $Tm:ZnWO_4$ измерялось при вращении магнитного поля в плоскостях $\mathbf{c} - \mathbf{a}$, $Z(loc) - Y \parallel \mathbf{b}$ на спектрометре X-диапазона EMX Plus Bruker при комнатной температуре в магнитных полях до 1.4 T. Z(loc) — ось Z локальной системы координат, в которой тензор второго ранга спинового гамильтониана соответствующего центра (Fe1, Cr1) становится диагональным. Образец в резонаторе спектрометра крепился к держателю, закрепленному на штанге штатного автоматического гониометра и способному вращаться вокруг оси перпендикулярной штанге.

Исследуемый образец ZnWO₄, легированный 0.62 at.% Tm, представлял собой прямоугольный параллелепипед с размерами 5.18 × 5.36 × 7.61 mm³, грани которого были перпендикулярны осям оптической индикатрисы. Связь кристаллографических осей с осями оптической индикатрисы для ZnWO₄ приведена в работе [6]. В нашей работе локальные системы координат парамагнитных центров определяются относительно кристаллографических осей кристалла [19,21].

Указанные размеры кристалла были слишком велики для реализации некоторых его ориентаций относительно магнитного поля в имеющемся в нашем распоряжении микроволновом резонаторе. Поэтому образец был разрезан на две неравные части (большая и малая). Измерения в плоскости Z(Fe1)-X(Fe1) были проведены на малой части, а в плоскости $Z(Cr1)-Y \parallel \mathbf{b}$ — на большой.

3. Результаты и обсуждение

В ЭПР спектре кристалла ZnWO₄:Тт удалось наблюдать и идентифицировать ранее описанные в литературе моноклинные центры Cr^{3+} (Cr1) [21, 22], Mn²⁺ [20], а также Fe³⁺ [19] и Gd³⁺ [27] (далее по тексту будем обозначать их Fe1 и Gd1, соответственно). Кроме того, были идентифицированы следующие триклинные центры: ранее описанные в литературе Cr2 и Cr3 [23], а также по два вида центров железа и гадолиния, сведения о которых в доступной литературе отсутствуют. Обозначим их как Fe2, Fe3, и Gd2, Gd3. Соотношение

Рис. 1. Фрагмент ЭПР спектра (первая производная спектра поглощения) кристалла ZnWO₄:0.62% Tm вблизи B || Z(Cr1) на частоте 9650 MHz из зависимости в плоскости Z(Cr1)-Y || b. Горизонтальными отрезками показаны диапазоны полей сверхтонкой структуры двух электронных переходов моноклинного центра Mn^{2+} , а отрезком со стрелками — область, в которой наблюдается большинство переходов центра Gd1.

интенсивностей переходов части указанных центров иллюстрирует спектр, приведенный на рис. 1.

Известно [17,29,30], что железо в кристалле ZnWO₄ локализуется не только в трехвалентном, но также и в двухвалентном состоянии, причем в сопоставимых количествах. Вхождение Fe²⁺ в цинковые позиции является изовалентным, кристалл FeWO₄ изоструктурен кристаллу ZnWO₄, и ожидаемый коэффициент распределения ионов Fe²⁺ между кристаллом ZnWO₄ и расплавом близок к единице. Однако ЭПР спектр Fe²⁺ наблюдается лишь при низких температурах и на больших частотах [31]. В настоящей работе двухвалентное железо не исследовалось. Спектр ЭПР Tm³⁺ как и большинства РЗИ при комнатной температуре также не наблюдается.

Качество описания угловых зависимостей положений переходов центров Fe1 CГ с параметрами, приведенными в работе [19] демонстрируют рис. 2, 3. Ориентационное поведение триклинных центров Fe2, Fe3, которые переходят друг в друга при операции симметрии кристалла $C_2 \parallel \mathbf{b}$, показано также на рис. 2 и 3. Спектры ЭПР центров Fe2, Fe3 в плоскости Z(Fe1)–X(Fe1) вырождены, а в плоскости Z(Cr1)–Y $\parallel \mathbf{b}$ заметно различаются (рис. 2, 3), вырождаясь при В \parallel Y и В \perp Y.

Спиновый гамильтониан представляет адекватную модель, учитывающую как симметрию, так и спиновое состояние парамагнитного центра. Оптимизация его параметров основана на минимизации среднеквадратичного отклонения расчетных частот переходов, полученных в результате диагонализации матрицы СГ для каждой ориентации магнитного поля, от экспериментальных. Диагонализация матрицы оптимизированного СГ позволяет получить энергии и волновые функции всех (2S+1) состояний парамагнитного иона.

Рис. 2. Ориентационное поведение положений переходов *i-j* моноклинного центра Fe1 (темные точки) и триклинных Fe2, Fe3 (светлые точки) в плоскости Z(Fe1)–X(Fe1) на частоте 9126 MHz. Точки — наш эксперимент, кривые — расчет с параметрами (2) и [19] в табл. 1.

Рис. 3. Полярная угловая зависимость положений переходов *i-j* моноклинного центра Fe1 (темные точки) и триклинных центров Fe2, Fe3 (светлые точки) в плоскости Z(Cr1)-Y || **b** на частоте 9630 MHz. Точки — эксперимент, кривые — расчет с параметрами (2) и [19] в табл. 1.

Оптимизация параметров тонкой структуры центров Fe2, Fe3 проводилась в рамках СГ, приведенного в работе [32]

$$H_{sp} = \beta(\mathbf{BgS}) + \frac{1}{3} (b_{20}O_{20} + b_{22}O_{22}) + \frac{1}{60} (b_{40}O_{40} + b_{42}O_{42} + b_{44}O_{44}), \quad (1)$$

где **g** — **g**-тензор, β — магнетон Бора, **B** — индукция магнитного поля, O_{nm} — спиновые операторы Стивенса, b_{nm} — параметры тонкой структуры, с дополнительными членами вида $b_{nm}O_{nm}$ и $c_{nm}\Omega_{nm}$ (в том числе с нечетными проекциями) [32].

Поскольку внутридублетные переходы центров Fe2, Fe3 довольно близки к соответствующим сигналам Fe1, в качестве начального набора параметров СГ для процедуры оптимизации были взяты соответствующие параметры центра Fe1. Параметры, оптимизированные с использованием зависимостей в плоскости Z(Fe1)—X(Fe1), были преобразованы в локальную СК центра Cr1 [21] для использования результатов измерений в плоскости Z(Cr1)—Y || b. Учет ориентационного поведения положений переходов Fe2, Fe3 в двух плоскостях привел к следующим значениям параметров тонкой структуры в системе координат центра Cr1 (см. Введение):

$$b_{20} = -7030, b_{21} = 135930, b_{22} = 14090,$$

$$b_{40} = 3160, b_{41} = 4960, b_{42} = 11320,$$

$$b_{43} = -14020, b_{44} = 32380, c_{21} = \pm 9280,$$

$$c_{22} = \pm 6640, c_{41} = \pm 86580, c_{42} = \pm 4260,$$

$$c_{43} = \mp 113220, c_{44} = \pm 19140 \text{ MHz}, g = 2.000. \quad (2)$$

Двойные знаки у c_{nm} в (2) соответствуют двум наборам параметров для центров Fe2 и Fe3. Главные системы координат тензора D триклинных центров Fe2 и Fe3 с параметрами $b_{20} = -37270$, $b_{22} = 29410$ MHz связаны с СК центра Cr1 углами Эйлера $\alpha = \pm 7.1^{\circ}$, $\beta = 52.5^{\circ}$, $\gamma = \pm 85.3^{\circ}$.

Следует заметить, что параметры (2), полученные при учете ориентационного поведения лишь внутридублетных переходов *1-2*, *3-4* и *5-6*, не могут претендовать на полное описание тонкой структуры этих центров, включая величины РНП.

Азимутальная угловая зависимость положений ЭПР резонансов Mn^{2+} в исследуемом кристалле ZnWO₄:Tm приведена на рис. 4. Для определения параметров тонкой и сверхтонкой структуры центров Mn^{2+} использовался СГ (1) с дополнительным слагаемым

$$(SAI), (3)$$

где **А** — тензор сверхтонкого взаимодействия, **І** — ядерный спин.

Использование 1348 положений компонент СТС в плоскостях ZX, ZY и XY привело к величинам, приведенным в табл. 1 в локальной СК центров Fe³⁺ (Fe1) при

Рис. 4. Азимутальная угловая зависимость положений резонансов i-j центров Mn^{2+} в кристалле Tm:ZnWO₄ на частоте 9825 MHz в плоскости $X(Fe1)-Y \parallel b$. Точки — наш эксперимент, кривые — расчет с параметрами, приведенными в табл. 1 без учета сверхтонкого взаимодействия.

среднеквадратичном отклонении расчетных частот от экспериментальных 47 MHz. В этой системе координат тензор D моноклинного центра Mn^{2+} является диагональным (табл. 1), но не удовлетворяет стандартному требованию $|b_{20}| > |b_{22}|$ [33]. Однако поворот СК вокруг Y || b на 90° приводит к диагональному тензору D (табл. 1), удовлетворяющему этому требованию. Азимутальная угловая зависимость положений резонансов Mn^{2+} , демонстрирующая качество описания спектра, приведена на рис. 4. Вероятность переходов *1-2, 2-3* и высокополевых сигналов *3-4* близка к нулю.

Заметное отличие полученных нами параметров СГ центров Mn^{2+} от величин, приведенных в работе [20] (табл. 1), скорее всего, обусловлено тем, что в работе [20] использованы положения компонент СТС лишь в двух ориентациях с экстремальными значениями резонансных полей. Знак параметра сверхтонкого взаимодействия Mn^{2+} , согласно [34], отрицательный.

На рис. 5,6 приведены полярные угловые зависимости положений сигналов моноклинного центра Cr^{3+} (Cr1) и триклинных центров Cr2, Cr3 в вольфрамате цинка. Результаты оптимизации параметров тонкой структуры центра Cr1 в главных осях без учета последнего слагаемого гамильтониана (1) с использованием 268 резонансных полей со среднеквадратичным отклонением 32 MHz приведены в табл. 2. Как видно, они хорошо согласуются со значениями параметров СГ из работы [21]. Угол между Z-осями центров Cr1 и Fe1 (рис. 5) в локальных CK составляет +40°, а по данным работ [19,21] 45.2-4.2 = 41° (см. Введение).

Как и в случае Fe2, Fe3, угловые зависимости положений триклинных центров Cr2, Cr3 в плоско-

Рис. 5. Ориентационное поведение положений переходов i-j моноклинного центра Cr^{3+} (Cr1) и триклинных центров Cr2, Cr3 в плоскости Z(Fe1)-X(Fe1) на частоте 9126 MHz. Точки — эксперимент, кривые — расчет с параметрами этой работы (табл. 2).

Рис. 6. Угловая зависимость положений переходов i-j моноклинного центра Cr1 и триклинных центров Cr2, Cr3 в плоскости Z(Cr1)-Y || **b** на частоте 9630 MHz. Точки — эксперимент, кривые — расчет с параметрами этой работы (табл. 2).

сти Z(Fe1)-X(Fe1) совпадают (рис. 5). В плоскости Z(Cr1)-Y \parallel **b** (рис. 6) экстремумы зависимостей переходов *1*-2 центров Cr2, Cr3 отстоят друг от друга на $\approx 42^{\circ}$.

На частотах Х-диапазона ни мы, ни авторы [23] сигналов междублетных переходов центров Cr2, Cr3 не наблюдали. Информация лишь о поведении внутридублетных переходов *1-2* и *3-4* (рис. 5,6) не позволяет

определить величину расщепления в нулевом магнитном поле. Авторы [23] для этой цели используют данные температурного поведения времени спин-решеточной релаксации и приходят к выводу, что РНП центров Cr2 и Cr3 составляет примерно 87.4 MHz.

Именно такому расщеплению соответствуют параметры СГ, приведенные в табл. 2 [23]. Определенные нами параметры СГ центров Cr2, Cr3 (табл. 2) соответствуют минимуму среднеквадратичного отклонения (9.7 MHz) в процедуре оптимизации при изменении начального b₂₀ в диапазоне 18-43 GHz. Указанная оптимизация проводилась в системе координат центра Cr1 с использованием 270 резонансных полей в плоскостях Z(Cr1)-X(Cr1) и Z(Cr1)-Ү. Получены параметры: $b_{20} = 22.0$, $b_{21} = -32.9$, $b_{22} = 12.1$, $c_{21} = \pm 51.9$, $c_{22} = \pm 8.9 \, (\text{GHz})$. Двойные знаки соответствуют центрам Cr2 и Cr3. Углы Эйлера, связывающие главную СК центров Cr2, Cr3 с системой координат Cr1, следующие: $\alpha = \pm 242^\circ$, $\beta = 25^\circ$, $\gamma = \pm 199^\circ$. Как видно, угол β близок к величине угла (24.8°) между Z(Cr2, Cr3) и кристаллографической осью а, приведенной в работе [23].

Как уже говорилось в начале этого раздела, в исследуемом кристалле наблюдаются небольшие ЭПР сигналы центров Gd^{3+} (Gd1). Полярная угловая зависимость положений переходов моноклинного центра Gd^{3+} в плоскости $Z(Cr1)-Y \parallel \mathbf{b}$ приведена на рис. 7. Оптимизированные параметры СГ в СК центров Fe1

Рис. 7. Полярная угловая зависимость положений переходов *i-j* моноклинного центра Gd1 (черные кривые) и триклинных центров Gd2 (красные кривые), Gd3 (синие кривые) в плоскости Z(Cr1)–Y || **b** на частоте 9630 MHz. Точки — эксперимент, кривые — расчет с параметрами, определенными в настоящей работе (табл. 3, 4). На вставке экспериментальные положения переходов *3-4* трех центров Gd³⁺.

Таблица 3. Параметры СГ моноклинных центров Gd³⁺ (Gd1) в ZnWO₄ при комнатной температуре (значения *b_{nm}* в MHz). Предполагается, что параметры в работе [27] получены для СГ в обозначениях [32]

Параметры	В СК центра Fe1, эта работа	Z с, эта работа	В главных осях тензора D, эта работа	В главных осях тензора D [27]
g	1.991	1.991	1.991	≈ 1.97
$b_{20} = D$	1398	1701	1872	1778
b_{21}	-3513	2292	0	0
<i>b</i> ₂₂ =3E	1877	1574	1409	1335
b_{40}	17	-57	-1.7	-38
b_{41}	-282	320	377	36
b_{42}	-263	-35	-223	76
<i>b</i> ₄₃	264	-28	-156	374
b_{44}	-324	-330	-310	225

со среднеквадратичным отклонением 18 МНz при учете 632 резонансных полей (рис. 7) приведены в табл. 3.

Переход из СК Fe1 в локальную систему координат тензора D центров Gd1 (рис. 8, табл. 3) происходит поворотом на -28.3° вокруг кристаллографической оси b. Следует заметить, что в спектре Gd1 из-за низкой симметрии и высокого спина наблюдается (рис. 8)

эффект несовпадения осей переходов (ЭНОП) [35,36]. Главные оси тензора тонкой структуры четвертого ранга не определялись в связи с большими погрешностями полученных параметров.

С целью сравнения наблюдаемого нами спектра Gd1 с результатами [27] нами были проведены расчеты ориентационного поведения переходов Gd1 в плоскостях ас

Рис. 8. Ориентационное поведение положений переходов *i-j* моноклинного центра Gd1 (сплошные черные кривые) и триклинных центров Gd2, Gd3 (штриховые красные) в плоскости Z(Fe1)–X(Fe1) на частоте 9126 MHz. Точки — эксперимент, кривые — расчет с параметрами, приведенными в табл. 3, 4.

и **bc** (табл. 3) на частоте, близкой к используемой в [27]. Оказалось, что полученные нами угловые зависимости положений переходов в плоскости **bc** (рис. 9) крайне близки к кривым, приведенным на рис. 3 в работе [27], которые авторы относят к плоскости **ac**. Таким образом, несмотря на указанное несоответствие, можно заключить, что речь идет об одном и том же центре гадолиния.

486

Как и в случае парамагнитных центров железа и хрома, в окрестности большинства переходов Gd1 в угловой зависимости ($Z(Cr1)-Y \parallel b$) наблюдаются слабые сателлиты (рис. 7), расщепляющиеся при уходе от $B \parallel b$, которые следует отнести к переходам центров Gd2, Gd3 с локальной компенсацией избыточного заряда, имеющих триклинную симметрию. Из-за малой интенсивности удается проследить поведение этих сигналов лишь в диапазоне 35°.

Оптимизация параметров СГ (1) триклинных центров Gd2, Gd3 с дополнительным параметром начального расщепления шестого ранга при использовании 450 резонансных положений переходов в двух плоскостях магнитного поля $\{Z(Cr1)-Y \parallel b)$ и $Z(Fe1)-X(Fe1)\}$ привела к набору параметров со среднеквадратичным отклонением от экспериментальных значений 22 MHz (табл. 4).

Результаты диагонализации тензора второго ранга D приведены в последней колонке табл. 4. Главные оси

Таблица 4. Параметры СГ триклинных центров Gd2, Gd3 в ZnWO₄ при комнатной температуре (значения b_{nm} и c_{nm} в MHz). Двойные знаки c_{21} и c_{22} соответствуют центрам Gd2, Gd3

Параметры	В СК центра Cr1	В главных осях тензора D
g	1.991	1.991
b_{20}	251	1854
b_{21}	3469	0
b_{22}	2943	1400
b_{40}	-62	_
b_{41}	9	_
b_{42}	-27	_
b_{43}	-383	_
b_{44}	-219	_
b_{60}	4	_
C 21	± 621	0
C 22	± 566	0
C 22	± 566	0

тензора D центров Gd2, Gd3 связаны с СК центра Cr1 углами Эйлера $\alpha = \pm 6.1^{\circ}$, $\beta = 61.3^{\circ}$, $\gamma = \pm 177^{\circ}$. Тензор тонкой структуры четвертого ранга не анализировался в связи с большими погрешностями полученных параметров.

Рис. 9. Расчетное ориентационное поведение положений переходов Gd1 в плоскости **bc** (параметры CГ в табл. 3 при $Z \parallel c$) на частоте 35195 MHz.

В отличие от ионов Mn^{2+} , входящих в структуру ZnWO₄ изовалентно, вхождение примесных ионов Fe³⁺, Cr³⁺, Gd³⁺ в позиции Zn²⁺ по гетеровалентному механизму требуют зарядовой компенсации избыточного эффективного положительного заряда. В случае, если никакого зарядового компенсатора (например, ионов лития или натрия [5,6,10,21]) в состав кристалла не вводится, зарядовые компенсаторы генерируются в кристалле спонтанным образом. В кристалле ZnWO₄ это могут быть вакансии цинка V_{Zn} [23] или междоузельный ион кислорода O_i^{2-} [27].

При этом возможны два варианта.

а. Зарядовый компенсатор может находиться на существенном расстоянии от парамагнитного центра, не внося заметных возмущений в кристаллическое поле вокруг последнего — реализуется так называемая, нелокальная компенсация заряда. В этом случае образуются центры моноклинной симметрии (Fe1, Cr1, Gd1).

б. Зарядовый компенсатор может находиться в непосредственной близости от парамагнитного иона, образуя с ним димерный ассоциат, а иногда и ассоциаты более сложной структуры. Такая зарядовая компенсация называется локальной. В этом случае кристаллическое поле парамагнитного иона испытывает на себе существенные возмущения, что приводит к понижению локальной симметрии центра. При этом операция симметрии кристалла C₂ размножает получившийся триклинный центр до двух. Именно к таким ассоциатам следует отнести парные триклинные центры, как это было сделано авторами [23] в отношении Cr2, Cr3 и нами в отношении парных центров Gd2, Gd3 и Fe2, Fe3.

Авторы работы [27] на основании сравнения направлений главных осей тензора D центра гадолиния с направлениями от узлов Zn²⁺ на кислородные лиганды и междоузлия предполагают, что эти центры являются димерами типа $Gd^{3+}-O_i^{2-}$. На наш взгляд, данный вывод неубедителен, в частности, из-за отсутствия в работе подробностей такого анализа. Главные Z-оси тензоров D моноклинных центров Fe1, Cr1, Gd1, очевидно занимающих позиции цинка, находятся в плоскости, перпендикулярной оси У || b, при этом не совпадая друг с другом (рис. 8). Симметрию угловых зависимостей относительно плоскости а – с демонстрируют рис. 7 и рис. 3, а в работе [27]. То есть связь главных осей с направлениями на окружающие лиганды более сложная. Кроме того, в работе [27] обращает на себя внимание необычное для центров гадолиния значение g-фактора, а также далеко не идеальное согласие экспериментальных и расчетных угловых зависимостей, приведенных на рис. 3 работы [27].

В результате определения интегральных интенсивностей ЭПР сигналов (путем двойного интегрирования первой производной сигнала поглощения) и учета различия величин электронных спинов центров Cr³⁺, Fe³⁺, Gd³⁺ [37], а также расчетных вероятностей наблюдаемых переходов были оценены отношения концентраций триклинных и моноклинных центров железа, хрома и гадолиния (табл. 5). Для определения интегральных интенсивностей ЭПР сигналов использовались спектры в ориентациях $B \parallel Z(Cr1)$ и $B \parallel Y \parallel C2$, где переходы триклинных центров 2, 3 вырождены и где наблюдается достаточно хорошее разрешение сигналов актуальных центров. Вероятности переходов вычислялись на волновых функциях, полученных при численной диагонализации матрицы СГ при оптимальных параметрах соответствующих центров.

В табл. 5 хорошо видно, что в приведенном ряду парамагнитных центров (Fe³⁺, Cr³⁺, Gd³⁺) наблюдается явная тенденция к увеличению доли локальной зарядовой компенсации. Скорее всего, по аналогии с гадолинием высокая степень локальной компенсации

Таблица 5. Отношение интегральных интенсивностей, вероятностей переходов, концентраций для моноклинных и триклинных центров Fe^{3+} , Cr^{3+} и Gd^{3+} в исследованном кристалле ZnWO₄

Центры	Отношение интегральных интенсивностей	Отношение вероятностей переходов	Отношение концентраций
Fe1/Fe2	153/5.4	4/7	$\begin{array}{c} \approx 50 \\ \approx 10 \\ \approx 2.5 \end{array}$
Cr1/Cr2	656/123	5.1/9.6	
Gd1/Gd2	50.3/38.6	13.7/27	

избыточного заряда реализуется и в случае ионов Tm³⁺, которыми был легирован указанный образец.

Используя вышеописанную процедуру были также сделаны оценки соотношения концентраций ионов Fe³⁺, Cr³⁺, Gd³⁺ и Mn²⁺. Полученное соотношение концентраций с(Fe)/c(Cr) оказалось равным ~ 4.5, что практически совпадает с соотношением концентраций хрома и железа, измеренных с помощью ИСП МС в работе [16] для образца "кристалл-эталон" (0.7 и 0.15 wt. ppm соответственно).

Ионов Mn^{2+} в исследованном нами кристалле оказалось меньше, чем ионов Fe^{3+} , примерно в 15 раз. Эта цифра практически совпадает с соотношением концентрации железа, измеренной в работе [16] для образца "кристалл-эталон", и предела обнаружения марганца в этом кристалле (0.05 wt.ppm). Если предположить, что фактическое содержание марганца в "кристалле-эталоне" не слишком сильно недотягивает до указанной величины предела обнаружения, тогда можно утверждать, что по соотношению концентраций с(Fe^{3+})/c(Mn^{2+}) результаты ЭПР также хорошо согласуются с результатами, полученными методом ИСП МС, с учетом того, что, как уже отмечалось, заметная часть железа находится в кристалле в двухвалентном состоянии.

Количество ионов Gd³⁺ в кристалле близко к концентрации железа c(Gd)/c(Fe) ≈ 2 . Источником относительно большого количества центров Gd³⁺ в образце, очевидно, является реактив Tm₂O₃, вводившийся в шихту при выращивании кристалла в количестве 4 at.%. В силу близости химических свойств тулия и гадолиния избавить реактив Tm₂O₃ от следовых количеств ионов Gd³⁺ и других случайных примесей редкоземельных ионов весьма затруднительно. Вместе с тем, обладая близкими к другим редкоземельным ионам кристаллохимическими свойствами, гадолиний может служить неплохим маркером, по которому можно судить о структурной локализации других РЗИ, прямое наблюдение которых методами ЭПР является более сложной задачей, требующей криогенных условий.

4. Заключение

В выращенном методом Чохральского на воздухе монокристалле ZnWO₄, легированном ионами тулия, при комнатной температуре обнаружены ЭПР спектры случайных примесей Fe³⁺, Cr³⁺, Gd³⁺ и Mn²⁺. Наблюдаются спектры моноклинных центров всех перечисленных ионов, обусловленных вхождением указанных ионов в позиции цинка с нелокальной компенсацией избыточного заряда (для центров Mn²⁺ компенсация не требуется).

Кроме того, обнаружены сигналы триклинных центров Fe³⁺, Cr³⁺, Gd³⁺, вероятно отвечающих ассоциатам парамагнитного иона с зарядовым компенсатором: вакансией цинка или междоузельным ионом кислорода. Определены или оценены параметры спиновых гамильтонианов всех идентифицированных парамагнитных центров, найдены ориентации главных осей тензоров тонкой структуры второго ранга. На основе интегральных интенсивностей и расчетных вероятностей ЭПР переходов сделаны оценки соотношения концентраций идентифицированных парамагнитных центров. Таким образом, получены сведения, которые понадобятся в дальнейшей работе по расшифровке и анализу ЭПР спектров, кристаллов ZnWO₄, со-легированных редкоземельными активаторами и намеренно вводимыми в состав кристалла зарядовыми компенсаторами (Li⁺, V⁵⁺ и др.).

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки Российской Федерации, тема № FEUZ-2023-0017 с использованием оборудования УЦКП "Современные нанотехнологии" УрФУ (рег. № 2968).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] V.B. Mikhailik, H. Kraus. J. Phys. D: Appl. Phys. **39**, 1181 (2006).
- [2] V. Nagirnyi, E. Feldbach, L. Jonsson, M. Kirm, A. Kotlov, A. Lushchik, V.A. Nefedov, B.I. Zadneprovski. Nuclear Instruments and Methods in Physics Research A 486, 395 (2002).
- [3] L.L. Nagornaya, A.M. Dubovik, Y.Y. Vostretsov, B.V. Grinyov, F.A. Danevich, K.A. Katrunov, V.M. Mokina, G.M. Onishchenko, D.V. Poda, N.G. Starzhinskiy, I.A. Tupitsyna. IEEE Trans. Nucl. Sci. 55, 3, 1469 (2008).
- [4] P.A. Popov, S.A. Skrobov, A.V. Matovnikov, N.V. Mitroshenkov, V.N. Shlegel, Yu.A. Borovlev. Physics of the Solid State 58, 4, 853 (2016).
- [5] K.A. Subbotin, A.I. Titov, S.K. Pavlov, P.A. Volkov, V.V. Sanina, D.A. Lis, O.N. Lis, Y.I. Zimina, Y.S. Didenko, E.V. Zharikov. Journal of Crystal Growth 582, 126498 (2022).
- [6] A. Volokitina, S.P. David, P. Loiko, K. Subbotin, A. Titov, D. Lis, R.M. Sole, V. Jambunathan, A. Lucianetti, T. Mocek, P. Camy, W. Chen, U. Griebner, V. Petrov, M. Aguilo, F. Díaz, X. Mateos. Journal of Luminescence 231, 117811 (2021).
- [7] D.M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V.B. Mikhailik, H. Kraus. J. Phys.: Cond. Matter 21, 1 (2009).
- [8] A. Dubovik, Yu.Yu. Vostretsov, B. Grinberg, F. Danevich, H. Kraus. Acta Physica Polonica A 117, 1 (2010).
- [9] M. Buryi, V.V. Laguta, Jirí Hybler, M. Nikl. Physica Status Solidi B 248, 993 (2011).
- [10] G.Z. Elabedine, K. Subbotin, P. Loiko, Z. Pan, K. Eremeev, Y. Zimina, Y. Didenko, S. Pavlov, A. Titov, E. Dunina, L. Fomicheva, A. Kornienko, A. Braud, R.M. Solé, M. Aguiló, F. Díaz, W. Chen, P. Volkov, V. Petrov, X. Mateos. Opt. Materials 157, 1, 116039 (2024).
- [11] Z. Xia, F. Yang, L. Qiao, F. Yan. Optics Communications 387, 357 (2017).
- [12] F.G. Yang, Z.Y. You, C.Y. Tu. Laser Phys. Lett. 9, 3, 204 (2012).

- [13] F.G. Yang. Journal of Materials Research 27, 16, 2096 (2012).
- [14] F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, X. Lu. Journal of Luminescence **126**, *2*, 623 (2007).
- [15] F. Yang, C. Tu. Journal of Alloys and Compounds 535, 83 (2012).
- [16] K. Subbotin, A. Titov, V. Solomatina, A. Khomyakov, E. Pakina, V. Yakovlev, D. Valiev, M. Zykova, K. Kuleshova, Y. Didenko, D. Lis, M. Grishechkin, S. Batygov, S. Kuznetsov, I. Avetissov. Materials 16, 2611 (2023).
- [17] X. Leng, D. Li, C. Xu, Y. Xu, X. Jin. Optik 125, 1267 (2014).
- [18] L.N. Limarenko, Y.V. Zorenko, M.M. Batenchuk, Z.T. Moroz, M.V. Pashkovskii, I.V. Konstankevich. J. Appl. Spectrosc. 67, 2, 287 (2000).
- [19] W.G. Nilsen, S.K. Kurtz. Phys. Rev. 136, A262 (1964).
- [20] А.А. Галкин, Г.Н. Нейло, Г.А. Цинцадзе. ФТТ 9, 359 (1967).
- [21] S.K. Kurtz, W.G. Nilsen. Phys. Rev. 128, 1586 (1962).
- [22] Е.Н. Емельянова, Н.В. Карлов. ЖЭТФ 44, 868 (1963).
- [23] В.А. Ацаркин, Л.П. Литовкина, М.Л. Мейльман. ФТТ 7, 3099 (1965).
- [24] А.А. Галкин, А.Д. Прохоров, Г.А. Цинцадзе, В.А. Шаповалов. Докл. Акад. Наук СССР 173, 309 (1967).
- [25] А.А. Галкин, А.Д. Прохоров, Г.А. Цинцадзе. ФТТ 8, 3674 (1966).
- [26] A. Watterich, L.A. Kappers, O.R. Gilliam. Solid State Comm. 104, 683 (1997).
- [27] А.А. Рядун, Е.Н. Галашов, В.А. Надолинный, В.Н. Шлегель. Журнал структурной химии **53**, 696 (2012).
- [28] W.S. Brower Jr., P.H. Fang. J. Appl. Phys. 41, 2266 (1970).
- [29] A. Watterich, O.R. Gilliam, L.A. Kappers. Solid State Commun. 88, 619 (1993).
- [30] A. Kornylo, A. Jankowska-Frydel, B. Kuklinski, M. Grinberg, N. Krutiak, Z. Moroz, M. Pashkowsky. Radiat. Meas. 38, 707 (2004).
- [31] V.F. Tarasov, R.B. Zaripov. Applied Magnetic Resonance 55, 961 (2024).
- [32] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [33] Cz. Rudowicz. J. Chem. Phys. 84, 5045 (1986).
- [34] Сверхтонкие взаимодействия в твердых телах / Под ред. Е.А. Турова. Мир, М. (1970). С. 139.
- [35] М.Л. Мейльман. ФТТ 13, 3165 (1971).
- [36] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных монокристаллов. Атомиздат, М. (1977). 270 с.
- [37] D. Slebert, J. Dahlem, V. Nagy. Anal. Chem. 66, 2640 (1994).

Редактор К.В. Емцев