Влияние концентрации замещающей примеси стронция на магнитный гистерезис в La_{1-x}Sr_xFeO_{3-δ}

© А.И. Дмитриев, М.С. Дмитриева

05

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка, Московская обл., Россия E-mail: aid@icp.ac.ru

Поступило в Редакцию 20 декабря 2024 г. В окончательной редакции 22 января 2025 г. Принято к публикации 22 января 2025 г.

С применением простых количественных методов, базирующихся на понятиях обменного поля, поля Дзялошинского и поля магнитной анизотропии, проведена оценка влияния замещения лантана стронцием на основные макро- и микроскопические магнитные характеристики $La_{1-x}Sr_xFeO_{3-\delta}$.

Ключевые слова: замещенные ортоферриты лантана, слабый ферромагнетизм.

DOI: 10.61011/PJTF.2025.10.60322.20230

Редкоземельные ортоферриты с общей формулой *R*FeO₃ (*R* — редкоземельный ион) на протяжении нескольких десятилетий привлекали и продолжают привлекать особое внимание исследователей благодаря своему слабому ферромагнетизму, замечательным магнитооптическим свойствам, спин-переориентационным переходам, высокой скорости движения доменных границ и многим другим свойствам [1]. Их физические свойства остаются в центре внимания значительного числа исследователей из-за их многообещающего применения в инновационных устройствах спинтроники. Кроме того, они вносят вклад в появление нового класса материалов мультиферроиков с сильной магнитоэлектрической связью [1]. Редкоземельные ортоферриты RFeO₃ имеют искаженную структуру перовскита только с одним типом позиций ионов Fe³⁺, октаэдрически координированных шестью ионами О-. Их сложные неколлинеарные магнитные структуры и магнитные фазовые переходы обусловлены прежде всего сочетанием сильного изотропного сверхобменного взаимодействия с антисимметричным обменным взаимодействием Дзялошинского-Мория [1]. Знание взаимосвязи структура-свойство необходимо как для выяснения природы физических свойств новых материалов, так и для ускорения их применения на практике. Перовскиты, демонстрирующие октаэдрические вращения и искажения, изучались ранее с помощью теоретико-групповых методов [2]. Связь между углами поворота октаэдров и энергией связи в кристаллах со структурой перовскита изучалась в работе [3]. Несмотря на впечатляющие достижения в современных методах ab initio расчета зонной структуры, а также в различных квантово-химических методах расчета, для большинства практически важных систем эти методы дают лишь весьма приблизительную картину электронной структуры и энергетического спектра, который в лучшем случае может послужить лишь предложением для экспериментов. Примеров использования экспериментальных соотношений структура—свойство для количественного описания тонких обменных эффектов и эффектов магнитной анизотропии в перовскитах, в частности ортоферритах, практически нет. Целью настоящей работы является установление влияния замещающей примеси стронция на магнитную анизотропию и гистерезис в $La_{1-x}Sr_xFeO_{3-\delta}$.

Поликристаллические образцы $La_{1-x}Sr_xFeO_{3-\delta}$ (x = 0.33, 0.50, 0.67) были синтезированы золь-гельметодом с использованием в качестве исходных реагентов нитратов Sr, Fe и La в стехиометрическом соотношении. Далее они будут обозначены как Sr33, Sr50 и Sr67. Подробности приготовления образцов, их состав и структура описаны в работах [4–6]. Зависимости намагниченности от напряженности магнитного поля M(H) были измерены с помощью вибрационного магнитометра многофункциональной измерительной криомагнитной установки CFMS фирмы Cryogenic Ltd, U.K.

В наших недавних работах [7,8] детально изучены температурные зависимости намагниченности M(T) образцов Sr33, Sr50 и Sr67. Для каждого была определена температура Нееля T_N, при которой в них устанавливается слабый ферромагнетизм. Обнаружено, что введение замещающей примеси стронция в La_{1-x}Sr_xFeO_{3-δ} и увеличение ее концентрации приводят к существенному понижению температуры магнитного упорядочения (рис. 1). В [7,8] наблюдаемые эффекты вариации температуры Нееля объясняются изменением валентного состояния ионов железа и углов связи Fe-O-Fe, а также появлением кислородных вакансий при замещении. Для сохранения электрической нейтральности соединения $La_{1-x}Sr_xFeO_{3-\delta}$ замена иона La^{3+} ионом Sr^{2+} вызывает преобразование определенной доли Fe^{3+} в Fe⁴⁺ и появление кислородных вакансий [4-6].

Согласно теории Гуденафа, сверхобменное взаимодействие между ионами ${\rm Fe}^{3+}$ и ${\rm Fe}^{3+}$ является антиферромагнитным и более сильным, чем между ионами

Рис. 1. Зависимость температуры Нееля T_N от количества легирующей примеси стронция *x*. Сплошной линией показана аппроксимация.

 Fe^{4+} и Fe^{4+} или Fe^{3+} и Fe^{4+} [9]. Более того, между последними, согласно теории Зинера, существует ферромагнитный канал, реализующийся по механизму двойного обмена [10-14]. Появление кислородных вакансий приводит к обрыву обменной связи. Поэтому введение ионов Sr²⁺ в ортоферрит лантана, с одной стороны, ослабляет антиферромагнитное сверхобменное взаимодействие (J_{AF}), а с другой — приводит к возникновению ферромагнитного двойного обменного взаимодействия (J_F). Результирующий обменный интеграл J_{ex} является аддитивной физической величиной и представляет собой линейную комбинацию J_{AF} и J_F. Количественно разделить вклады $J_{\rm AF}$ и $J_{\rm F}$ в J_{ex} не представляется возможным. Ослабление J_{AF} с одновременным усилением J_F приводит к ослаблению J_{ex} и понижению температуры Нееля T_N [15] (рис. 1). Поэтому количественно можно оценить лишь J_{ex}, используя известную зависимость между J_{ex} и T_N , выражающуюся формулой $T_{\rm N} = z S(S+1) J_{ex}/3k_{\rm B}$, где z = 6 — число ближайших соседей, S = 5/2 — спин ионов железа Fe³⁺, $k_{\rm B}$ — постоянная Больцмана [1]. Во-первых, с помощью этого выражения, зная T_N, можно прямо оценить значения обменных интегралов J_{ex} для каждого из трех образцов (см. таблицу). Во-вторых, оно позволяет просто объяснить наблюдающуюся в эксперименте зависимость $T_{\rm N}(x)$ зависимостью $J_{ex}(x)$. Изменения в кристаллической структуре La_{1-x}Sr_xFeO_{3-δ} при замене La^{3+} на Sr^{2+} среди прочего всегда приводят к уменьшению угла связи Fe-O-Fe θ с ростом x степенным образом: $\theta(x) = a - bx^c$ [16]. Сверхобменное взаимодействие усиливается с увеличением угла связи Fe-O-Fe θ согласно выражению $J_{ex}(\theta) = A + B \cos \theta + C \cos^2 \theta$ [1]. Как видно из последнего выражения, сверхобменный интеграл J_{ex} достигает максимума при $\theta = 180^{\circ}$. Таким образом, зависимость $J_{ex}(x)$ является опосредованной зависимостью $\theta(x)$. На рис. 1 сплошной линией показана аппроксимация зависимости $T_N(x)$ через зависимость $J_{ex}(\theta)$ с учетом эмпирической связи $\theta(x)$. Параметры аппроксимации были следующими: $a = 180^{\circ}, b = 80^{\circ},$ c = 0.5, A = 10 К, B = 35 К, C = 60 К, т.е. уменьшение J_{ex} с ростом x (см. таблицу) объясняется уменьшением угла связи от значения $\theta = 140$ до 125° по мере роста *x* от 0.33 до 0.67. В заключение этой части статьи отметим, что нами были определены значения обменного поля $H_{ex} = z S J_{ex} / g \mu_{\rm B}$ для каждого из трех образцов (см. таблицу). В последнем выражении g = 2 - g-фактор ионов Fe^{3+} , μ_B — магнетон Бора. Знание величины обменного поля H_{ex} важно не само по себе, а для дальнейшего обсуждения. В таблице оцененные таким образом величины обменного поля отмечены нижним индексом 1 (H_{ex1}) . На рис. 2 приведены зависимости намагниченности от напряженности магнитного поля M(H) при температуре 2 К образцов Sr33, Sr50 и Sr67. Вид кривых M(H) типичен для слабых ферромагнетиков. Есть одна замечательная особенность. В относительно слабых магнитных полях $H < 10 \, \mathrm{kOe}$ наблюдается уменьшение намагниченности с ростом x (рис. 2). В то время как в сильных полях с напряженностью $H > 10 \, \text{kOe}$ происходит все наоборот: намагниченность увеличивается с ростом x (рис. 2). В слабых магнитных полях, когда ориентирующее действие внешнего магнитного поля незаметно, мы имеем дело с намагниченностью слабого ферромагнетика в базисной плоскости, которая зависит от H по закону $M(H) = \chi H_{\rm D} + \chi H$ [17–19]. Этим выражением была выполнена аппроксимация экспериментальных зависимостей M(H) (на рис. 2 показана сиреневыми линиями). Здесь *х* — магнитная восприимчивость, *H*_D — поле Дзялошинского. Напрямую из аппроксимации были определены величины χ и $H_{\rm D}$, а из соотношений $\sigma = \chi H_{\rm D}$ и $\chi = M_{\rm Fe}/2H_{ex}$ — величины спонтанной намагниченности σ и обменного поля H_{ex} (см. таблицу) [19]. Здесь $M_{\rm Fe} = 2gS\mu_{\rm B}/\rho V \approx 60 \,{\rm emu/g}$ — намагниченность одной из подрешеток антиферромагнетика

Магнитные характеристики образцов

x	T _N , K	J _{ex} , K	$H_{ex1},$ T	<i>H</i> _D , Т	χ , emu/(g·T)	σ emu/g	<i>H</i> _{ex2} , Т	$H_{\rm D}/2H_{ex}$	M _s , emu/g	<i>Н</i> _{<i>a</i>} , Т	K , 10^4 erg/cm ³	<i>Н</i> _c , Т	M_r , emu/g
0.33	385	32	246	2.3	0.12	0.27	247	0.005	0.9	2.3	6.6	0.99	0.24
0.50	230	19	147	0.7	0.23	0.16	130	0.003	0.5	2.1	3.5	0.37	0.15
0.67	196	16	125	0.5	0.26	0.14	126	0.002	0.4	1.3	1.6	0.06	0.07

Рис. 2. Зависимости намагниченности образцов Sr33 (черные символы), Sr50 (зеленые символы) и Sr67 (синие символы) от напряженности магнитного поля при температуре 2 К. Сплошными сиреневыми и красными линиями показаны аппроксимации. Цветной вариант рисунка представлен в электронной версии статьи.

(см. таблицу) [1]. В таблице оцененные таким образом величины обменного поля обозначены нижним индексом 2 (H_{ex2}). Обе величины H_{ex1} и H_{ex2} , полученные в результате анализа совершенно различных зависимостей $T_{\rm N}(x)$ и M(H), дают очень близкие абсолютные значения и сходный убывающий вид зависимости с ростом x (см. таблицу). Однако главное здесь то, что из приведенных выше оценок следует уменьшение σ с ростом x. Таким образом, наблюдающееся в слабых магнитных полях *H* < 10 kOe падение измеряемой намагниченности с ростом x обусловлено уменьшением σ с ростом x. Спонтанная намагниченность слабого ферромагнетика зависит от соотношения вкладов изотропного сверхобменного взаимодействия (H_{ex}) и антисимметричного обменного взаимодействия Дзялошинского-Мория (H_D) в суммарный эффективный обмен и определяется выражением $\sigma = M_{\rm Fe}H_{\rm D}/2H_{ex}$ [19]. Фактор $H_{\rm D}/2H_{ex}$ определяет величину угла скоса подрешеток антиферромагнетика, который, согласно выражению $\sin \varphi = (H_{\rm D} + H)/2H_{ex}$, убывает от $\varphi = 0.5$ до 0.2° по мере роста x от 0.33до 0.67 [19]. Как видно из таблицы, обе величины H_D и H_{ex} уменьшаются с ростом x, но при этом происходит перераспределение их вкладов так, что σ уменьшается с ростом х. Если первый вклад зависит прежде всего от угла связи Fe-O-Fe, то второй — как от угла сверхобменной связи, так и от ее пространственной ориентации. В заключение заметим, что оцененные значения σ для всех трех образцов близки к значениям остаточной намагниченности M_r (см. таблицу). Как уже отмечалось выше, в сильных магнитных полях с напряженностью $H > 10 \,\mathrm{kOe}$ происходит увеличение намагниченности с ростом х (см. таблицу). В магнитных полях, превосходящих значение некоторого поля, называемого полем

магнитной анизотропии На, существенным становится ориентирующее действие внешнего магнитного поля. В полях $H > H_a$ слабый ферромагнетик приобретает еще и ортогональную составляющую намагниченности, тем бо́льшую, чем меньше H_a . Поэтому возрастающую зависимость намагниченности M(x), регистрируемую в высоких магнитных полях, можно качественно объяснить убывающей зависимостью $H_a(x)$. В области сильных магнитных полей при приближении намагниченности к насыщению M_s последняя зависит от H согласно степенному закону $M(H) = M_s (1 - (H_a/H)^2) + \chi H$ [20]. Этим выражением была выполнена аппроксимация высокополевых ($H > 40 \,\mathrm{kOe}$) экспериментальных зависимостей M(H) с экстраполяцией намагниченности до H = 0 Ое для наглядной визуализации поля H_a (на рис. 2 показана красными линиями). Как видно из таблицы, обе величины M_s и H_a, определенные напрямую из аппроксимации, уменьшаются с ростом х. Значение намагниченности M_s, определенное из аппроксимации, и теоретическая величина $M_s = 2M_{\rm Fe}H_{\rm D}/H_{ex}$ хорошо согласуются между собой [19]. Поведение M(x) подробно обсуждено выше. Здесь для нас главным становится то, что введение замещающей примеси стронция в $La_{1-x}Sr_xFeO_{3-\delta}$ и увеличение ее концентрации приводят к заметному ослаблению магнитной анизотропии На. Поле анизотропии На есть предельное значение коэрцитивной силы Н_c. Поэтому следует ожидать, что коэрцитивная сила H_c , как и поле анизотропии H_a , будет убывать с ростом х. Для проверки этого предположения нами были измерены петли магнитного гистерезиса (рис. 3). Параметры петель (коэрцитивная сила H_c и остаточная намагниченность M_r) приведены в таблице. На то, что значения остаточной намагниченности М_r для всех трех образцов оказались близки к значениям спонтанной намагниченности σ , мы уже указывали выше. Коэрцитивная сила H_c синхронно с H_a , как и ожидалось, уменьшается с ростом х. Это указывает на то, что за формирование зависимости $H_c(x)$ ответственны вариа-

Рис. 3. Петли магнитного гистерезиса образцов Sr33, Sr50 и Sr67 при температуре 2 K.

ции магнитной анизотропии, а не микроструктуры образцов с ростом х. С помощью известного соотношения $H_a = 2K/M_s$ для каждого из трех образцов была оценена величина константы магнитной анизотропии К, которая оказалась убывающей функцией x (см. таблицу) [20]. Если в таблице одновременно проследить за вариациями с ростом х константы магнитной анизотропии К и поля Дзялошинского H_D, то обнаруживается, что К является возрастающей функцией *H*_D. Другими словами, с усилением антисимметричного обменного взаимодействия Дзялошинского-Мория происходит рост магнитной анизотропии. Это может означать, что основным микроскопическим механизмом формирования последней, как и первого, является спин-орбитальное взаимодействие. Взаимодействие Дзялошинского-Мория приводит к формированию в образцах неколлинеарной антиферромагнитной спиновой структуры с нестрого антипараллельным расположением спинов ионов железа.

Таким образом, в работе детально проанализированы зависимости температуры Нееля от количества легирующей примеси стронция $T_N(x)$ и намагниченности от напряженности магнитного поля M(x, H) при температуре 2 К для серии из трех образцов $La_{1-x}Sr_xFeO_{3-\delta}$ (x = 0.33, 0.50, 0.67). Установлено, что понижение температуры T_N с ростом x обусловлено ослаблением сверхобменного взаимодействия, вызванным уменьшением угла связи Fe–O–Fe с ростом x. Вариации M(x, H)в слабых магнитных полях объясняются перераспределением вкладов изотропного сверхобменного взаимодействия и антисимметричного обменного взаимодействия Дзялошинского-Мория в суммарный эффективный обмен, а в высоких полях — эффектами магнитной анизотропии. Показано, что вариации магнитной анизотропии, а не микроструктуры образцов ответственны за формирование убывающей зависимости коэрцитивной силы $H_c(x)$. Основным микроскопическим механизмом формирования магнитной анизотропии является спинорбитальное взаимодействие.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках государственного задания 124013100858-3.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Moskvin, Magnetochemistry, 7 (8), 111 (2021).
 DOI: 10.3390/magnetochemistry7080111
- [2] P.V. Balachandran, J.M. Rondinelli, Phys. Rev. B, 88 (5), 054101 (2013). DOI: 10.1103/PhysRevB.88.054101

- [3] Н.М. Олехнович, Кристаллография, 52 (5), 789 (2007).
 [N.M. Olekhnovich, Crystallogr. Rep., 52 (5), 759 (2007).
 DOI: 10.1134/S106377450705001X].
- [4] В.Д. Седых, О.Г. Рыбченко, Н.В. Барковский, А.И. Иванов, В.И. Кулаков, ФТТ, 63 (10), 1648 (2021).
 DOI: 10.21883/FTT.2021.10.51418.128 [V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov, Phys. Solid State, 63 (12), 1775 (2021).
 DOI: 10.1134/S1063783421100322].
- [5] V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov,
 E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov, J. Phys. Chem. Solids, 171, 111001 (2022).
 DOI: 10.1016/j.jpcs.2022.111001
- [6] V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov, Ceram. Int., 49 (15), 25640 (2023).
 DOI: 10.1016/j.ceramint.2023.05.105
- M.S. Dmitrieva, A.I. Dmitriev, V.D. Sedykh, Bull. Russ. Acad. Sci. Phys., 88 (12), 2047 (2024).
 DOI: 10.1134/S1062873824708663
- [8] А.И. Дмитриев, С.В. Зайцев, М.С. Дмитриева, Письма в ЖТФ, **50** (13), 24 (2024).
 DOI: 10.61011/PJTF.2024.13.58163.19894 [A.I. Dmitriev, S.V. Zaitsev, M.S. Dmitrieva, Tech. Phys. Lett., **50** (7), 21 (2024). DOI: 10.61011/PJTF.2025.10.60322.20230].
- [9] J.B. Goodenough, Magnetism and the chemical bond (Wiley, N.Y., 1963).
- [10] P.S.J. Bharadwaj, S. Kundu, V.S. Kollipara, K.B.R. Varma, RSC Adv., 10, 22183 (2020). DOI: 10.1039/D0RA02532A
- [11] S. Erat, A. Braun, C. Piamonteze, Z. Liu, A. Ovalle, H. Schindler, T. Graule, L.J. Gauckler, J. Appl. Phys., 108 (12), 124906 (2010). DOI: 10.1063/1.3517822
- [12] A.S. Kumar, S. Srinath, AIP Adv., 4 (8), 087144 (2014).
 DOI: 10.1063/1.4894486
- [13] R.J. McQueeney, J. Ma, S. Chang, J.-Q. Yan, M. Hehlen, F. Trouw, Phys. Rev. Lett., 98 (12), 126402 (2007). DOI: 10.1103/PhysRevLett.98.126402
- [14] F. Gao, P.L. Li, Y.Y. Weng, S. Dong, L.F. Wang, L.Y. Lv, K.F. Wang, J.-M. Liu, Appl. Phys. Lett., 91 (7), 072504 (2007). DOI: 10.1063/1.2768895
- [15] Y.-Q. Liang, N.-L. Di, Z.-H. Cheng, Phys. Rev. B, 72 (13), 134416 (2005). DOI: 10.1103/PhysRevB.72.134416
- [16] L. Huang, L. Cheng, S. Pan, Y. He, C. Tian, J. Yu, H. Zhou, Ceram. Int., 46 (17), 27352 (2020).
 DOI: 10.1016/j.ceramint.2020.07.220
- [17] J.B. Yang, W.B. Yelon, W.J. James, Z. Chu, M. Kornecki,
 Y.X. Xie, X.D. Zhou, H.U. Anderson, A.G. Joshi, S.K. Malik,
 Phys. Rev. B, 66 (18), 184415 (2002).
 DOI: 10.1103/PhysRevB.66.184415
- [18] А.С. Боровик-Романов, В.И. Ожогин, ЖЭТФ, **39** (1), 27 (1960).
 [А.S. Borovik-Romanov, V.I. Ozhogin, Sov. Phys. JETP, **12** (1), 18 (1961).].
- [19] E.A. Туров, ЖЭТФ, **36** (5), 1254 (1959). [E.A. Turov, Sov. Phys. JETP, **9** (4), 890 (1959).].
- [20] S. Leelashree, P.D. Babu, S.N. Kaul, S. Srinath, J. Alloys Compd., 905, 164145 (2022).
 DOI: 10.1016/j.jallcom.2022.164145