04

Особенности электродиспергирования микрокапель металлов в плазме лазерного факела

© А.А. Борматов, В.М. Кожевин, Д.А. Явсин

ФТИ им. А.Ф. Иоффе, Санкт-Петербург, Россия E-mail: antonbormat@mail.ru

Поступило в Редакцию 5 августа 2024 г. В окончательной редакции 9 января 2025 г. Принято к публикации 5 февраля 2025 г.

> Рассмотрены условия развития электрокапиллярной неустойчивости на поверхности металлической капли в плазме лазерного факела. Показано, что классическое выражение для критического заряда капли (предела Рэлея) применимо только для анализа перехода в неустойчивое состояние высоких мод собственных колебаний капли. Получено модифицированное выражение для предела Рэлея с учетом этого ограничения.

> Ключевые слова: лазерное электродиспергирование, электрокапиллярная неустойчивость, лазерная плазма, каскадное деление.

DOI: 10.61011/PJTF.2025.10.60331.20084

Ранее в экспериментах по наносекундной лазерной абляции металлов в вакууме был обнаружен особый режим абляции [1], при котором на подложке, расположенной на расстоянии нескольких сантиметров от поверхности мишени, формируются структуры, состоящие из аморфных наночастиц аблируемого металла диаметром несколько нанометров и характеризующиеся крайне узкой дисперсией наночастиц по размерам. На основе этого эффекта был создан метод формирования подобных наноструктур различных металлов — метод лазерного электродиспергирования, который нашел применение, в частности, в создании катализаторов с высокой каталитической активностью и химической устойчивостью [2].

Метод лазерного электродиспергирования металлов основан на эффекте каскадного дробления субмикронных капель металла, вылетающих с поверхности мишени в плазму лазерного факела, где происходит их зарядка потоком электронов плазмы (рис. 1, a). Если заряд капли превышает критическую величину q_R (предел Рэлея), то капли переходят в неустойчивое состояние и под действием кулоновских сил эмитируют большое количество дочерних нанокапель.

Для получения требований на параметры плазмы, при которых может происходить дробление, необходимо определить величину критического заряда капли q_R в плазме. Одним из вариантов оценки этой величины является использование классического предела Рэлея, полученного для заряженной капли в вакууме [3]:

$$q_R = 4\pi \left((N+2)\varepsilon_0 \sigma R_d^3 \right)^{1/2}.$$
 (1)

Здесь R_d — радиус капли, ε_0 — диэлектрическая постоянная, σ — коэффициент поверхностного натяжения, а $N \ge 2$ — номер моды, переходящей в неустойчивое состояние. Поскольку в рамках данного приближения критический заряд возрастает с увеличением номера моды, для анализа устойчивости капли достаточно рассмотреть переход в неустойчивое состояние только моды N = 2. Анализ параметров плазмы для капель различных размеров, при которых выполняется критерий (1) в случае N = 2, был проведен в работе [4]. Однако дальнейшее исследование показало, что развитие рэлеевской неустойчивости на поверхности субмикронных капель в плазме лазерного факела имеет существенные особенности, которые ограничивают применимость критерия (1).

Чтобы это показать, рассмотрим более подробно условия развития электрокапиллярной неустойчивости на поверхности капли в плазме. При зарядке капли металла в плазме (рис. 1, b), как известно, формируется положительно заряженный слой, который экранирует заряд капли (слой Ленгмюра). Толщина слоя Ленгмюра L_{sh} составляет несколько дебаевских радиусов плазмы $r_D = (\varepsilon_0 k_B T_e / q_e^2 n_{pl})^{1/2}$, где k_B — постоянная Больцмана, T_e — температура электронов плазмы, q_e — заряд электрона, n_{pl} — плотность плазмы. Отметим, что для плотной плазмы лазерного факела дебаевский радиус принимает значения $r_D \sim 10^{-8}\,\mathrm{m}$, что существенно меньше радиуса капель $R_d \sim 10^{-7} - 10^{-6}$ m, поэтому в рамках настоящей работы мы пренебрежем собственной кривизной поверхности капли и будем рассматривать условие развития неустойчивости в плоском приближении.

Переход заряженной металлической капли в неустойчивое состояние происходит в том случае, когда отрицательное давление электрического поля преодолевает действие капиллярных сил и давление ионов плазмы на вершинах возмущенной поверхности. Поскольку предел Рэлея (1) был получен для заряженной капли в вакууме, его применение возможно только тогда, когда влиянием давления ионов можно пренебречь, а силовые линии

Рис. 1. a — схема метода лазерного электродиспергирования. Падение лазерного излучения на поверхность металла сопровождается выбросом капель в плазму. Зарядка капель в плазме приводит к каскадному электродиспергированию и образованию наночастиц. Параметры лазерного импульса: мощность $1-3 \text{ GW/cm}^2$, длительность 25 ns, длина волны излучения 1064 nm. Частота импульсов равна 60 Hz. b — слой Ленгмюра, формирующийся вокруг капли радиуса R_d в плазме лазерного факела. Заряд капли определяется из баланса тока ионов i^+ и электронов e^- плазмы. Толщина слоя L_{sh} при характерных параметрах плазмы лазерного факела существенно меньше размеров капель ($L_{sh} \ll R_d$).

Рис. 2. *a* — схема расчетной области Ω. *b* — пример расчета слоя Ленгмюра вблизи криволинейной поверхности расплава. Цветом обозначена плотность заряда $n_i - n_e$. Более темной области соответствует бо́льшая плотность заряда. Линии со стрелками — линии тока ионов, линии без стрелок — силовые линии электрического поля. Цветной вариант рисунка представлен в электронной версии статьи.

электрического поля эффективно фокусируются на вершинах возмущенной поверхности.

Распределение давления электрического поля $P_E = \varepsilon_0 E^2/2$ (E — напряженность электрического поля) и давления ионов плазмы $P_i = m_i n_i v_i^2/2$ (m_i — масса иона, n_i — плотность ионов, v_i — скорость ионов) вдоль поверхности капли определяется распределением заряда в слое Ленгмюра и величиной плавающего потенциала капли U_{fl} . В плоском случае величина плавающего потенциала находится из соотношения $q_e U_{fl} = k_B T_e \ln(m_i/2\pi m_e)^{1/2}$, где m_e — масса электрона.

Область слоя Ленгмюра вблизи возмущенной поверхности расплава Ω представлена на рис. 2, *а*. Для описания геометрии области используются декартовы *ху*-координаты. Возмущенная поверхность металла Γ_m имеет вид плоской волны: $y_m \sim A \cos(2\pi x/\lambda)$, где λ длина волны. Выбор такого типа возмущения позволяет в дальнейшем использовать эту модель для получения дисперсионного соотношения для волн на поверхности расплава. Характерная ширина области слоя выбирается в процессе расчета из условия экранировки заряда поверхности (напряженность электрического поля на условной границе Γ_{pl} между слоем и плазмой существенно меньше напряженности поля на поверхности расплава Γ_m).

Для определения напряженности поля, плотности и скорости ионов на поверхности металла необходимо решить систему уравнений слоя, которая состоит из уравнения неразрывности для потока ионов в слое, уравнения Ньютона для описания ускорения ионов под действием электрического поля и уравнения Пуассона для распределения потенциала электрического поля *U* в слое. Перенос ионов в слое будем считать бесстолкновительным, распределение электронов плазмы в слое — подчиняющимся распределению Больцмана (приближение Бома [5]). Решение задачи удобно проводить в безразмерных величинах

$$\xi = \frac{x}{\lambda}, \ \eta = \frac{y}{\lambda}, \ \rho = \frac{n_i}{n_{pl}}, \ v = \frac{v_i}{c_i}, \ \varphi = \frac{q_e U}{k_B T_e},$$
(2)

где $c_i = (k_B T_e/m_i)^{1/2}$ — ионно-звуковая скорость, равная скорости влетающих в слой ионов (критерий Бома). В безразмерном виде система уравнений слоя имеет следующий вид:

$$\operatorname{div}(\rho v) = 0, \tag{3}$$

$$(v\nabla)v = \nabla\varphi,\tag{4}$$

$$\alpha^2 \Delta \varphi = \rho - e^{-\varphi},\tag{5}$$

где параметр $\alpha = r_D/\lambda$ характеризует толщину слоя относительно данной длины волны. На границе Г_{nl} выполняются условия $\rho = 1$, $v_{\xi} = 0$, $v_{\eta} = -1$, $\phi = 0$. Поскольку уравнения переноса ионов (3), (4) являются гиперболическими уравнениями первого порядка и требуют для своего определения граничных условий только на одной границе, на поверхности металла Г_т заданы только условия Дирихле для уравнения потенциала электрического поля (5): $\varphi = \varphi_0$, где $\varphi_0 = q_e U_{fl} / k_B T_e$ безразмерный плавающий потенциал. На вертикальных границах $\xi = \pm 1/2$ выполняются периодические условия. Плавающий потенциал зависит от массы иона логарифмическим образом, поэтому слабо меняется при рассмотрении различных металлов. Для металлов, использующихся для прикладных исследований (Ni, Cu, Pt, Pd и др.), значение φ_0 находится в диапазоне 4-6. В настоящей работе для уменьшения количества свободных параметров φ_0 принимает фиксированное значение $\varphi_0 = 6$. Безразмерная амплитуда возмущения поверхности имеет вид $\beta = A/\lambda$ и в расчетах принимает значения из диапазона $\beta = 0 - 0.2$. Выбор этого диапазона продиктован необходимостью рассматривать малые возмущения поверхности капли для возможности анализа результатов расчета в линейном приближении.

Решение системы уравнений Бома проводилось DG-методом [6] в программе Comsol Multiphysics. Пример решения приведен на рис. 2, *b*.

Результаты расчетов показали, что при малой амплитуде возмущения поверхности давление ионов и электрического поля промодулировано вдоль поверхности, т.е. $P_{i,E} \approx P_{i0,E0} + \delta P_{i,E}\beta \cos(2\pi\xi)$, где $P_{i0,E0}$ — давление на плоской поверхности, а $\delta P_{i,E}$ — амплитуда модуляции давления. На невозмущенной поверхности давление электрического поля, т.е. $P_{i0} = P_{E0}$. Амплитуды модуляции давления электрического поля δP_E , давления ионов δP_i и суммарного давления $\delta P_{tot} = \delta P_E - \delta P_i$, нормированные на тепловое давление плазмы $P_0 = n_{pl}k_BT_e$, при различных значениях параметра α представлены на рис. 3.

Анализ результатов показал, что при $\alpha < 1$ (длинные волны) необходимо учитывать не только давление ионов, но и эффект ограниченной фокусировки силовых линий электрического поля на вершинах возмущения, который вызван малой толщиной слоя Ленгмюра. Давление ионов наиболее эффективно тогда, когда амплитуда возмущения больше или сравнима с толщиной слоя. При значениях $\alpha > 1$ (короткие волны) давлением ионов и

Рис. 3. Амплитуда модуляции давления плазмы, нормированная на тепловое давление $P_0 = n_{pl}k_BT_e$. Вертикальная штриховая линия отмечает значение α , при котором амплитуда достигает толщины слоя ($\beta = \alpha$).

эффектом ограниченной фокусировки силовых линий можно пренебречь. При этом амплитуда модуляции давления электрического поля приближается к вакуумному случаю, что позволяет для качественных оценок применять классический предел Рэлея (1).

Ограничение на длину волны, при которой применимо выражение (1), приводит к его модификации. Длина волны на поверхности капли определяется исходя из номера моды N собственного колебания капли: $N\lambda = 2\pi R_d$. Наименьшая мода с учетом ограничения $\alpha \ge 1$ определяется соотношением $N \approx 2\pi R_d/r_D$. Тогда для крупных капель $(R_d \gg r_D)$ в плазме выражение для предела Рэлея примет вид

$$q_R \approx 4\pi \left(\left(\frac{2\pi R_d}{r_D} + 2 \right) \varepsilon_0 \sigma R_d^3 \right)^{1/2} \\ \approx 4\sqrt{2\pi^{3/2}} R_d \left(\frac{\varepsilon_0 \sigma}{r_D} \right)^{1/2}.$$
(6)

Следует отметить, что условие (6) позволяет получить условия перехода в неустойчивое состояние только высоких мод. Однако, несмотря на то что эффективность фокусировки силовых линий электрического поля в области длинных волн снижена, в этой области также возможно развитие электрокапиллярной неустойчивости [7]. Вывод выражения для критического заряда капли во всем диапазоне длин волн будет приведен в последующих работах.

Финансирование работы

Работа выполнена в рамках государственного задания ФТИ им. А.Ф. Иоффе РАН (тема № 0040-2019-0010).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V.M. Kozhevin, D.A. Yavsin, V.M. Kouznetsov, V.M. Busov, V.M. Mikushkin, S.Y. Nikonov, S.A. Gurevich, A. Kolobov, J. Vac. Sci. Technol. B, 18, 1402 (2000). DOI: 10.1116/1.591393
- [2] С.М. Невская, С.А. Николаев, Ю.Г. Носков, Т.Н. Ростовщикова, В.В. Смирнов, С.А. Гуревич, М.А. Забелин, В.М. Кожевин, П.А. Третьяков, Д.А. Явсин, А.Ю. Васильков, Кинетика и катализ, 47 (4), 657 (2006). [S.M. Nevskaya, S.A. Nikolaev, Yu.G. Noskov, T.N. Rostovshchikova, V.V. Smirnov, S.A. Gurevich, M.A. Zabelin, V.M. Kozhevin, P.A. Tret'yakov, D.A. Yavsin, A.Yu. Vasil'kov, Kinet. Catal., 47, 638 (2006). DOI: 10.1134/S0023158406040203].
- [3] C.D. Hendricks, J.M. Schneider, Am. J. Phys., 31, 450 (1963).
 DOI: 10.1119/1.1969579
- [4] А.А. Борматов, В.М. Кожевин, С.А. Гуревич, ЖТФ, 91 (5), 721 (2021). DOI: 10.21883/JTF.2021.05.50682.283-20 [А.А. Bormatov, V.M. Kozhevin, S.A. Gurevich, Tech. Phys., 66 (5), 705 (2021). DOI: 10.1134/S1063784221050078].
- [5] R.N. Franklin, J. Phys. D, 36, R309 (2003).DOI: 10.1088/0022-3727/36/22/R01
- [6] C.W. Shu, in Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Ser. Lecture notes in computational science and engineering (Springer, Cham, 2016), vol. 114, p. 371–399. DOI: 10.1007/978-3-319-41640-3_12
- [7] J.T. Holgate, M. Coppins, J.E. Allen, Appl. Phys. Lett., 112, 024101 (2018). DOI: 10.1063/1.5013934