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1. Introduction

The potential barrier in a diode structure can be

determined very accurately based on the multiple-image

method [1,2]. Often in the literature problems with

rectangular barriers [3] are used as exactly solvable. In

some cases, the actual barrier in the diode is very close

to triangular (Figure 1). The triangular shape (Figure 2) is

considered in a number of papers, e. g., [4]. In fact it means

a linear dependence of the potential on the coordinate,

i. e., coordinate-independent force acting on the electron.

The triangular shape of the barrier is closer to the reality

arising in modeling real semiconductor devices, including

resonant-tunnel diodes [5–8]. However, the lack of rigorous

models for it leads to the use of coarser models, barriers, for

example, even in the form of δ-functions [7]. Although there

is a formula for tunneling through a triangular barrier [9]
in the quasi-classical approximation (WKB) (calculus in

quantum mechanics) on which Fowler−Nordheim (FN)
theory is based, it is not entirely satisfactory, as will be

noted later. Although an analytical solution in the form

of Airy functions is known for the triangular quantum

well, it has not been used for a finite triangular quantum

barrier in a diode, therefore obtaining its value is a relevant

problem. The trapezoidal form of the barrier in the form

of a triangle on a rectangular pedestal [4–6] (Figure 2, b) is

often considered. The linear potential solution can also be

applied to it, since the rectangular pedestal is accounted for

is quite simple. Much attention has recently been paid to the

study of tunneling through a triangular barrier [10–12]. The
search for exactly solvable models [11,12] for the tunneling

coefficient, such as using harmonic wavelets [12] and by

using the Airy function method with the origin placed at

the outer classical pivot point (PP) of the electron [13], is
crucial. Tunneling through the triangular barrier was the

basis of the FN theory, so the search for exact solutions is

an urgent problem.

One-dimensional Schrödinger equation (SE)

[−~
2∂2xx/(2me) + V (x/d)− E]ψ(x/d) = 0

with a linear function of quantum potential

V (x/d) = EF + W̃ − (W̃ + eUa)x/d.

at 0 ≤ x ≤ d in the diode has the form

ψ∗(x/d) = (ax/d−b)ψ(x/d). Here the dimensionless

constants are denoted a = 2med2(eUa + W̃ )/~2

and b = 2med2(EF + W̃−E)/~2, me — mass (effective
mass) of the electron, Ua — anode potential, ψ — wave

function (WFN), W̃ = W/ε — effective work function

(WF) considering the dielectric, W — WF into vacuum,

ε — dielectric permittivity (DP) of the gap. In the following,

we will use the following designations for dimensionless

coordinates: y = ax/d−b, z = y/a =x/d−b/a , t =x/d,
τ =z 3a =ξ3, ξ = a1/3(t−c), and the ratio c = b/a .
Therefore, the SE can be written as φ∗(t) = (at−b)ψ(t)
or ϕ∗ψ(ξ) = ξϕ(ξ). For a vacuum diode ε = 1, W̃ = W .

On cathode at x < 0 V = 0 is necessary, the VFN is,

ψ = exp(ik0x) + R exp(−ik0x) (when the incident wave

amplitude is unity). Here k0 =
√
2meE/~ — wave

number (WN), and at x = d a linear approximation of the

potential gives V (1) = EF−eUa . Inside the WN barrier

k(x/d) =
√

2me

(

E−V (x/d)
)

/~ can be either imaginary

or real but at the anode (x > d) the WN should be taken

as ka = k0. This corresponds to a jump in the normalized

wave impedance (WI) ρ(x/d) = k0/k(x/d) both at the

cathode ρ(0)/ρ0 =
√

1−(EF + W̃ )/E , and at the anode

ρ0/ρ(1) = 1/

√

1−(EF−W̃−eUa)/E , ρ0 = 1 (Figure 2).

Let there is no anode voltage: Ua = 0. Then the barrier

(for the vacuum gap) becomes rectangular with height

W̃ + EF. In front of it and behind it is V = 0, i. e. we

have a potential jump ±(EF + W̃ ), and also WI jumps
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Figure 1. Shape of the potential barrier V [eV] in a vacuum

diode d = 10 nm as a function of coordinate x (nm) at different

anode voltages,V: 1 — 0, 2 — 3, 3 — 5, 4 — 7. The electrodes

are made of copper EF = 7, W = 4.36 (eV). The dashed lines b, c

and d show linear approximations of the barrier a. (The colored

version of the figure is available on-line).
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Figure 2. Triangular barrier (a) at eUa = EF and eUa > EF

(shown by dashed line), (b) — triangle type barrier on pedestal

at eUa < EF.

√

1−(EF + W̃ )/E and 1/

√

1−(EF−W̃ )/E . Here there are

two PPs x = 0 and x = d . The problem should be solved

between the two PPs, i. e., the triangular barrier is reduced

to a rectangular barrier in this case. Let eUa < EF + W̃ .

The jump in wave impedance at the anode can be both

E > EF−W̃−eUa) and real (at E < EF−W̃−eUa). In the

first case, we have to solve the problem from the PP x = 0

to PP x = d, and in the second case also to the x = d
point, but the TP is to the left: x t p < d (Figure 2). After

the PP x t p the electron moves quasi-classically, accelerated

by the anode, and its WFN acquires a phase incursion.

It should be taken into account. Upon hitting the anode,

the electron scatters at the free path length, its momentum

relaxes to the Fermi momentum of the anode, the energy

changes, and the wave equation for the scattering phase

becomes inapplicable. Therefore, WN k0, should be used,

providing the law of energy conservation in the form of

|R| + |T̃ | = 1. We denote the values at the cathode by the

index c , at the anode — by the index a (we will omit them

for identical electrode materials).
The above SE occurs in a vacuum tunnel diode

at a large anode voltage Ua . It is also possible

in a metal−insulator−metal (MIM) tunnel diode with

metal electrodes and dielectric filling. Note that b = 0,

if E = EF + W̃ is satisfied for energy. This is the

point at the apex of the triangular barrier. For it

we have a general solution through the Airy functions

ψ(t) = AAi(a1/3t) + B Bi(a1/3t) [14,15]. According to it,

1 + R = AAi(0) + B Bi(0),

ik0d(1−R) = a1/3[AAi′(0) + B Bi′(0)],

T̃ = AAi(a1/3) + B Bi(a1/3),

ik0da−1/3T̃ = AAi′(a1/3) + B Bi′(a1/3),

from where we obtain the input conductance for the narrow

barrier

Y = (1−R)/(1 + R) = 1 + ik0d(3a)−1/3Ŵ(1/3)/Ŵ(2/3),

i. e. the reflectance coefficient R tends to zero when

the barrier width d tends to zero. For a finite

width, we obtain a reflectance coefficient unequal to

zero (contrary to the FN formula). At d → 0 and

therefore, a → 0 we have ψ(1) = ψ(0), ψ′(1) = ψ′(0),
1 + R = T̃ , 1−R = T̃ , i. e. R = 0, T̃ = 1. At low d we

easily get R ≈ −ik0d/4. At d → ∞ we have B = 0,

(1−R)/(1 + R) = a1/3Ai′(0)/
(

ik0dAi(0)
)

→ 0, i. e. R = 1,

which means a completely opaque infinite step at its level.

If the SE corresponds to a vacuum diode of length d,
then on the surface of the cathode V (0) = EFc + W̃ ,

where EFc — the Fermi (FE) energy of the cathode, W̃ —
the effective WF from the cathode relative to the FE, taking

into account the Schottky effect, conductor and dielectric

effects (the real WF of the cathode material Wc may be

much higher). Inside the cathode V = 0. The potential and

energy are counted from the bottom of the conduction band

of the cathode, so at the cathode the Fermi level (FL) µc

(electrochemical potential) corresponds to FL:

µc = EFc
(

1−(π2/12)(kBT/EFc)
2 + . . .

)

≈ EFc .

At the anode, the FL is lower at eUa , so V (d) = EF−eUa .

This is a linear approximation of the real barrier [1,2]
of Figure 1. Its maximum is slightly shifted from the
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cathode, and the shift is easily determined [1] of Figure 1,

curve a. Therefore, it is more accurate to approximate V (x)
by two linear functions: from cathode to maximum

and from maximum to anode (curve b). We will consider

large voltages (strong fields) and small sizes d, when the

barrier apex is very close to the cathode, the WF W̃
is small, and the function V is nearly linear (Figure 1,

curves c, d), i. e. we will take the approximation of Figure 2.

In the limit case of high voltage W̃ ≈ 0, and the slope of

the potential to the anode starts directly from the FE of the

cathode. Inside the cathode for x < 0 electrons are free,

V (x) = 0, so at the cathode the WN k0, and at the cathode

(at infinitesimal distance) κ(0) =
√

2me(EF + W̃−E)/~.

In the region of the barrier, WN is imaginary k(x) = iκ,

κ(x) =
√

2me

(

V (x)−E
)

/~. In the vicinity of the an-

ode the WN ka =
√

2me(E + eUa−EF)/~. For the nu-

merical solution, the normalized WI of electron waves [3]
ρ(x) = k0/k(x) are used. Inside the barrier, they are

imaginary, on cathode and on anode ρ0 = 1.

Next, we consider a barrier that appears abruptly from

zero at x < 0 to EF + W at x = 0, and then declines linearly

to V (d) at anode (Figure 1, curve d, Figure 2). In this

case, the WI jump occurs at both electrodes. Note that at

eUa = EF will be ka = kc , and there is no WI jump at the

anode (Figure 2, a). For simplicity, we assume the cathode

and anode materials are the same. If this is not the case,

and also if there is dielectric filling of the cathode−anode

space by a material with dielectric permittivity (DP) ε, then
the potential should be taken as

V (x) = EFc + Wc/ε − [(Wc −Wa)/ε + eUa ]x/d.

WF is understood taking into account the Schottky effect

and the mutual influence of the electrodes, i. e. considering

the size d . Taking into account the dielectric leads to

a ε fold reduction in the barrier, i. e. to the replacement of

W → W/ε. It is convenient to assume W = 0, which takes

place for high voltages (strong fields), when the maximum

potential moves to the cathode (the barrier relative to

FE disappears). In a vacuum diode, this occurs at the

critical voltage Ua = 8Wc(1−α/d)/(eε) (the approximation

of the potential V by a 4th order parabola [2] without field

application is taken). The small parameter α ≪ d will be

given later and determines the reduction of the WF Wc from

the cathode due to the proximity of the electrodes.

For Wc = 4 eV and d = 2 nm ε = 1 we have the critical

anode potential Ua ∼ 34V, i. e. the voltage of the critical

field for the vacuum diode ∼ 1.7 · 1010 V/m. For a diode

made on a diamond film using CVD (chemical vapor

deposition) technology with DP ε = 5.6 it is ∼ 6 times

lower. If we consider a remote anode and a barrier

V (x) = EF + Wc/ε−e2/[16πε0ε(x + δ)] − Ex x ,

created by the electric field Ex , from the condition V ′(0) = 0

of finding the maximum at the cathode we obtain the critical

field Exc = e2/(16πε0εδ2) = We/(εδ). Here δ ≪ d — a

small parameter with length dimension: We = e2/(16πε0δ),
i. e. of the cathode V (0) = EF. For WF Wc = 4 eV we have

δ = 0.09 nm, and the critical field is significantly higher:

2.2 · 1010 V/m, since the barrier is significantly reduced in

nanoscale structures. It is at such fields that the real poten-

tial becomes almost linear, and a triangular barrier appears

for the electron with energy E < EF. An approximate solu-

tion for it is known for the transparency in the quasi-classical

(WKB) approximation [9]: D ≈ A exp
(

−4dκ(0)/(3eUa)
)

,

where WF κ(x) =
√

2me

(

V (x)−E
)

/~ and κ(0) = κ0

=
√

2me(EF−E)/~. are denotedIn it we have replaced the

electric field — Ex with Ua/d . In case of non-zero WF

W we will have κ0 =
√

2me(EF + W−E)/~. In [9] the pre-

exponential multiplier A is found by neglecting the value

of α = −β exp(−2γ) — the backward (reflected from the

trailing edge of the triangular barrier) rising wave

α exp

( x
∫

0

κ(y)dy

)

/

√

κ(x)

in region 0 < x < l (in [9] α = 0) is assumed where the

integral

γ =
1

~

l
∫

0

√

2me
(

V (x) − E
)

dx

is calculated before the PP l (of formula (24.4), (24.7)
from [9]). It is determined from the condition E = V (l).
In our case, l = d(EF−E + W )/(W + eUa). This is justified
when the barrier length l is substantial. However at

W = 0 and near the FE E ≈ EF (where there is maximum

transparency) it will be l = 0 and α = −β, so the formula

for transparency is not correct. Moreover, the multiplier A
(formula (24.7)) derived in such a way is inversely propor-

tional to the infinitesimal value of κ(l) = 0. This formula is

given for the case of zero potential to the left and right of

the barrier. Taking into account both coefficients at arbitrary

potentials leads to a refinement of the formula given later in

the monograph [9]:

A =
16ka

k0

(

κ(l) + k2
a/κ(l)

)[(

1− exp(−2γ)
)2
/κ(0)+

+ κ(0)
(

1 + exp(−2γ)
)2

k2
a/k2

0

]

,

which has the same drawbacks. The reason for this is the

quasi-classical WFN of the forbidden region, before the

exponents in which the multiplier 1/
√

κ(x) takes place.

When computing the derivative of the ∂ψ/∂x WFN, only the

exponents are differentiated, since the 1/
√

κ(x) multiplier

is assumed to be a smooth function. However, in TP this

function is not. The problem of correct definition of the

multiplier A is simply reduced to the fact that it is replaced

by one. The same takes place in the FN formula. In this

case for E = EF we get D = 1, which is incorrect. Of

course, one can correctly take into account the derivative

of 1/
√

κ(x), which leads to very complex formulas, but
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even this approach is approximate. Therefore, obtaining an

analytical solution of the SE is a relevant issue.

The purpose of this paper is — to obtain an analytical

solution of the SE with a linear potential. Since complex

potential barriers have large nearly linear regions [1,2], such
a solution will improve the accuracy of numerical solution of

such problems using piecewise linear approximation, since

they are usually solved on the basis of piecewise constant

approximations of the potential [1,2]. It will also allow

evaluating the accuracy of the FN formula.

2. Solving by means of cylindrical
functions

The original SE ψ′′(t) = a(t−c)ψ(t) is reduced

to the Airy equation ϕ′′(ξ) = ξϕ(ξ) for function

ϕ(ξ) = ψ(ξ/a1/3 + c) by replacing ξ = a1/3(t−c).
It has a solution in the Bessel functions (see [14],
2.162(11)): ϕ(ξ) =

√
ξZ1/3(2iξ3/2/2) at ξ > 0

and ϕ(ξ) =
√
ξZ1/3(2ξ

3/2/3) at ξ < 0. Here

Zv(z ) = C1Jv(z ) + C2Yv(z ) — the general solution of

the Bessel equation of index ν = ±1/3, C1,C2 —
arbitrary coefficients (integration constants). However,

these solutions for the diode are inconvenient because ξ

may go to zero in the region, and it is necessary to

take a finite solution at ξ = 0, i. e. discard the Neumann

function. Therefore, we take the general solution

in the form [15] ϕ(ξ) = C1 Ai(a1/3ξ) + C2 Bi(a1/3ξ).
Here, the Airy functions of the 1st and 2nd

kind are used: Ai(x) = π−1
√

x/3K1/3(2x3/2/3),
Bi(x) = −

√
x/3
(

I1/3(2x3/2/3) + I−1/3(2x3/2/3)
)

, Kν —
Macdonald function

Kν(x) = (π/2)[I−ν (x)−Iν(x)]/ sin(νπ),

I±ν — Bessel functions of the 2nd kind. In the neighbor-

hood of zero we have

Ai(x) =
1

32/3Ŵ(2/3)
− x

31/3Ŵ(1/3)

+
x3

32/36Ŵ(2/3)
− x4

31/312Ŵ(1/3)
+ . . . ,

Bi(x) =
1

31/6Ŵ(2/3)
+

31/6

Ŵ(1/3)

(

x +
x4

12

)

+
1

31/6Ŵ(2/3)

x3

6
+ . . . .

These functions are related at zero:

Ai(0) = 3−2/3/Ŵ(2/3) = Bi(0)/
√
3 = 0.355028053

and so are their derivatives:

Ai′(0) = 3−1/3/Ŵ(1/3) = −Bi′(0)/
√
3 = −0.258819403.

Consider the solution of the SE. To the left of the barrier we

have WFN ψ(x , E) = exp(ik0x) + R(E) exp(−ik0x), and to

the right — ψ(x , E) = T̃ exp
(

ik0(x−d)
)

. From boundary

conditions we get:

1 + R = Ai(−c)C1 + Bi(−c)C2,

ik0d(1−R) = a1/3[Ai′(−c)C1 + Bi′(−c)C2]

on the left boundary, and also

T̃ = Ai
(

a1/3(1− c)
)

C1 + Bi
(

a1/3(1− c)
)

C2,

ik0dT̃ = a1/3
[

Ai′
(

a1/3(1− c)
)

C1 + Bi′
(

a1/3(1− c)
)

C2

]

on the right boundary. Excluding the unknown constants,

we have C2 = GC1 and

G =
Ai′
(

a1/3(1− c)
)

− ik0da−1/3Ai
(

a1/3(1− c)
)

ik0da−1/3Bi
(

a1/3(1− c)
)

− Bi′
(

a1/3(1− c)
) , (1)

C1 =

=
2ik0d

ik0dAi(−c) + a1/3Ai′(−c) + [ik0dBi(−c) + a1/3Bi′(−c)]G .

(2)
The solution of the problem takes the form

Y =
a1/3[Ai′(−c) + Bi′(−c)G]

ik0d[Ai(−c) + Bi(−c)G]
, (3)

T̃ = [Ai
(

a1/3(1− c)
)

+ Bi
(

a1/3(1− c)
)

G]C1. (4)

The reflectance coefficient is expressed as

R = (1−Y )/(1 + Y ) or as

R = C1

[

Ai(−c) + Bi(−c)G − (a1/3/ik0d)

× [Ai′(−c) + Bi′(−c)G]
]

/2,

and for a transparent barrier we have D = 1−|R|2 = |T̃ |2.
For a narrow barrier at c = 0 it is not difficult to obtain

G ≈ 1/
√
3− 2ik0da−1/3Ai(0)/

(

Ai′(0)
√
3
)

.

3. Integration by the method of series

Calculating the Airy functions and their derivatives can

be inconvenient, so we obtain another form of solution by

integrating the original SE ψ′′(t) = a(t−b/a)ψ(t) by the

method of series, i. e by decomposing into a power series

over tn : ψ(t) = α0 + α1t + . . . with equating the coefficients

at the same powers. Here, ψ(t) = α0 + α1t + . . . 0 ≤ t ≤ 1.

We have the formula

∂2tt ψ(t) =

∞
∑

n=2

n(n − 1)αntn−2 = a
∞
∑

n=0

αntn+1 − b
∞
∑

n=0

αntn,

(5)
from which we obtain the recurrence formula

αn = (n−2)!(aαn−3−bαn−2)/n!

Semiconductors, 2024, Vol. 58, No. 12
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Coefficients βn and γn

n βn γn

3 a/3! −b/3!

4 b2/4! 2a/4!

5 −4ab/5! b2/5!

6 (4a2
−b3)/6! −6ab/6!

7 β1 = 9b2a/7! γ7 = (10a2
−b3)/7!

8 β8 = (b4
−28a2b)/8! γ8 = 12ab2/8!

9 β9 = (28a3
−16ab3)/9! γ9 = (b4

−52a2b)/9!

10 β10 =
(

100(ab)2−b5
)

/10! γ10 = (80a3
−20ab3)/10!

and the coefficients of α2 = −bα0/21, α3 = a(α0−cα1)/3!,
α4 = (b2α0 + 2!aα1)/4!, . . . We find the general solution

ψ(t) = α0
(

1−bt2/2 + ϕ0(t)
)

+ α1
(

t + ϕ1(t)
)

with functions

ϕ0(t) = β3t
3 + β4t

4 + . . .

and

ϕ1(t) = γ3t
3 + γ4t

4 + . . . ,

ϕ0(0) = ϕ1(0) = 0.

The first few coefficients βn and γn constructed from the

recurrence formula are given in the table.

All coefficients can also be calculated through complex

functions

f n(α0, α1) =
(

a f n−3(α0, α1) − b f n−2(α0, α1)
)

/[n(n − 1)],

n = 1, 2, 3, 4, 5, 6, . . ., where the first three functions

are of the form: f 0(α0, α1) = α0, f 1(α0, α1) = α1,

f 2(α0, α1) = −bα0/2!. Using these, we calculate the

coefficients using the formulas

αn = (n − 2)!
(

a f n−3(α0, α1) − b f n−2(α0, α1)
)

/n!,

n = 4, 5, . . .

Then we calculate βn = f n(1, 0), γn = f n(0, 1). The imag-

inary parts of f n(1, 0) and f n(0, 1) equal zero. To solve

the problem, it is sufficient to know ψ(0) = α0, ψ
′(0) = α1,

ψ(1) and ψ′(1). Knowing the first two constants, the

values of ψ(1) and ψ′(1) can be easily calculated using

the recurrence formula αn = (aαn−3−bαn−2)/[n(n−1)].

To solve the problem, we have the equations

1 + R = α0, 1− R = α1/(ik0d), ϕ(1) = T̃ , ϕ′(1) = ikadT̃ .
From the latter two relations we find the incoher-

ence 1 = ϕ′(1)/ϕ(1) − ikad = 0. From the first two

we get 2 = α0 + α1/(ik0d) and Y = (1−R)/(1 + R) =
= α1/(ik0dα0). The solution using the functions

ϕ0, ϕ1 and their derivatives is as follows: α1 = G̃α0,
α0 = 2/

(

1 + G̃/(ik0d)
)

, where

G̃ =
b − ϕ′

0(1) + ik0d
(

1− b/2 + ϕ0(1)
)

1 + ϕ′

1(1) − ik0d ϕ1(1)
. (6)

The function values included in (6) can be calculated

using formulas with a finite number of terms. Since

tn ≤ 1, for a characteristic size of d = 2 nm and the

usual values of eUa ∼ 5 eV we have a ∼ 500, at the

same time if EF = 7 eV, then value b changes from zero

to 740 during tunneling. In all coefficients βn and γn

the maximum degrees are less than n/2. Discarding

the irrelevant coefficients in the Stirling formula, from

the condition n! ≈ (500)n/2 we have an estimate of the

maximum number of terms of the series n ∼ 60 when its

coefficients begin to decrease. This is a very tight estimate

because the value (6) is computed as a function ratio.

For MIM (metal−isolator−metal) type diodes, the need

for a large number of series members is not entirely con-

venient. For SIS-(semiconductor−isolator−semiconductor)-
type diodes the number of terms is much smaller.

Thus, in a GaAs semiconductor diode with effective

mass m∗ = 0.067me DP ε = 14 in layer Ga1−xAlxAs

d = 0.5 nm thick and at WF 4.5 eV, Ua = 0.5V we have

a = 2m∗d2(eUa + W/ε)/~2 = 0.36 and b = 0.14 at level

E = EF. In this case, 2−3 members are sufficient, i. e. we

obtain a nearly analytical solution. In tunneling, (E < EF)b
decreases with increasing energy, and becomes negative, but

small in modulus (when the barrier is slightly exceeded).
In general, using a finite number of terms in the series, we

calculate (6) and determine α0 and α1. Then, using the

recurrence formula, we calculate all other coefficients αn

to those numbers when they begin to greatly decrease. This

determines the number of terms of the series needed. When

calculated exactly, the 1 = ϕ′(1)/ϕ(1)−ikad discrepancy

should be zero (low). We calculate this non-convexity

and refine the coefficient iteratively: α
(n+1)
0 = α

(n)
0 −τn1n.

Here τn is the iteration parameter (with τn = 1 — this is the

simple iteration method). After each calculation of α
(n+1)
0

α
(n+1)
1 should be calculated α

(n+1)
1 = (ik0d)(2−α(n+1)

0 ) and

use them to determine the new residual 1. The iteration pa-

rameter can be selected using the minimum residual method

1n+1 [16]. The iterative algorithm requires the determination

of several coefficients, but can be inconvenient. However,

all coefficients up to the required large orders of magnitude

can be computed numerically without iteration based on the

above algorithm. The convergence of the method is very fast

if d < 1 nm, barrier height of order and < 0.5 eV, voltage

< 1V, and effective mass of order and less than 0.1me .

Such parameters are characteristic of semiconductor tunnel

diodes, when in a thin carrier-depleted layer the DP has

values of 12−17, i. e the barrier is reduced by more than an

order of magnitude due to the DP and small width. Exactly

such barriers occur in resonant-tunnel structures made by

GaAs−Ga1−xAlxAs and similar technologies.
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Here is another simpler algorithm based on the row

method for the variable z = x/d−c . For this substitution,

the SE for the WFN ϕ(z ) = ψ(z + c) is simplified and

takes the form ϕ′′(z ) = az ϕ(z ), −c ≤ z ≤ 1−c . This

is also the equation for the Airy functions Ai(a1/3z ),
Bi(a1/3z ). But we will use integration by the series

method ϕ(z ) = α0 + α1z + α2z 2 + . . ., which leads to the

recurrence formula αn = aαn−1/[n(n−1)], n = 3, 4, . . . and

to the ratios α3m+2, m = 0, 1, 2, 3, . . .. According to the

recurrence formula, all the coefficients of α3m are expressed

in terms of α0, and the coefficients of α3m+1 — in terms

of α + 1, m = 1, 2, 3, . . . as α3m = α0am(3m−2)!!!/(3m)!,
α3m+1 = α1am(3m−1)!!!/(3m + 1)!. Here we denote the

triple factorial: n!!! = n(n−3)!!!, where 1!!! = 1, 2!!! = 2,

3!!! = 3 (similarly the double factorial is determined:

n!! = n(n−2)!!, 1!! = 1, 2!! = 2). We have formulas

(3n)!!! = 3nn!, n! = n!!!(n−1)!!!(n−2)!!!. We make substi-

tutions 3m = k , τ = z 3a and get the general solution

9(τ ) = α0
(

1 + ψ0(τ )
)

+ α1(τ /a)1/3
(

1 + aψ1(τ )
)

, where

the functions

ψ0(τ ) =

∞
∑

k=1

τ k (3k − 2)!!!

(3k)!
=

∞
∑

k=1

τ k 1

(3k)!!!(3k − 1)!!!
, (7)

ψ1(τ ) =

∞
∑

k=1

τ k (3k − 1)!!!

(3k + 1)!
=

∞
∑

k=1

τ k 1

(3k + 1)!!!(3k)!!!
. (8)

The variable in them changes within τ0 ≤ τ ≤ τ1,

τ0 = −b3/a2, τ1 = (1−c)3a . Next, it will be nec-

essary to calculate their derivatives. Obviously,

∂xψ(0,1)(τ ) = 3az 2ψ′

(0,1)(τ )/d . The derivatives of τ of these

functions are of the following form.

ψ′

0(τ ) =

∞
∑

k=1

τ k−1k
(3k−2)!!!

(3k)!
=

∞
∑

k=1

τ k−1 k
(3k)!!!(3k−1)!!!

,

(9)

ψ′

1(τ ) =

∞
∑

k=1

τ k−1k
(3k − 1)!!!

(3k + 1)!
=

∞
∑

k=1

τ k−1 k
(3k + 1)!!!(3k)!!!

.

(10)
The diagrams of these functions and their derivatives

are shown in Figure 3. The maximum modulo value

of |τ | ∼ max(a, b3/a2), at the same time τ0 — neg-

ative, and τ1 — negative at b < a in this case the

series — sign-variable and rapidly converging), and at

b ∼ a and b < a value τ1 is small. Therefore, condition

(max |τ |)k(3k−2)!!! = (3k)! leads to an estimate of k ∼ 25.

At τ < 1 the convergence of the series in (7), (8) is

extremely high and is sufficient to hold for several terms in

the series. At τ = 10 we have in (7) fifteen exact decimal

places when 15 terms of the series are taken into account.

At τ = 100 we have nine decimal places for 15 terms of

the row, and all 15 precimal places for 18 terms of the row.

At τ = 1000 the required number of terms of the series to

obtain 15 exact signs is 34. From boundary conditions is

follows that

1 + R(E) = α0
(

1 + ψ0(τ0)
)

− α1c
(

1 + aψ1(τ0)
)

, (11)

1− R(E) =

=
α0(3b2/a)ψ′

0(τ0) + α1[1 + aψ1(τ0) − (3b3/a)ψ′

1(τ0)]

ik0d
,

(12)

α0
(

1 + ψ0(τ1)
)

+ α1(1− c)
(

1 + aψ1(τ1)
)

= T̃ , (13)

α03a(1− c)2ψ′

0(τ1) + α1[1+ aψ1(τ1) + 3a2(1− c)3ψ′

1(τ1)]
ika d = T̃ .

(14)
The solution of the problem takes the form

Y (E) =
1− R
1 + R

=
(3b2/a)ψ′

0(τ0) +
...

G[1+ aψ1(τ0)− (3b3/a)ψ′

1(τ0)]

ik0d[1+ψ0(τ0)−
...

G(c + bψ1(τ0))]
,

(15)

...

G =
ik0d(1+ψ0(τ1))− 3a(1− c)2ψ′

0(τ1)
1+aψ1(τ1)+3a2(1− c)3ψ′

1(τ1)− ik0d(1− c)(1+aψ1(τ1))
.

(16)

The coefficients are calculated by the formulas α1 =
...

Gα0,

α0 = 2

[

1 + ψ0(τ0) +
3b2ψ′

0(τ0)

ik0da

−
...

G

(

c + caψ1(τ0) −
1 + aψ1(τ0) − 3b3ψ′

1(τ0)/a
ik0d

)]−1

.

(17)

At high anode voltage, the right TP is almost equal

to d (Figure 2), and then the triangular barrier stands on

the pedestal 1V , i. e. V (x) ≈ EF + W−(W + eUa−1V )x/d .
To approximate the curve a (or 4) (Figure 1) we have

1V ≈ 4 eV. In this case a = 2med2(eUa−1V + W )/~2, and

for d = 1 nm in the vacuum diode we have a = 163.

The functions (7), (8) and their derivatives (9), (10) are

easily calculated at low or negative τ (with sign-variable

coefficients), but also at sufficiently high τ . They are

independent of the structure parameters, can be computed

once (Figure 3), tabulated or approximated, and expressed

through Airy functions (we do not address this issue here).
100 terms of the series were used. The results do not change

when 200 terms are taken into account. The a coefficient

decreases greatly at d < 1 and in the case of low Ua . At

the same time, the effective WF W also decreases due

to the proximity of the electrodes. At Ua = 0 and d > 1

the barrier is approximated by the rectangular (constant)
potential V = W (Figure 1, curve 1), for which instead

of (7) and (8), the fundamental solutions of the SE are

as follows

cos
(

x
√

2me(EF + Wc − E)/~
)

and

sin
(

x
√

2me(EF + Wc − E)/~
)

.
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Figure 3. Diagrams of functions (7)−(10).

4. Analysis of solutions, results
and conclusions

Let us consider the obtained solutions. At d = 0 we

have a = b = 0, τ0 = τ1 = 0, ψ′

0(0) = 1/6, ψ′

1(0) = 1/12,

ψ0(0) = ψ1(0) = 0. In 1st order by d we take
...

G = ik0d .

In the same order Y (E) =
...

G/ik0d = 10, i. e. R = 0, D = 1,

T = 1 + R = 1. This is an infinitely narrow barrier. If

d > 0, we have the PP of l = d(EF + W−E)/(eUa + W )
and the transparency of D̃ = |T̃ |2 = 1−|R̃|2. In the case

of l = d there must be E = EF−eUa , and the small

neighborhood of this level must be excluded from the

solution, since the WN for it is zero. If EF−eUa > 0,

the barrier takes the form of a triangle W + eUa high on

a pedestal EF−eUa high (Figure 2, b). Tunneling to the

level below the pedestal (0 < E ≤ EF−eUa) is possible if

the electron preliminarily from it passes to the FL of the

anode EF−eUa absorbing the energy quantum EF−eUa−E .
At the same time on the cathode due to the Nottingham

effect the energy quantum EF−E is released. Thus, the

total heat release for one act of electron transition is equal

to eUa and occurs due to the work of the power source.

This same energy is also released during tunneling from

higher levels when the electron at the anode gives up energy

E−EF + eUa by transitioning to the FL of the anode. The

release or absorption of energy occurs at the free path length

due to the interaction of electrons with electrode phonons.

The tunneling at E ≤ EF − eUa is small. At very high
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voltage eUa ≫ EF we have the narrow triangular barrier of

Figure 2, a (dashed line).

For small a and b it is quite convenient to use the

decomposition (5) with coefficients from the table. Thus at

d = 1 nm, W = 2 eV, EF = 0.5 eV, effective mass 0.067me ,

DP ε = 14 we have a = 2.02, and for the electron at

the barrier apex (E = EF + W/ε = 0.64 eV) we have

b = 0 and ϕ0(t) ≈ 2t3/3! + 16t6/6! + 224t9/9! + . . .,

ϕ1(t) ≈ 4t/4! + 40t7/7! + 640t10/10! + . . .. Since t ≤ 1,

the terms of the series are greatly decreasing, and at t = 1

the third terms give maximum corrections < 0.2 i. e., they

can be omitted and the solution can be taken in the form of

ψ(t) = α0(1 + 2t3/3! + 16t6/6!) + α1(t + 4t4/4! + 40t7/7!).
This case corresponds to a GaAs doped diode with

a carrier-depleted layer Ga1−xAlxAs d = 1 nm thick.

We reduced the WFs according to the mutual influence of

the electrodes. At d = 2 nm, the WF will increase slightly,

but the contribution of W/ε is small, and all the coefficients

will increase by about 4 times, and the result can be applied

to such a diode as well. For the barrier apex b = 0, and we

will get R ≈ −ik0d/4−(k0d)2/12 ≈ −ik0d/4.
Let us consider the case of a particle at the

apex of the triangular barrier (eUa = EF, E = EF + W̃ )
for other solutions. For (13) at b = 0 we have

τ0 = 0, τ1 = a = k2
0d

2, τ = at3 and Y =
...

G/(ik0d) 6= 1,

i. e. there is no complete passage of the barrier (as
dictated by the FN formula). Let the barrier be nar-

row, i. e. a = k2
0d

2 ≪ 1 and ψ0(a) ≈ 1/6, ψ1(a) ≈ a/12,

ψ′

0(a) ≈ 1/6, ψ′

1(a) ≈ 1/12. Then
...

G ≈ ik0d−(k0d)2/2,
Y (E) ≈ 1 + ik0d/2 and have the reflectance coefficient

R ≈ −ik0d/4 as stated above. It is small, but non zero.

If τ1 = a ≫ 1, then this corresponds to a wide barrier

(rectangular step) and should result in total reflection. In

this case 1 < ψ′
1(τ1) ≪ ψ′

0(τ1) ≪ ψ1(τ1) ≪ ψ0(τ1) (see also

Figure 3), so we have

...

G =
ik0dψ0(τ1) − 3aψ′

0(τ1)

aψ1(τ1)[1− ik0d] + 3a2ψ′

1(τ1)
≈ − ψ0(τ1)

aψ1(τ1)
. (18)

At τ1 = a = 100
...

G ≈ −0.0029268, and at

τ1 = a = 5000 will be
...

G ≈ −0.000016043. In both

cases the input conductance is small, imaginary:

Y (E) = −i
...

G/(k0d) = i0.00029288 in the first case and

Y (E) = i2.269 · 107 in the second case. These correspond

to practically unitary reflectance coefficients. Only when

the barrier is substantially exceeded does the reflectance

coefficient tend to zero. In particular, let E ≫ EF + W .

In this case of motion high above the barrier the value

of b ≈ −(k0d)2 is negative and large modulo, −b ≫ a ,
τ0 ≈ τ1 ≈ −b3/a2, all functions and their derivatives

from negative values are small and ψ(0,1)(τ0) ≈ ψ(0,1)(τ1),
ψ′

(0,1)(τ0) ≈ ψ′

(0,1)(τ1). We thus obtain

...

G =
ik0da

(

1 + ψ0(τ0)
)

+ 3b2ψ′

0(τ0)

a + aaψ1(τ1) − 3b3ψ′
1(τ1) + ik0db

(

1 + aψ1(τ1)
) .

At high −b we have
...

G ≈ −ψ′
0(τ0)/

(

bψ′
1(τ0)

)

≈ 0,

i. e. Y ≈ 1 and R ≈ 0, which corresponds to over-barrier

passage.

In the cylindrical function-based model for the particle at

the barrier apex at b = 0 and c = 0 we have the reflectance

coefficient

R =C1

[

ik0d
(

Ai(0) + Bi(0)G
)

−a1/3
(

Ai′(0) + Bi′(0)G
)

]

/2

= C1

[

ik0dAi(0)(1 +
√
3G) − a1/3Ai′(0)(1 −

√
3G)

]

/2,

C1 =
2

Ai(0) + Bi(0)G
=

2

Ai(0)(1 +
√
3)G

,

G =
a1/3Ai′(a1/3) − ik0dAi(a1/3)

ik0dBi(a1/3) − a1/3Bi′(a1/3)
.

For short lengths of d we have

G ≈ −Ai′(a1/3)/Bi′(a1/3) ≈ −1/
√
3

and therefore

R = −2
√
3(3a)1/3Ŵ(2/3)/[Ŵ(1/3)(1 +

√
3)] ≈ 0.

For long lengths of G ≈ 0, C1 = 2/Ai(0), conduc-

tance Y = i0.729a1/3/(k0d) — a value small modulo

and R ≈ 1−1.458ia1/3/(k0d) ≈ 1.

The barrier profiles shown in Figure 1 are obtained

by formula [1,2]

Y (x) = EF + W̃

[

1− δd
(

x + δ(1− x/d)
)

(d − x + xδ/d)

]

− eUa
x
d
. (19)

It naturally differs from the linear approximation used

above and gives the real image-based barrier profile in the

diode, taking into account the WF of the cathode material

Wd = e2/(16πε0δ). In it the value W̃ = Wc(1−α/d)/ε
determines the barrier height taking into account the

influence of the anode and dielectric, α = δ
(

1 + 2 ln(2)
)

.

The real barrier height W = V (xmax)−EF above the Fermi

level (Figure 1) is somewhat smaller. It is determined by

the right-hand term and can be calculated from equation

V ′(xmax) = 0. The curves in Figure 1 correspond to

relatively low voltages in a vacuum diode with copper

electrodes and are shown for clarity. Closer to the triangular

profile is the curve 4 (or a) for the anode voltage Ua = 7V.

The linear approximation corresponds to the line c. A more

accurate approximation is given by the broken line b. To

plot it, we need to determine the energy Et p, where the

maximum of the second derivative of −V ′′(x t p) occurs.

This is PP. In our case, Et p ≈ 4 eV, x t p ≈ d . One can

approximate the barrier using three broken lines, but two

is enough. As Ua increases, the point x t p approaches d,
the maximum shifts to the cathode, and the c-type profile

describes the barrier more and more accurately. In Figure 4,

the D(E,Ua) transparencies for the curves in Figure 1 are
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Figure 4. The barrier transparency of the vacuum diode is

d = 2 nm at Ua , V: 1 — 1, 2 — 4, 3 — 7, 4 — 10, 5 — 15.

shown. They are then used to calculate the current density

(Figure 5), determined for the thermal field emission from

the cathode by the integral [1,2]

J(Ua , T ) =
emekBT
2π2~3

×
3EF
∫

0

D(E,Ua) ln

(

1 + exp

(

EF − E
kBT

))

dE. (20)

In Figure 6, transparency (in the formulas ∗) based on

formulas (6) and (15) for the triangular barrier heights

EF + W = 8 eV and EF = 7 eV at d = 2 nm, d = 1 nm

and d = 0.5 nm are shown. They are compared with

the numerical solution of the SE by the wave impedance

transformation method using 300 steps. The results are seen

to be almost the same. Results based on formula (6) are

obtained using 20 members in series and two iterations.

From computational point of view, the results based on

formula (15) are preferable to those based on formulas (3)
and (6). They require substantially less computational cost

than the numerical solution of SE.

The results in Figure 5 are given for different cathode

and anode temperatures. The formula (20) corresponds to

a degenerate electron gas in the metal, with the electrons

distributed according to the Fermi−Dirac (at T = 0 the

upper limit is EF). In (20), instead of the infinite limit,

the upper limit 3EF is taken. This is more than sufficient to

account for thermionic emission at the cathode temperature

T < 2000K. The upper limit of 2EF is quite sufficient, since

at kBT ∼ 0.2 eV the logarithm can be replaced by a small

exponent, and at D(E,Ua) ≈ 1 for the remainder of the

integral at EF = 7 eV we obtain a value of 1.26 · 10−16. The

density (20) is positive and determines the anodic current,

although negatively charged electrons from the cathode

tunnel (e > 0). At T > 0 electrons with positive energy at

the anode can also tunnel to the cathode, and the tunneling
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Figure 5. VAC of a vacuum diode (Am−2/V) d = 2 nm long

(curves 1−5) and the same CVD diamond-filled diode (7−9)
at different temperatures, K: Tc = Ta = 300 (1, 2, 6), 800 (3, 7),
Tc = 1500, Ta = 300 (4), Tc = Ta = 1200 (5, 8, 9). The

dashed curves 2 and 9 show the inverse current densities for

curves 1 and 8, respectively. EFc = EFa = 7, Wc = Wa = 4.36 eV.
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Figure 6. Transparency D based on the numerical solution

of the SE for d = 2 nm (curve 1), 1 nm (2), and 0.5 nm (3),
and also results based on formula (15) (∗∗∗) for the first two

cases and formula (6) (∗∗∗) for the third case. (A color version of

the figure is provided in the online version of the paper).
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coefficient D(E,Ua) is the same (consider Te = Ta = T ).
However, the number of such electrons is proportional

to kBT ln
(

1 + exp ((EF−eUa−E)/(kBT ))
)

, i. e. substantially

less than at the cathode in formula (20). At low temperature

this number is proportional to EF − eUa − E , whereas at the

cathode it is proportional to EF − E . The electron density

near the bottom of the conduction band is maximum, and

the value of EF − eUa − E determines higher energy levels

relative to the conduction band bottom of the anode than

EF − E relative to the analogous bottom of the cathode. At

eUa = EF and Ta = 0 there are no electrons with positive

energies at the anode to tunnel to the cathode (all filled
levels are negative), and there is no reverse current. At low

anode voltages or with highly heated electrodes in the diode,

the total current should be considered as the difference

of the two electron fluxes from the cathode and from

the anode.

5. Conclusion

The following results were obtained over the course

of this study: In diode structure with sharpened apex

quantum potential (for a narrow barrier), the modulus of the

reflectance coefficient for energy at the apex level is small,

of the order of k0d, and as d decreases, it tends to zero. At

very high anode voltages, the barrier virtually disappears,

becoming a linear bevel into the quantum well. For a very

wide barrier and low anodic voltage, the modulus |R| is

close to unity and only at some excess of the barrier does

it begin to tend to zero. In diode structures at small anode

voltages, tunneling in both directions must be taken into

account. High-current diode nanostructures should be made

using good dielectrics with high thermal conductivity such

as diamond and BeO. This leads to a great decrease in

barrier, operating voltages, and an increase in current.

In conclusion, let us note the following. In the paper,

exactly solvable models for the triangular barrier have been

obtained. They are applicable to diode and to triode

(transistor) structures if the barriers are close to triangular

in shape, which is often the case with narrow barriers

and substantial voltages. Exactly solved models have an

advantage over approximate models in the validity of the

results. In particular, the triangular barrier model is more

preferable than the rectangular one and even more so than

the δ-shaped. The advantage of the derived model over

numerical solutions of the SE is that it is faster, which

is essential in unsteady device models when subjected

to alternating stress with a large number of changes in

barrier heights [8]. For complex multi-pit and multi-

barrier structures, the resulting models allow us to plot

a dimensionless transfer (transfer) matrix of the entire

structure and thus increase the simulation speed. The matrix

relates the WFN and its derivative on both sides of the

structure. If there are several such areas, the full matrix

is defined as a product of the matrices. Compared to

a piecewise constant potential approximation, where it is

necessary to use on the order of several hundred products

of such matrices [1], this leads to a substantial gain and

a reduction in numerical error. The applied method of

integrating the SE can be used for parabolic approximation

of the potential, including parabolas of order 4, which

describe the form (19) more exactly. It should be noted

that the functions (7)−(10) appear to be more convenient

than the Airy functions.
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Phys. Rev. B, 69, 205305 (2004).
DOI: 10.1103/PhysRevB.69.205305

[12] E.-S. Malureanu. U.P.B. Sci. Bull., Ser. A, 76 (2), 251 (2014).
[13] R.G. Forbes, J. Deane. Proc. Royal Soc. A, 467 (2134), 2927

(2011). DOI: 10.1098/rspa.2011.0025
[14] E. Kamke. Spravochnik po obyknovennym differentsial’nym

uravneniyam (M., Izdatelstvo inostr.lit., 1950). (in Russian).
[15] L.D. Landau, E.M. Lifshitz. Kvantovaya mechanika. Nerely-

ativistskaya teoriya (GIFML, M., 1963). (in Russian).
[16] M.V. Davidovich, A.K. Kobets, K.A. Sayapin. Fizika vol-

novykh protsessov i radiotekhnicheskiye sistemy, 24 (3), 18
(2021). (in Russian).
DOI: 10.18469/1810-3189.2021.24.3.18-27

Translated by J.Savelyeva

Semiconductors, 2024, Vol. 58, No. 12


