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Harmonic Analysis of the Librational Model of the Lunar Liquid Core
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A method for constructing a theory of rotation of the Moon, which has a liquid core, is presented. The solution to

the problem is carried out within the framework of the Poincare method, which allows one to consider the rotational

motion of a body with a cavity filled with a homogeneous incompressible liquid located in the gravitational field.

A mathematical apparatus for solving a similar problem for the simplified model of a two-layer Moon is given.
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The task of correction for the Moon’s core effect on its

rotation became relevant after some discoveries had been

made in 70−80 years of the last century using magne-

tometric, seismological, and laser measurements with the

help of the ground-based and Moon-based equipment [1].
Studies have been conducted that incontrovertibly evidenced

of the complex stratigraphy of the Moon body and possible

existence of a fluid core inside the Moon. At the same

time, the absence of a strong magnetic field near the

Moon indicated that if there was a core, it was small in

size and/or rotating slowly [2]. A great contribution to

determining the parameters of a possible Moon’s core was

made by NASA scientists supervised by James Williams [3],
when the lunar core of a certain chemical composition

was incorporated in the physical libration theory. By

computer simulation of libration theory parameters and

verification of the results obtained using sufficiently long

series of laser observations, it was concluded that the size

of the core was estimated within 300−600 km, depending

on the chemical composition: a pure iron core or the

core with an eutectic composition Fe−FeS. This data was

important, yet, it was only an indirect evidence of the

Moon’s core existence. However, in 2011 by applying the

new methods of Apollo seismograms (Weber et al. [4]) it

was concluded that the Moon, similar to the Earth, has

a hot metallic core. Its diameter makes approximately

330−360 km, and it is surrounded by a partially molten

shell about 480 km in diameter, with a solid iron core

about 240 km in diameter inside. Thus, for the first time,

direct evidence was obtained about the Moon’s core and

its two-layered structure. According to estimates [5] the

weight of the Moon’s core amounts to 1.63−2.06% of the

total Moon weight, and its radius — about 20% of the

Moon radius. According to the re-processed seismologic

data [5], the core is featuring a thin solid shell and a fluid

component with a moment of inertia about 70% of the total

Moon’s core moment of inertia [6]. In this paper, a system of

equations is obtained for the particle motion velocity rotor

in the reference coordinate system associated with the fluid

itself, and the additional velocity due to the rotation of the

entire celestial body. This system of equations was solved by

numerical computation. The initial values were calculated

based on a theory of physical libration for the solid Moon. A

spectrum of residual differences was obtained for the three

libration components and an attempt was made to analyze

the frequency spectrum in order to identify the frequencies

at which the fluid core is observed.

It’s quite difficult to build a physical libration theory for

the three-layer core model, let alone such structure demon-

strates very weak observable manifestations. Therefore, the

theoretical description of the Moon’s rotation with the core

was implemented in various theories on simplified core

models, and then the contribution of the core to libra-

tion was estimated using computer modeling methods by

comparing it either directly with laser observations or with

high-precision theories of the Moon physical libration, such

as DE or ELP. When constructing our theory of physical

libration, we carried out a comparison with Rumbaugh and

Williams semi-empirical series [7].

In this context, a significant contribution into the

study of the two-layered Moon rotation was made by

Barkin et all. [8]. Here, for the first time, an analytical

libration theory was designed for a two-layered Moon

structure: in this theory a core model was used with

such parameters as — size, weight, moments of inertia —
estimated based on processing of seismological and laser

data in papers [4,7,9], as well as based on the gravimetric

data from Selene mission. According to the analytical data

from theory [8], the hydrodynamic influence of the fluid

core on the Moon’s physical libration was such that the

resulting solution revealed new harmonics, the frequencies

of which coincided with frequencies of the semi-empirical

series [7], the physical nature of which couldn’t be explained

by Rumbaugh and Williams. This is a crucial point: the
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fact that the frequencies obtained from the theory coincide

with the observational data opens up new possibilities for

determining the parameters of the core.

In our study, we partially follow the ideas from [8],
where Poincare method was used in the analysis, but we

have our own approach to describe the Moon’s rotation

parameters and, accordingly, a different way to make the

libration equations. Poincare method makes it possible to

consider in interaction the rotational motion of a body with

a cavity filled with a homogeneous incompressible fluid that

is in the gravitational field [10].

To build a theory of rotation of a two-layered celestial

body, we consider its simplified model: the dynamic shapes

of both the outer solid shell, and inner fluid cavities have

the shape of a circular ellipsoid, i.e., due to rotation,

compression occurs only along the polar axis, and a circle

is located in the equator of such a body. For this model

the equator moments of inertia A=B and A1 =B1 will

be equal. We took the core parameters from paper [8]
to compare our solution with the results of analytical

theory. The second simplification is the assumption that

at the initial moment of time, the moments of inertia

of the solid Moon and the fluid cavity are co-directional

(Fig. 1). This assumption has a right to exist, since the

viscosity of the outer Moon’s core is still quite high —

(2.07 ± 1.03) · 1017 Pa · s [10], which indicates that the core

material is not very fluid, the core will be less mobile

inside the solid shell and the discrepancy of trihedra of

the solid shell core’s axes of inertia will be insufficient.

In other words, we assume that the angular velocity of

the ellipsoidal core coincides with the angular velocity of

rotation of the entire body. This assumption allows us to

calculate the initial values of the components of the core

Z(C)

Y(B)

X(A)

x

y

z(C )1

w

Figure 1. A two-layer model of a celestial body, with circular

planes of the equators. The moving coordinate system (x, yz )
coincides with the major moments of inertia of the fluid cavity.

Stationary (X ,Y, Z) — DCS of the Moon.

rotation velocity based on the solid Moon theory that we

have already designed [6].
Henri Poincare was a man who largely contributed to

the development of mathematical physics and mechanics,

especially to the study of fluid dynamics and chaos theory.

One of the aspects of his work was the study of the velocity

vector field of fluid components in a moving coordinate

system. It is defined as a description of the velocity of fluid

particles at each moment of time at a given point in space

in a moving coordinate system. For a rotating fluid cavity,

a moving coordinate system (x , y, z ) is usually assumed to

be a system that can rotate with the object. In our case it is

the tetrahedron of the inertia major axes corresponding to

the moment of inertia (A1,B1,C1). This system is called a

dynamic coordinate system (DCS) of the core.

The equations describing the vector field of fluid rotation

velocities inside an ellipsoidal cavity are expressed as

ϑx

a
= qy

z
c
− qz

y
a
,

ϑy

a
= qz

x
a
− qx

z
c
,

ϑz

c
= qx

y
a
− qy

x
a
.

Here, ϑx , ϑy , ϑz — components of the fluid velocities in

a moving coordinate system; a, b = a, c — dimensions of

(half-axis) of ellipsoid plane; qx , qy , qz — time functions

representing the angular velocity components q of the fluid

rotation.

The origin of the moving coordinate system (x , y, z ) is

associated with the Moon center of gravity. Its motion is

studied in a stationary coordinate system, as which it is

convenient for us to take the system of the main moments

of inertia of the Moon’s mantle — A,B, C — mantle DCS.

Let’s denote the rotor of the particle’s translational

velocity vector V in a stationary coordinate system of a

fluid as ξ = rot(V), then, if we go to a rotating coordinate

system well get that this vector ξ may be represented as the

following sum ξ = ξ (1) + 2w, where w — angular rotation

velocity of a celestial body, and ξ (1) — some vector function

of dimensions a, b = a, c and velocity q. In our model,

we assume that the angular velocity of the ellipsoidal core

coincides with the angular velocity w of rotation of the entire

body.

The physical meaning of component ξ (1) is that it

represents the rotor of the particle velocity vector in a

coordinate system associated with the fluid itself. This is

a kind of local contribution to the overall rotational motion

associated with the characteristics of the fluid itself (for
example, with the structure and movement inside the fluid).
Since the angular velocity w doesn’t depend on the internal

dynamics of the fluid itself, it is added as a clear
”
rotational

twist“ to the overall rotor. The term
”
rotational twist“ here

implies an effect which occurs when the angular velocity of

the fluid is added to the rotor irrespective of the dynamics of

the fluid itself. This means that the angular velocity is itself
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Figure 2. Diagrams of residual differences in libration angles over longitude µ (a) and over latitude ν (b) for the two-layered and

solid-state models compared.

an
”
added“ motion that overlaps with the existing rotation.

Thus, ξ (1) takes into account all internal motions inside the

fluid that are not directly related to the rotation of the entire

body as a whole.

Therefore, when switching to a rotating coordinate

system, the velocity rotor V is divided into two components:

1) ξ (1) — local contribution depending on the character-

istic of the fluid itself and on its motion;

2) 2w — contribution related to the angular velocity of

the entire system.

Let’s write down Newton’s equations for the fluid motion

ρ

(

dV
dt

+ (V, ∇)V

)

= −∇p

in the stationary coordinate system, where p — fluid

pressure from the external force acting on the fluid. Having

first taken the rotor from the entire equation, we obtain

the following components of the derivative of vector ξ (1),

describing the nature of the fluid elements motion:

ξ̇ (1)
x + 2ẇx − αξ (1)

y wz +
1− α

2
ξ (1)

y ξ (1)
z + wyξ

(1)
z = 0,

ξ̇ (1)
y + 2ẇy + αξ (1)

x wz −
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2
ξ (1)

x ξ (1)
z − wxξ

(1)
z = 0,

ξ̇ (1)
z + 2ẇz + (2− α)

[

ξ (1)
y wx − ξ (1)

x wy
]

= 0, (1)

where the following notation is introduced:

α =
2a2

a2 + c2
, qx =

ξ
(1)
x

c/a + a/c
=

c
a
α

2
ξ (1)

x ,
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c
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α

2
ξ (1)
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ξ

(1)
z

2
. (2)

For a complete solution, we need to add the rotation

equations. For this purpose, we use the Euler−Liouville

Ṁ + [wM] = L equations for a moving coordinate system,

where the angular momentum (in stationary CS), taking into
account the fluid, is expressed as follows:

M i =
∑

k

Ikiwk +
y

ρ[rϑ]dV. (3)

After switching to a rotating coordinate system and

simple transformations, we obtain

Aẇx+
1

2
ξ̇ (1)

x Ã+(C−A)wzwy+
1

2
ξ (1)

z wyC1−
1

2
ξ (1)

y wz Ã=Lx ,

Aẇy+
1

2
ξ̇ (1)

y Ã−(C−A)wzwx−
1

2
ξ (1)

z wxC1+
1

2
ξ (1)

x wz Ã=Ly ,

Cẇz +
1

2
ξ̇ (1)

z C1 +
1

2
Ã
(

ξ (1)
y wx − ξ (1)

x wy
)

= Lz , (4)

where Ã = C1(1−α) + αA1. The moment of forces L

determines the behavior of the system related to the

gravitational interaction between the studied body and

external disturbing bodies, primarily with the Earth and the

Sun. The projections of the moments of forces Lx , Ly , Lz —
are functions of time, and they depend on the potential

of the Moon’s gravitational field. The expression of this

potential is not given due to its bulkiness, it is presented

in paper [6]. The resulting systems (1) and (4) describe the

rotation of an ellipsoidal body filled with an incompressible

fluid.

Joint system solution (1) and (4) numerically allowed us

to find a solution for the components of the angular velocity

of the Moon’s rotation w, which in this solution already

carries the influence of a liquid cavity rotating inside a solid

shell. We calculated the initial values for the numerical

integration of these systems according to our theory [6],
which is quite reasonable under our accepted constraints on

the core model.

In libration theory, position of a rotating body in the

inertial coordinate system is described by the libration

angles [6]. To assess how the change in angular velocity

affected the vibrational angles and thereby to estimate the

contribution of the liquid core to the rotation of the Moon,

we use the system of Euler kinematic equations obtained

in [6]:
wx = −Ṁ sin ν − π̇,

wy = −Ṁ cos ν sinπ + ν̇ cosπ,

wz = Ṁ cos ν cosπ + ν̇ sinπ. (5)
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Figure 3. Spectrum of residual differences in the libration angle µ. The Y-axis is set in arc seconds, and the X-axis is set in years.

In system (5) the variables (µ = M−l̄$, ν, π) — are the

libration angles, delineating the Moon DCS position relative

to the ecliptic and average direction towards the Earth l̄(.
The system of differential equations (5) was solved by the

numerical Runge−Kutta method of the 4th order. The initial

values for angles and their derivatives were also taken from

the theory [6].
After solving the systems of equations (1), (4) and (5)

we obtained the numerical values of libration angles

(µc , νc , πc), that already include the effect of a liquid core.

Fig. 2 illustrates the residual differences when comparing

(µc , νc) with the angles obtained for a solid-state Moon [6]
for a period of 15 years. For the angle πc the pattern is

similar to the angle νc , we therefore didn’t attach the third

curve to it.

The first thing to pay attention to — the magnitude of

the residual differences for all angles is small and doesn’t

exceed 5ms, which is almost a limited accuracy for the in-

tegration method used. Second, we performed a frequency

analysis for the obtained residual difference spectra in order

to identify the frequencies at which the influence of the

liquid core is most pronounced. We expected them to

coincide with the frequencies obtained in paper [8] or with

the frequencies of Un members in series [7]. Fig. 3 gives

the results of the frequency analysis for the libration over

longitude. Unfortunately, the spectrum of the identified

frequencies is consistent with neither the data from [7],
nor the data from [8]. The selected periods (5.87 years, 0.47

years, and etc.) are not observed in the librational series of

the Moon, and do not seem to have a physical meaning.

The situation is the same for the latitude components.

Nevertheless, we believe that the work done has not been

done in vain. This is only our first attempt to consider

the rotation of a two-layered Moon, and the technique we

have described here is quite realistic: we have obtained

a solution that, as expected, is not significantly different

from the solution of [6]. Our task now is to continue

development of the presented approach to account for the

influence of the core on the Moon rotation. To do this, we

plan to complicate our initial model, bringing it closer to a

more realistic picture of rotation of a two-layered Moon, and

carefully check the recording of all systems of equations at

both mathematical and software levels. The theory obtained

will make it possible to refine the core parameters by

computer modeling based on the theory being developed.
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