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Theory of the structure of icosahedral quasicrystals: general principles

© A.E. Madison,1 P.A. Madison 1,2

1 HSE University,

190121 St. Petersburg, Russia
2 St. Petersburg State Electrotechnical University

”
LETI“,

197022 St. Petersburg, Russia

e-mail: alex madison@mail.ru

Received June 28, 2024

Revised October 30, 2024

Accepted October 30, 2024

A unified theory of the structure of icosahedral quasicrystals is proposed, within the framework of which it is

possible to describe all three types of quasilattices (P, I , F) and both icosahedral symmetry groups. The theory

is based on the combined use of three types of tilings, each of which is characterized by its own basis set of unit

cells and its own substitution rules. By analogy with ordinary crystals, the problem of describing the structure of a

quasicrystal splits into two stages: filling space with cells and filling cells with atoms, with the only difference that
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iterative algorithm of inflation and deflation is used.
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Introduction

This article starts a series of papers on the theory

of icosahedral quasicrystals. In this paper, we consider

possible structure types of icosahedral quasicrystals, a

unified approach to the construction of icosahedral packings,

as well as properties common to all structure types. In

subsequent papers, we intend to separately consider in detail

the features of constructing quasilattices of various types and

the enantiomorphism phenomenon in them.

Icosahedral quasicrystals were discovered by D. Shecht-

man [1], for which he was awarded the Nobel prize.

The editors of Nature journal ranked this discovery as

one of the key milestones in the development of modern

crystallography [2], emphasizing also the contribution of

A. Mackay, who predicted the existence of quasicrystals

based on simulation of the diffraction pattern of the Penrose

tiling [3], and P. Steinhardt, who gave the first theoretical

explanation of the quasicrystalline long-range order [4,5].
Structure analysis of quasicrystals is still an unresolved

problem [6]. It is known that icosahedral quasicrystals can

be of three types: P, I , F [7,8]. They are the analogues of

the primitive, body-centered and face-centered cubic lattices

and should be obtained by projecting appropriately centered

six-dimensional cubic lattices from 6D-space. However, no

any clear illustrations of the corresponding 3D-quasilattices

have been provided so far. Generally speaking, projection

from the higher-dimensional metric spaces (not necessarily
Euclidean) opens the way to the design of potentially

possible hierarchical structures of the most general type,

while the true chemical or physical nature of the subunits

being packed should be considered as a secondary factor [9].
Historically, the first way to describe the structure of

quasicrystals was based on the tiling theory. Socolar and

Steinhardt showed that the entire space can be filled in

a natural way with four types of zonohedra according to

the face-to-face principle without gaps and overlaps [5].
Surprisingly, zonohedral tiling has almost never been used

in practice when solving real structures. Later, Danzer

introduced the space tiling into four types of tetrahedra,

which also has global icosahedral symmetry [10], and then

published a paper stating the complete equivalence of both

tetrahedral and zonohedral tilings [11]. In fact, it was only

about their mutual local derivability, i.e. that the tiles of

one of them can be dissected into smaller pieces, which

can then be regrouped into tiles of the second tiling [12].
Below we show that Socolar−Steinhard tiling and Danzer

tiling are characterized by different inflation factors, contain

different number of nodes, and generate quasilattices of

different types (P and F , respectively). An interesting

fact: in Danzer’s fundamental study [10], namely in section

”
Open problems“ yet another tetrahedral tiling is casually

mentioned, which has since virtually gone unnoticed in the

scientific literature. We examined it [13] and came to the

conclusion that it is the missing third tiling, which generates

a quasilattice of I -type.
The tiling into prolate and oblate rhombohedra,

also called 3D-Penrose tiling or Amman−Kramer−Neri

tiling [14], is often used in practice as a model for structure

refinement of multicomponent alloys [15,16]. The main

problem in this case is the ambiguity of the projection

procedure from 6D-space, since certain regions of space can

be filled with two types of rhombohedra in several equiva-

lent ways at once. The exact icosahedral symmetry of the

structure is violated and preserved only in the average. Such

defects are called phason flips [17]. On the other hand, for

both, zonohedral and both tetrahedral tilings, the projection

procedure from 6D-space is quite straightforward, and no

1967



1968 A.E. Madison, P.A. Madison

phason flips occur. Then, a question arises: are phasons

inherent in the true structure of a quasicrystal, or are they a

consequence of an improper model?

There is an opinion that quasicrystals cannot be repre-

sented as packings of identical unit cells at all, so the most

stable, energetically favorable atomic configuration corre-

sponds to an aperiodic arrangement of mutually overlapping

clusters [18]. One or more characteristic clusters can be

used, the structure of which is determined as a result of

diffraction experiments either on the basis of projection

of 6D-lattices, or using the analogy with the structure of

crystalline approximants [19–22].
The main method of structure analysis of quasicrystals

today is the method of projection from 6D-space (strip
projection); in its modern form, it is outlined in detail

in [23,24]. The method comprises two steps: first, based

on the experimental data, a 6D-model of icosahedral

quasicrystal is created as a distribution of six-dimensional

hyper-atoms in a six-dimensional hypercube (unit cell of

the periodic 6D-lattice), and then a certain slice of it is

projected into a physical 3D-space (cut-and-project). The

resulting projection is analyzed within the framework of a

pre-selected structure model, the parameters of which are

refined by fitting the computed intensities to experimental

data. It should be emphasized that different authors choose

specific structure models based on their own personal

intuitive preferences. The following types of models are

known: model based on two types of rhombohedra [15,16],
model based on an incomplete set of zonohedra [25], model

of mutually overlapping triacontahedra [26,27], model of

canonical cells [28] and several others based on incomplete

and mixed sets.

Projection is considered to be the best alternative to

tiling [29]. In particular, Senechal is of the opinion that

”
mathematicians explored tiling models, but they turned out

to be unrealistic. Further, she notes, In the second stage

of the quasicrystal revolution, tilings are receding to the

background and clusters moving to the foreground. We

will still need polyhedra: not to tile space, but to hang the

clusters on“ [30].
What problems may arise in the projection method? First,

to build a 6D-model, we need Fourier coefficients. This

implies that the material under study has already been

synthesized. On the other hand, the major, central direction

of modern materials science is the creation of new materials

that have no analogues in nature. In particular, the photonic

and phononic crystals, as well as metamaterials have

attracted a growing interest recently [31]. The projection

method is hardly applicable for design of potential structures

of photonic quasicrystals [32] or quasicrystals from non-

atomic subunits [33].
To understand the next problem, consider the simplest

case — obtaining a one-dimensional LS Fibonacci sequence

by projecting a square lattice tilted at an irrational angle

onto a straight line [34]. All edges of the square that

served as a unit cell in 2D-space were equivalent, but after

projection, one of them produces a long segment (L) while

the other one produces a short segment (S), and the rest

two edges should be discarded. The edges are inclined

with respect to the projection line at different angles and

undergo distortions with different aspect ratios. If we

swap the counted and discarded pair, we get a phason

flip. Another important issue: the result of projecting two

adjacent squares is different!

In the case of 6D → 3D projection a similar situation

takes place. For example, in the root lattice D6 all nodes

are equivalent, whereas in Danzer tiling generated by it there

are 3 types of non-equivalent nodes with local icosahedral

symmetry [10]. Another example is the generation of

Socolar−Steinhardt tiling from a simple cubic 6D-lattice.

When an elementary hypercube is located at the origin, its

projection is a rhombic triacontahedron. In the region next

to it, a 3-fold cluster is obtained formed by three rhombic

dodecahedra and four rhombohedra. When neighboring

identical unit cells get projected, the projection results

can differ drastically from each other depending on their

position with respect to the projection window. If this

is ignored, the structure model is likely to be reduced to

the overlapping triacontahedra with statistically disordered

tetrahedra inside, and the exact icosahedral symmetry will

be lost.

The central problem of X-ray diffraction analysis is

the phase problem. How can it be solved for non-

centrosymmetric structures in a six-dimensional space?

Indeed, the transition from Patterson function to the atomic

distribution is based on stereochemical criteria, and different

degree of distortion when projecting equivalent directions

makes their applicability questionable. The typical problems

that can arise when solving the structures of classical

crystals and the characteristic
”
symptoms“ of frequently

made mistakes are discussed in the review paper [35],
namely: incorrectly selected symmetry groups, incorrect

identification of atoms in certain positions, incorrect de-

termination of Bravais lattice, errors in determining local

symmetry of the lattice sites etc. At the same time, the

wrongly assigned structures are generally noticed to have

very good values of R-factor. The task of determining the

true structure of quasicrystals is no less problematic.

Analyzing various versions of the higher-dimensional

approach, we came to a conclusion that implementation of

this approach does not exclude the risk of forced fitting of

the experimental data to an incorrect structure model. In

our opinion, the refusal from the use of icosahedral Socolar

−Steinhardt tiling and Danzer tiling is unjustified and was

caused by insufficient study of theoretical aspects of the

problem. Recently, we derived the substitution rules for the

zonohedral Socolar−Steinhardt tiling and an algorithm of

its construction was developed on their basis [36–38]. A

similar approach was applied to Danzer tiling and to the

third, previously missing tiling [13], which, within the unit

cells concept [39], allowed us to describe the structures of

icosahedral quasicrystals of all three types P, I , F and of

both symmetry groups (I , I h). The basic principles of our

proposed unified theory are outlined below.
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1. General principles

If we change the order of operations — first, we project

the
”
empty“ lattice, and only then fill the cells of the

resulting tiling with specific atoms — then a complete

analogy arises with ordinary periodic crystals, with the

only difference being that instead of one unit cell, cells of

several types are used [39]. Three types of quasilattices

become analogues of Bravais lattices (P, I , F). To fill

the space with cells, an iterative inflation and deflation

algorithm is used instead of translations, while copies of

cells may have different orientations. The equivalence of the

opposite faces of a parallelepiped unit cell gives place to the

local matching rules. Similar to the way how the general

and special Wyckoff positions are considered in the unit

cell of a periodic crystal, it is also possible to systematize

the atomic positions with a certain local symmetry and

multiplicity in the unit cells of quasicrystalline packings, but

due to the requirements of local matching, some positions

may simultaneously be present in cells of several types

at a time. The common approach is applicable to both

icosahedral groups (I , I h). The internal symmetry of the

atomic distribution inside an individual cell is determined

by the stabilizer subgroup, and its possible orientations in

space are determined by the corresponding orbit according

to Burnside lemma (also known as the Cauchy−Frobenius

lemma). Taking into account the local matching rules leads

to the symmetry increasing for some positions on the faces

of the zonohedra compared to the symmetry of the stabilizer

subgroup, and in case of a non-centrosymmetric group,

even their multiplicities may increase. With the software

implementation of the algorithm for constructing icosahedral

packings, any fragment of it and the packing itself as a whole

are given by lists of cells, for each of which its type, position,

and orientation are specified (substitution rules and starting

configurations are also given by lists of cells). Despite the

mentioned differences, the essence remains unchanged —
quasicrystal is a packing of cells.

Our approach is based on the simultaneous use of three

tilings. The first of them is Socolar−Steinhardt tiling [5].
The basis set of unit cells for it consists of 4 types of

”
golden“ zonohedra: prolate rhombohedron (GR), Bilinski
rhombic dodecahedron (RD), Fedorov rhombic icosahe-

dron (RI), Kepler rhombic triacontahedron (RT). For the

other two, Danzer tetrahedra are used as unit cells: A, B,

C, K [10]. The building algorithm for Danzer ABCK-tiling
is described in detail in paper [40].
It should be noted that a six-dimensional cubic lattice

Z6 (with minimal norm 1) was used to derive zonohedral

tiling [5], while an integer root lattice D6 (the so-called

”
chessboard“ lattice) with enlarged basis vectors was used

to derive tetrahedral ABCK-tiling [10]. It is necessary to

bring all the lattices to a single scale. Instead of tetrahedra A,
B, C, K we use their reduced in τ times copies, where τ

is the golden ratio. For the reduced tetrahedra we use

designations a, b, c, k [13]. An increase in scale by

a factor of τ corresponds to a single inflation, which is

accompanied by a cyclic change of node types at the

vertices of the tetrahedra C → B → A → C. Danzer used

Roman numerals [11] to denote the nodes, and we used

alphabetic symbols [36–39]. To avoid confusion, we use

italic font to denote the tetrahedra (A, B, C, K) and normal

font to denote the nodes (A, B, C, F). By decreasing the

scale, we not only formally reduce the linear dimensions

of the tetrahedra, we also have to cyclically (in reverse

order) change the types of vertices. Once again, we note

that Danzer pointed out the existence of two basis sets

of tetrahedra: {A, B, C, K} and {A, C, K, τ K}, but he

didn’t pay much attention to the second version [10]. After
downscaling we obtain abck- and ackK-tilings; they both

have a fundamental importance [13].

2. Three types of quasilattices: P, I , F

The quasilattices in the theory of quasicrystals play

the role of Bravais lattices. Three types of icosahedral

quasicrystals are illustrated in Fig. 1. Three types of cubic

lattices are shown on the left: primitive or simple cubic (sc),
body-centered (bcc) and face-centered (fcc), and on the

right are their six-dimensional analogues (P, I , F).
The three types of quasicrystals correspond to three

different schemes for centering polytopes in 6D-space,

which are subjected to projection to produce three types

of tilings, each with its own basis set of unit cells and

its own substitution rules. Primitive 6D-lattice generates

zonohedral Socolar−Steinhardt tiling, centering of I -type
results in tetrahedral ackK-tiling, centering of F-type results
in Danzer abck-tiling. Centering polytopes does not affect

the vertices of the elementary hypercube of the initially

selected primitive lattice, it only leads to the addition of

new nodes inside. Therefore, the quasilattices of I and

F -types should contain all the nodes of the quasilattice

of P-type as a subset. By grouping and combining the

corresponding tetrahedra, we shall obtain the zonohedra

again. In other words, all three types of tilings are consistent

with each other, the types of nodes and substitution rules

are consistent too.

In a three-dimensional space, a simple cubic lattice (sc)
is generated by the vector [1 0 0] and the vectors equivalent

to it. Similarly, the simple cubic 6D-lattice (the integer

lattice Z6) is generated by the unit basis vector [1 0 0 0 0 0]
and the vectors equivalent to it by cyclic permutations of

coordinates. Their projection yields six vectors directed

along 5-fold axes (towards the vertices of the icosahedron).
If the center of the projection window is combined with the

center of the 6D-hypercube, then the projection result will

be a triacontahedron with two types of vertices (A and B).
All its edges represent the projections of [1 0 0 0 0 0] and

equivalent vectors. If the center of the projection window is

combined with one of the vertices of the 6D-hypercube,

then the projection will form a star of rhombohedra

(hexecontahedron); 12 edges coming out of the center of the

star represent the projections of [±1 0 0 0 0 0] and equivalent

vectors.

A rhombohedron is a distorted projection of a 3D-cube,

a rhombic dodecahedron is a projection of a 4D-hypercube

14 Technical Physics, 2024, Vol. 69, No. 12
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GR RD RI RT

P

I

F

A B C
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bcc

fcc

Figure 1. Three types of icosahedral quasilattices (P, I , F) considered as packings of zonohedra. Top — zonohedra GR, RD, RI, RT;
thee types of non-equivalent nodes (A, B, C) are highlighted in color (white, black and red, respectively); specific edges of zonohedra

are also highlighted in color (see explanation in the text); on the left — unit cells of simple (sc), body-centered (bcc) and face-centered

(fcc) cubic lattices; on the right — zonohedra of quasilattices P (vertices of zonohedra are represented by nodes A and B, there are no

additional nodes inside zonohedra), I (a new additional node C appears inside each zonohedron) and F (the clusters consisting of nodes C

in the form of icosidodecahedron or its fragments appear inside the zonohedra).

(tesseract), a rhombic icosahedron is a projection of a

5D-hypercube, and finally a triacontahedron is a projection

of 6D-hypercube. The cube has 23 = 8 vertices, and all

of them are mapped to the corresponding vertices of the

rhombohedron. Tesseract has 24 = 16 vertices, but only 14

of them are mapped to the corresponding vertices of Bilinski

dodecahedron. Projections of the two remaining vertices fall

inside the rhombic dodecahedron and, moreover, coincide

with each other. If we take them into account, we

get a subtiling of the rhombic dodecahedron into prolate

and oblate rhombohedra (as in Ammann−Kramer−Neri

tiling), which inevitably leads to ambiguity of projection and

occurrence of phason flips. When projecting 5D-hypercube,

only 22 of its 32 vertices are mapped to the vertices of the

rhombic icosahedron, and when projecting 6D-hypercube,

only 32 of its 64 vertices are mapped to the vertices of

the triacontahedron. If we do not remove
”
extra“ sites, the

icosahedral symmetry will inevitably be broken. Therefore,

the following rule is applied — only the convex hull of

the projected polytope and all its substructures should be

Technical Physics, 2024, Vol. 69, No. 12
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taken as the base polyhedron of the tiling. As a result we

obtain zonohedral tiling.

In quasilattice of P-type there are only 2 types of nodes

(A and B). All edges have the same length, but despite this,

there are 2 types of edges. The edges of different types

should not adjoin in the final global packing. Specific edges

of the second type [36] are highlighted by color in Fig. 1.

The edges are always parallel to 5-fold axes and connect

nodes of alternating types. Generally speaking, there are

no C-type nodes in this quasilattice. Strictly speaking, C-

type positions are not the nodes of a quasilattice but

special points. We added them to Socolar−Steinhardt tiling,

which greatly simplified the procedure for its construction

and made it possible to correctly take into account all

three types of characteristic icosahedral clusters [36,37].
The points C located inside different zonohedra in P-type
quasicrystals are not equivalent to each other. The first two

characteristic clusters occur at A and B sites. The points C

inside the triacontahedra have icosahedral symmetry and

are the centers of characteristic clusters of the third type.

The points C inside other zonohedra do not differ in any

way from the neighboring points on the corresponding

symmetry axes. Later, we will continue to refer to C-

type points as nodes if we are talking about general

properties of different types of quasilattices, and will

delineate them as special positions only in relation to a

primitive quasilattice and only if necessary to emphasize

the differences in strict interpretation of these concepts in

terms of crystallography.

In a three-dimensional space, a body-centered cubic

lattice (bcc) can be obtained as a union of a simple

cubic lattice with its copy shifted by the vector
[

1
2

1
2

1
2

]

.

Similarly, in a six-dimensional space the centering of I -type
can be obtained as a union of a simple cubic 6D-lattice

with its copy shifted by the vector
[

1
2

1
2

1
2

1
2

1
2

1
2

]

. Only

one sublattice is added. After projection onto 3D-space,

the centers of the triacontahedra and equivalent C sites

appear in addition to A and B — one node C inside each

zonohedron. It is obviously that if 6D-hypercube is mapped

to the triacontahedron, then the center of the hypercube gets

projected onto the center of the triacontahedron. If one or

another 6D-hypercube is located not exactly in the middle

of the projection window and partially extends beyond its

frame, then not the entire polytope should be projected, but

only its lower-dimensional part entirely falling within the

window. As a result, we get smaller zonohedra differently

oriented in space, each of which with an asymmetrically

located single C site inside.

If we add F points at the centers of the faces of a

triacontahedron and equivalent positions (strictly speaking,

they are not the nodes themselves), and then connect A,

B, C nodes and F points accordingly, we’ll get a tetrahedral

ackK-tiling [13]. Rhombic faces will be dissected into parts

depending on their type (Fig. 2). Rhombuses of the first

type will be divided into four parts, and F-type points will

appear at the intersection of the diagonals. Rhombuses of

the second and third types will be divided in halves by long

and short diagonals, respectively.

Tetrahedral ackK-tiling is a subtiling of the zonohedral

tiling. Zonohedra are made up of tetrahedra according to

the composition equation (see Fig. 2, top view):








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RD
RI
RT









=




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













a
c
k
K









.

Quasilattice of F -type is projected from the root lattice

D6 and is constructed based on Danzer tiling. Danzer

tetrahedra are obtained by projecting its 6D-Voronoi poly-

tope [41,42]. The system of lattice roots D6 is formed by

vectors [±1± 1 0 0 0 0] and all equivalent vectors obtained

by cyclic permutation of six coordinates. The result of

projecting the root polytope is an icosidodecahedron [43].
In order for all three types of quasilattices to be consistent

with each other, it is necessary to change the scale of the

lattice D6, representing it as a union of a simple cubic

6D-lattice with its copies shifted by the vector
[

1
2

1
2
0 0 0 0

]

and equivalent vectors.

The centering scheme is again similar to the three-

dimensional case for which a face-centered cubic lattice

(fcc) can be obtained as a union of a simple cubic lattice

with its copies shifted by the vector
[

1
2

1
2
0
]

and equivalent.

However, there are some differences. The centering scheme

of F -type in even-dimensional spaces includes centering of

I -type as a subset. The consequence of this is that if the

structure of a quasicrystal (not necessarily icosahedral) is

derived by projection from a space of even dimension, then

a quasilattice of F -type contains every single node of I -type
quasilattice, and that, in turn, contains every single node of

P-type quasilattice.

As a result of D6 root lattice projection, with a con-

sistent choice of scale, 30 C nodes in the form of an

icosidodecahedron (projection of the root polytope of D6

lattice) are added inside the triacontahedron (projection of

the 6D-hypercube). A fragment of an icosidodecahedron

consisting of ten additional C nodes appears inside the

rhombic icosahedron. One additional C node appears inside

the rhombic dodecahedron, while the prolate rhombohedron

remains unchanged (Fig. 1).

A quasilattice of F -type may be considered either as

Danzer abck-tiling, or as a packing of zonohedra decorated

with additional C nodes. As already noted, the set of

nodes of F -type quasilattice includes all nodes of I -type
quasilattice as a subset. Tetrahedral Danzer abck-tiling is a

subtiling of ackK-tiling according to composition equation:









a
c
k
K


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=
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.
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I

F

A B C F

a  c  k  K, , ,

a  b, c  k, ,

Figure 2. Tetrahedral packings of I and F-types: basis sets of cells, schemes of merging tetrahedra into zonohedra, schemes of zonohedra

formation from tetrahedra (sectional view); top — for ackK-tiling (packing of I -type); down — for abck-tiling (packing of F-type). The
tetrahedron’s vertices of different types are highlighted in color: A — white, B — black, C — red, F — turquoise.
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It is also the subtiling of the zonohedral Socolar−Steinhardt

tiling (Fig. 2, bottom view):


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



GR
RD
RI
RT









=


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







.

Let’s pay attention to one important common property

of the unit cells of all three basis sets: the normals to all

faces of all Danzer tetrahedra and all zonohedra are always

directed parallel to the global 2-fold symmetry axes.

The procedure for deriving the three types of quasilattices

and corresponding tilings is mutually consistent, unambigu-

ous, and practically has no alternatives. Phason flips do not

occur in any of the cases we have considered (although
they can be introduced in an artificial way if desired). In

our opinion, any other tiling will have limited applicability:

it either represents a very specific individual case, or can

be reduced to one of the three basic tilings. In particular,

Mosseri−Sadoc tiling can be reduced to projection of the

root lattice D6 [44–46].
Thus, the structure of any icosahedral quasicrystal can

be considered as a packing of zonohedra. The rules for

constructing such packings [35–39] are common to all

types; the only difference is in the way the unit cells are

decorated with specific atoms. For quasicrystals of P-type,
the methods of filling zonohedra with atoms are largely

independent of each other. Only those atomic positions

that lie on the faces which are shared by two adjacent

unit cells should be consistent with each other to obey the

local matching rules. For quasicrystals of I and F -types

zonohedra are split into smaller subunits, namely Danzer

tetrahedra. As a result, the atomic positions inside different

zonohedra turn out to be completely matching each other

so that the decoration of identical tetrahedra inside different

zonohedra would be the same.

3. Enantiomorphism of icosahedral
quasicrystals

Icosahedral quasicrystals can be characterized by two

symmetry groups I h and I , i.e. with and without inversion.

The structure of experimentally obtained multicomponent

quasicrystalline alloys is fitted, as a rule, under the as-

sumption of a centrosymmetric group. There is usually

no justification for such an assumption, and the theoretical

basis for the alternative case has clearly not been worked

out sufficiently.

A clear example of a polyhedron with I symmetry is

a polyhedral compound of five tetrahedra. It was first

described in M. Bruckner’s monograph [47]. Its aesthetic

appeal inspired M.C. Escher to create a small sculptural

form (M.C. Escher,
”
Polyhedron with flowers“, maple,

1958, wood carving) [48]. The right and left enantiomorphic

forms of the polyhedral compound of five tetrahedra are

shown in Fig. 3, a. From whichever side we look at the

resulting polyhedra, we always see a pattern of only the

right screws in one case, and only the left screws in

the other. They can be mapped into each other by the

mirror reflection, which, as is known, is absent in the non-

centrosymmetric group I .
The question arises: is it possible to design an infinite

quasicrystalline structure based on a given configuration of

atoms or given polyhedra (including the asymmetric ones)
by filling the unit cells with them? Our approach makes

it possible to solve this problem. The simplest example is

given in Fig. 3, b. A compound of five tetrahedra, whether

right- or left-handed, can be inscribed inside a triacontahe-

dron by identifying the vertices of the tetrahedra with the

corresponding vertices of the dodecahedron. Triacontahedra

decorated with right or left polyhedra can be used as unit

cells for the packing generation. This way we can obtain

the simplest right and left structures of P-type.
In general, any of three types of quasicrystals (P, I , F)

may have symmetry of any of two icosahedral groups (I ,
I h). The easiest way to explain this is using the example

of quasicrystals of I -type and the corresponding tetrahedral

ackK-tiling.
Let’s start from the group I h. There are three types of

nodes with icosahedral symmetry (A, B, C). Therefore,

to generate a packing, we need first create three starting

configurations. We need to take three basis tetrahedra (c, k,
K) in some orientation chosen as the initial one (Fig. 2), and
subject them to the action of all 120 symmetry elements of

the group I h. We’ll get 120 copies of each of the tetrahedra

(orbits of cells in I h symmetry group) joined into polyhedra

with icosahedral symmetry. These are the required starting

configurations (the basis tetrahedron a is not used for their

formation). We only need to apply the iterative inflation and

deflation algorithm to the tetrahedra and fill the cells of the

resulting packing with specific atoms.

In the centrosymmetric group, all 120 copies of each of

the tetrahedra are equivalent. For I group the cells, the ori-

entations of which are obtained from the initial one by using

proper and improper rotations, should be considered to be

different. In I h group there are 60 rotational symmetries

(subgroup of proper rotations of an icosahedron I ). The

obtained in this way 60 orientations of basis tetrahedra c,
k, K we’ll consider as the

”
right“orientations while the rest

ones as the
”
left“. The exception is the basis tetrahedron a,

for which either the initial orientation shall be changed

(Fig. 2), or the order of determining the right and left

orientations shall be reversed. As a result, tetrahedra will

be packed according to the face-to-face principle, and the

right tetrahedron will always be adjacent to the left and vice

versa, regardless of its specific type (a, c, k, K). Now

it is enough to fill the right and left unit cells in different

ways, and the problem of designing the structure of a non-

centrosymmetric icosahedral quasicrystal will be solved. If

we set the reversed rules for filling the right and left cells,

we’ll get a twin (enantiomorphic) structure.

For quasicrystals of F-type, the procedure for construct-

ing enantiomorphic forms is completely similar and does not

Technical Physics, 2024, Vol. 69, No. 12
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a

b

Figure 3. Enantiomorphism in icosahedral structures: a — polyhedral compound of five tetrahedra, right and left forms; b — an example

of a non-centrosymmetric structure of a hypothetical icosahedral P-type quasicrystal (the left forms of the polyhedral compound of five

tetrahedra are identified with triacontahedra, the layer is cut out perpendicular to the 5-fold axis, only the polyhedral compounds are

shown in the layer).
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require additional explanations. The only difference is that a

different basis set of cells should be used. For quasicrystals

of P-type, the rules for filling zonohedra should take into

account their own intrinsic symmetry [38]. Another option
is to introduce

”
fictitious“ C positions and the so-called

context-sensitive rules for tetrahedra that form different

zonohedra.

4. Characteristic icosahedral clusters:
three types of sites, three types of
clusters

As we have already noted, in any icosahedral structure

there are always exactly three types of sites with local

icosahedral symmetry. Depending on the selected starting

configuration, the iterative inflation and deflation algorithm

generates three locally isomorphic variants of cell packings.

Decoration of cells with atoms generates three types of

characteristic clusters. Since, for any of the three types

of icosahedral quasicrystals, the cells either are initially

zonohedra (P) or can be grouped into zonohedra (I , F),
the structural features of the three types of clusters can be

analyzed based on zonohedral packing. The corresponding

projections along the 2-fold, 3-fold and 5-fold symmetry

axes are shown in Fig. 4. Large fragments of packings in

the projection along the 5-fold axis have been discussed

earlier [39].
If we direct the coordinate axes along the 2-fold sym-

metry axes and orient the packing so that the plane of the

drawing coincides with xy plane, then one of the 2-fold

axes will be perpendicular to the plane of the drawing and

coincide with z axis. The 3-fold axis closest to it will be

in yz plane, and the nearest 5-fold axis will be in xz plane.

The layers shown in Figure 4 are cut out perpendicular to

these specific axes and slightly rotated in space for clarity.

We shall explain an important general property of the

characteristic clusters — their structures are not indepen-

dent. The point is that the inflation factor and the self-

similarity factor are two different concepts. The difference

can be most easily explained using the Penrose tiling as an

example. It contains two types of inequivalent sites and,

hence, two types of characteristic configurations (
”
star“ and

”
sun“). The substitution rule for it is well known, the

inflation factor is equal to τ . After the first iteration, the

”
star“ and

”
sun“ transform into each other, and only after

the second iteration both characteristic patches coincide

with themselves. Thus, self-similarity factor is equal to τ
2.

Danzer tiling has a similar property. The inflation factor for

it is equal to τ , whereas the self-similarity factor is equal

to τ
3 [11]. According to the conclusions of [42], the self-

similarity factor for icosahedral tilings of all three types is τ 3.

Inflation factor shall be equal to τ
3 for P-type and τ for

both I and F -types. We emphasize that our approach is

completely compatible with these requirements.

If the atoms are localized at the positions A, B and on

the faces of zonohedra, then these positions should always

be occupied according to the common rules, regardless

of the cluster type where they appear. For icosahedral

quasicrystals of P-type, such atomic configuration form

certain mutually consistent
”
scaffolds“ in characteristic

clusters. In all other aspects, the specific structure of the

characteristic clusters remains significantly variable.

Much stricter limitations are imposed on the possible

cluster structure in quasicrystals of I and F -types. After

each inflation and deflation, the types of nodes should

be cyclically changed C → B → A → C. Suppose we are

interested in the idealized structure of a multicomponent

alloy in which three types of sites are occupied by three

types of atoms. Suppose there is a cluster centered at the A

site, and at some distance r from it there are 12 B sites

forming an icosahedron. The following substitutions will

take place after the first iteration: r → τ r , A → C, B → A.

It means that if the cluster A contains an icosahedron

consisting of B atoms at a distance r , then, cluster C

shall contain A atoms at a distance τ r , and cluster B shall

contain an icosahedron of C atoms at a distance τ
2r . After

the third iteration, the global packing coincides with itself.

This leads to the formation of super-clusters (clusters of

clusters); characteristic configurations are reproduced on an

enlarged scale at a distance of τ 3r . This property has been

experimentally established for the mutual arrangement of

Tsai clusters [26].
So, in the structure of any icosahedral quasicrystal, there

are always exactly three types of characteristic clusters

associated with three types of non-equivalent sites. Clusters

that occur at sites of various types cannot be the same

(see illustrations in paper [39]). If the structure of a

quasicrystal is interpreted on the basis of only one or two

characteristic icosahedral clusters, then such a structure

should be considered as studied insufficiently. If the

experimental method or theoretical approach does not allow

identifying all three types of clusters, then this result, in our

opinion, is negative and requires a critical rethinking.

Conclusion

We propose a unified structure theory of icosahedral

quasicrystals, within which it is possible to describe all three

types of quasilattices (P, I , F), both icosahedral symmetry

groups (I , I h), as well as right and left enantiomorphic

forms for the non-centrosymmetric case. The theory is

based on the simultaneous use of three types of tilings, for

each of which the unique basis set of unit cells and unique

substitution rules are established. By analogy with ordinary

crystals, the task of describing the structure of a quasicrystal

splits into two stages: filling the space with cells and filling

the cells with atoms, with the only difference being that

instead of a single unit cell, unit cells of several types are

used, and the iterative inflation and deflation algorithm is

used to fill the space instead of translations.

The design of a possible promising structure of a

photonic or phononic quasicrystal being created (as well

as the structural analysis of an experimentally synthesized

quasicrystal) implies the following sequence of steps:
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Figure 4. Three types of characteristic icosahedral clusters: in any icosahedral packing, three types of nodes (A, B, C) generate three

types of characteristic icosahedral clusters; the layers of zonohedra are cut perpendicular to the 2-fold, 3-fold and 5-fold axes.

— Determining the type of quasilattice; it will determine
the specific type of tiling used, the basis set of unit cells,

and the substitution rules for them. When clarifying the
structure of experimentally synthesized alloys the most

probable type of quasilattice is determined based on the

analysis of extinction rules.
— Analysis the intrinsic symmetry of cells; the stabilizer

subgroup determines the intrinsic symmetry and the rules

for filling the interior of cells with atoms, while the orbit
determines their possible orientations in space. Note that for

tetrahedral tilings and the symmetry group I h, the stabilizer
subgroup is trivial and contains a single identity element,

and the unit cells’ orbits are formed by 120 possible spatial

orientations.
— Selection of standard cell orientations and starting

configurations.

Technical Physics, 2024, Vol. 69, No. 12



Theory of the structure of icosahedral quasicrystals: general principles 1977

— Determination of the symmetry group of a quasicrystal

(with or without inversion).
— Packing generation (space filling) based on substitu-

tion rules; the packing is given by a list of cells, for each of

which its type, position and orientation are specified.

— Establishing the rules for atomic decoration of cells;

they shall obey the symmetry of the stabilizer subgroup and

the local matching rules between different types of cells.

— Filling of cells with atoms and structure generation;

identification of characteristic clusters and characteristic

motifs of their mutual arrangement.

— Analysis and refinement of obtained structure.
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M. de Boissieu, A.P. Tsai. Nature Mater., 6, 58 (2007).
DOI: 10.1038/nmat1799

[27] T. Yamada, H. Takakura, H. Euchner, C. Pay Gómez,
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