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Pulse excitation of quantum systems: specific features and general

patterns

© V.A. Astapenko, T.K. Bergaliyev

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia

e-mail: astval@mail.ru

Received April 26, 2024

Revised June 18, 2024

Accepted October 30, 2024

The features of pulse excitation of a quantum oscillator are investigated both without and with damping.

Expressions are obtained for the duration and carrier frequency of exponential and double exponential pulses,

which describe the main features of the process in weak and strong excitation modes. The boundaries of these

modes are established in terms of the Rabi frequency for the time and spectral dependences of the excitation

probability.
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Intensive development of the technique for generation

of ultrashort laser pulses with the specified parameters

makes the improvement of the theoretical description of

their interaction with the substance relevant for the features

of the ultrashort electromagnet interaction. This paper is

dedicated to this problem using the example of excitation of

a quantum oscillator by two types of pulses.

Main formulae

The basic formula for the probability of transition of a

quantum oscillator (QO) between stationary states |n〉 and

|m〉 (m > n) was obtained by J. Schwinger in his theory of

quantized electromagnetic field [1]:

Wn→m =
n!
m!

(ν)m−n exp(−ν)|Lm−n
n (ν)|2, (1)

where Lk
m(x) — generalized Laguerre polynomials, ν —

key parameter, which, when the QO is excited with an

electromagnetic pulse, may be presented [2] as

ν = �2
0|Ẽ(ω0, τ , ωc)|2, (2)

where ω0 — QO own frequency, Ẽ(ω0, τ , ωc) — Fourier

transform normalized by amplitude E0 by the time of

electric field intensity in the pulse with duration of τ and

carrier frequency ωc ,

�0 =
d0E0

~
=

qx0E0

~
=

qE0√
2m~ω0

(3)

— Rabi frequency, q, m — charge and weight of the oscil-

lator, x0 =
√

~/(2mω0) — specific length of the quantum

oscillator. The key parameter ν may be expressed via the

energy of excitation of the associated classic oscillator (the

associated classic oscillator is the oscillator with the same

parameters as its quantum analogue) [3]:

ν =
1εclas

~ω0

. (4)

One of the methods to describe the excitation of the

quantum oscillator by electromagnet pulses is the calculation

of the average number of the excited quanta. Let us consider

for simplicity the excitation of the oscillator from the main

state, when the probability of excitation is given by the

Poisson’s distribution. By definition, the average number

of the excited quanta is equal to

n̄ =
∑

n

nW0→n(ν) =
∑

n

1

(n − 1)!
νn exp(−ν) = ν. (5)

Therefore, the average number of the excited quanta is

equal to parameter ν . With account of the equation (4)
we have the following relation to the excitation energy of

the associated classic oscillator:

n̄ =
1εclas

~ω0

= ν. (6)

Probability of QO excitation with various
pulses

Let us consider the QO excitation from the main state

with pulses having an exponential envelope:

Ẽexp(t, τ ) = θ(t) exp(−t/τ ) cos(ωct), (7)

where θ(t) — Heaviside function, and with the double

exponential envelope:

Ẽ2 exp(t, ωc , τ ) = exp(−|t|/τ ) cos(ωc t). (8)
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Note that formulae (7) and (8) describe the pulses that are

asymmetrical and symmetrical in time and, therefore, differ

qualitatively. It is important that the analytical description of

the quantum oscillator excitation may be obtained for them.

Thus, the key parameter ν in case of the exponential pulse

is equal to

νexp = n̄exp
∼= 1

4

�2
0τ

2

1 + (ω0 − ωc)2τ 2
. (9)

Similarly for the double exponential pulse one may get

ν2 exp = n̄2 exp
∼= 1

4

�2
0τ

2

[1 + (ω0 − ωc)2τ 2]2
. (10)

Formulae (9), (10) are made with account of the condition

ωcτ ≫ 1.

From (1), (9) it follows that the dependence of the QO

excitation probability on the pulse duration in case of an

exponential pulse may either be monotonic increasing, or

have one maximum. The position of this maximum for the

function W0→n(τ ) is given with the formula

τ (exp)
max =

1
√

�2
0/4n − (ωc − ω0)2

. (11)

Since the radical expression in the right part of this equation

must be positive, it follows that the maximum occurs, if the

following inequation is met

�0 > 2
√

n|ω0 − ωc |. (12)

Otherwise, the function W0→n(τ ) is monotonic increasing.

Inequation (12) may be named the condition for the

mode of intense disturbance of the quantum oscillator with

the exponential pulse. If the opposite inequation is met,

the excitation is weak. Note that in resonance ωc = ω0 any

value of the Rabi frequency is compliant with the intense

excitation.

In case of a double exponential pulse in the mode of

weak disturbance, which is given by the inequation

�0 < 4
√

n|ω0 − ωc |, (13)

there is one maximum in τ -dependence of the excitation

probability. The position of this maximum is defined with

the formula

τ (2 exp)
max =

1

|ωc − ω0|
. (14)

It is evident that this maximum disappears at the resonant

carrier frequency ωc = ω0.

The simple analysis shows that in the mode of intense

disturbance, �0 > 4
√

n|ω0 − ωc |, maximum (14) changes

into minimum, and two new maxima appear, to which the

following pulse durations correspond:

τ
(2 exp)
max,1,2 =

�0 ±
√

�2
0 − 16n|ωc − ω0|2

4
√

n|ωc − ω0|2
. (15)

You can see that in the resonance the high value of

the pulse duration in the maximum changes into infinity

τ
(2 exp)
max,2 (ωc = ω0) → ∞, and the lower one is equal to

τ
2 exp
max,1(ωc = ω0) = 2/�0 .

Let us consider the spectrum of QO excitation with the

exponential and double exponential pulses.

In case of the exponential pulse, using the above

formulae, you can obtain the following expression for the

spectral maxima:

ω(exp)
max = ω0 ±

√

�2
0/4n − τ −2. (16)

These frequencies are the solutions to equation dn̄/dωc = 0,

which defines the spectral extrema of probability. From (16)
it follows that these maxima are implemented only in

the mode of intense disturbance, which is described by

inequation

�0 > 2
√

n/τ . (17)

Otherwise, in case of weak disturbance, there is one spectral

maximum in the own frequency of oscillator ωc = ω0.

Similarly, you can get an expression for the spectral

maxima when the QO is excited from the main state by

the double exponential pulse:

ω(2 exp)
max = ω0 ±

1

τ

√

�0τ

2
√

n
− 1. (18)

Hence it appears that the condition for the mode of intense

disturbance when excited with a double exponential pulse

is also given by inequation (17).

Model accounting of quantum oscillator
damping

The main assumption of our model consists in the

following. In expressions (1), (4) we will be using the

excitation energy of the classic oscillator with nonzero

damping

1εclas(γ = 0) → 1εclas(γ 6= 0). (19)

With account of damping for the excitation energy of the

associated classic oscillator we have

1εclas =
q2E2

0

2m

∞
∫

0

dω|Ẽ(ω)|2 4�2γ/π

(ω2 − ω2
0)

2 + 4ω2γ2
. (20)

Then in case of the exponential pulse (7) for the average

number of the excited quanta (assume that ωcτ ≫ 1) we

obtain

n̄exp(γ) =
1

4
�2

0τ
γ + 1/τ

(ωc − ω0)2 + (γ + 1/τ )2
. (21)

From here you can find the position of the spectral maxima

when excited by the exponential pulse of QO with damping

in transition 0 → n:

∣

∣

∣
1(exp)
max (γ)

∣

∣

∣
=

√

(1 + γτ )

(

�2
0

4n
− 1 + γτ

τ 2

)

,
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1 = ωc − ω0. (22)

From this formula it follows that the Rabi saturation

frequency with account of damping is equal to

�
(sat)
0 (γ) =

2
√

n
τ

√

1 + γτ . (23)

Thus, the side spectral maxima arise, if the following

inequation is met

�0 > �
(sat)
0 (γ). (24)

Otherwise, there is one maximum at the own frequency

of QO.

To conclude, note that within the theory of disturbances

(ν ≪ 1) the probability of QO excitation in transition 0 → 1

matches the probability of excitation of the double-level

system with the oscillator force equal to one, and is given

with expression (2). Therefore, there is a relation seen

between the description of the pulse excitation of the

substancer within two fundamental quantum models.
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