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In the last decade, approaches to calculating the thermal properties of liquids have been actively developing. The

most developed approaches are those based on the use of the
”
phonon“ theory, which was previously successfully

applied to calculate the thermal properties of solids. The
”
phonon“ theory is based on the hypothesis that in

addition to longitudinal acoustic waves of a wide range of frequencies, transverse high-frequency acoustic waves

can propagate in a liquid. To find the heat capacity of a liquid, the Debye approach is used, which was modified

by taking into account only high-frequency transverse waves in the excitation spectrum. Another approach is based

on finding the frequency distribution of normal modes (instantaneous-normal modes) in a liquid and constructing

the thermal and transport properties of the liquid using the found frequencies. In this paper, the equivalence of

both approaches is shown in the harmonic approximation, and a simple one-parameter approximation formula is

proposed for calculating the isochoric heat capacity of simple liquids.
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Introduction

The behavior of the molar isochoric heat capacity for

simple solids is well described by the Debye model, which

predicts a cubic increase of heat capacity at low tempera-

tures CV ∼ T 3 and reaching a constant value corresponding

to Dulong−Petit law CV = 3R at high temperatures. A

monotonous decrease of heat capacity with the increase of

temperature is experimentally observed in case of a simple

liquid, for example, liquid metals, which is not the case for

a solid (see, for example, [1] and Fig. 1 and 2). One of the

urgent tasks today is to explain this behavior of the isochoric

heat capacity of a liquid and to obtain analytical relations for

predicting the dependence of heat capacity on temperature.

1. Current state of research

Recently, significant progress has been made in the

theoretical study of the thermal properties of liquids, which

was largely attributable to a series of papers by Trachenko,

Brazhkin and Bolmatov et al. [2–5]. In some of their papers,

the authors proposed to modify Debye’s approach with the

hypothesis that in addition to longitudinal acoustic waves,

transverse waves can also propagate in a liquid, but with

frequencies greater than a certain boundary frequency ω f ,

called the Frenkel frequency:

ω f (T ) = 2π/τ f .
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Figure 1. Heat capacity Xe: 1 — experimental data from

Ref. [15], 2 — calculation according to formulas proposed in

Ref. [15] (formulas (7)−(10)), 3 — calculation using the for-

mula (23) with U = 226.1K from Ref. [15] and α = 0.17. Heat

capacity Ar: 4 — experimental data from Ref. [15], 5 — calculation

according to formulas proposed in Ref. [15] (formulas (7)−(10)),
6 — calculation using the formula (23) with U = 116.7K from

Ref. [15] and α = 0.18.

Here τ f is the relaxation time [6] equal to the character-

istic time of the settled life of an atom in a liquid:

τ f = µ(T )/G∞, (1)

where µ is the dynamic viscosity of the liquid, G∞ is the

shear modulus for waves with frequency tending to infinity.
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Figure 2. Comparison of heat capacity experimental data

with approximation formula for sodium and lead from melting

point to boiling point at P = 1.01 · 105 Pa. 1 — experimental

data for lead [26,27]; 2 — calculation according to (23) for

lead, U = 1069K from Ref. [27], α = 0; 3 — experimental data

for sodium [28]; 4 — calculation according to (23) for sodium,

U = 557K from Ref. [28], α = 0.15.

When deriving the formula for heat capacity, the authors

of Ref. [2] presented the total energy of the liquid as the sum

of the energy of longitudinal acoustic waves El , the energy

Et of transverse waves with frequencies greater than ω f ,

and the energy associated with diffusive motion of atoms

Ed :

E = El + Et(ω > ω f ) + Ed .

It was shown that the energy of the diffusion motion of

atoms is equal to half the total energy of phonons corre-

sponding to transverse waves with frequencies ω ≤ ω f :

Ed = (Et(ω ≤ ω f )/2.

It should be noted that the representation of total energy

as the sum of the energies of longitudinal and transverse

waves and the energy associated with the diffusive motion

of atoms is controversial, since the first two terms relate to

processes occurring in momentum space (ω, k), and the

last term pertains to processes in the coordinate space (t,
r). Such separation requires an additional substantiation.

The authors of Ref. [2] obtained the following final

expression for the internal energy:

E = NkBT (1 + 0.5αT T )
(

3D(ℏωD/kB/T )

− (ω f /ωD)3D(ω f /ωD)
)

, (2)

where αT — a coefficient equal in order to the coefficient

of volumetric thermal expansion and taking into account

the anharmonic contribution, ωD — Debye frequency,

D(x) — Debye function close to unity with a small value

of parameter x = ℏωD/kB/T (at high temperatures). One

of the disadvantages of the formula is the presence of three

parameters αT , ωD , G∞. (a part of the expression for ω f ),
which should be selected based on the conditions of the best

match between the calculation formula and the experimental

results.

The following equation can be obtained for the internal

energy from (2) in the harmonic approximation (without

taking into account the anharmonic correction αT T/2)

E = NkB T
(

3− (ω f /ωD)3
)

. (3)

The authors of Ref. [2–5] explain the monotonous de-

crease of heat capacity with the increase of the temperature

by a decrease of the number of transverse waves due to

an increase of the boundary frequency ω f = 2π/τ f , below

which transverse waves cannot exist (the presence of a

gap in the energy spectrum for transverse waves). At the

maximum value of ω f = ωD , the heat capacity tends to its

minimum value

CV = 2NkB . (4)

The line where ω f = ωD was named the Frenkel line [7].
The question of the reality of the existence of this line

and the minimum value of the heat capacity (4) is

debatable [8,9].
The presence of a boundary wavenumber kg for trans-

verse waves was shown for ordinary temperatures and

pressures [8,10] and, as a result, a gap in the space of

wavenumbers was demonstrated. No boundary frequency

was detected.

A justification for the presence of a gap was given in

later papers [11–13] based on the viscoelastic theory and the

formula was derived (3) [14] using the dispersion relation

for transverse waves

ω2 + ωτ −1
f − c2

t k2 = 0, (5)

, from which for transverse waves with wave vectors outside

the gap (k > kg) ω =
√

c2
t k2 − τ −2

f , and for waves inside

the gap (k ≤ kg) ω = −(2τ f )
−1 ±

√

(4τ f )−2 − c2
t k2.

Here

kg = (c tτ f )
−1, (6)

where c t is the speed of sound for transverse waves.

Another area of analysis of the thermal properties of a

liquid is analysis using the concepts of instantaneous normal

modes developed in Ref. [15–22]. A relation is proposed

in Ref. [15,16] for calculating the heat capacity of a liquid

based on the derived ratio for the normalized density of

instantaneous-normal modes:

g INM(ω) = C(ω2 + Ŵ2(T ))−1ω · exp(−ω2/ω2
D), (7)

Ŵ(T ) = Ŵ0 exp(−U/T ), (8)

CV = kB

∞
∫

0

(ℏω/2kB T )2 sh−2(ℏω/2kB T )g INM(ω)dω. (9)

It was shown in Ref. [15] that the results of calculation

of the heat capacity according to the proposed formulas are
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consistent with experimental data. However, the authors

suggest using normalization for g INM(ω) in their article to

find the multiplier C [15]

∞
∫

0

g INM(ω)dω = 3N. (10)

This normalization at high temperatures leads to

Dulong−Petit law:

CV = 3NkB , (11)

what was noted in the article [23] and what is inconsistent

with the results of the calculation of the heat capacity given

by the authors themselves in Ref. [15]. Indeed, Fig. 1 shows

a comparison of data on heat capacity for liquefied gases

from Ref. [15] with the results of calculations according

to formulas (7)−(10) which were used for calculations,

as stated in Ref. [15]. The figures show that the use of

normalization (10) does not allow obtaining the necessary

behavior of the heat capacity. In fact, the predicted value

of the molar heat capacity is CV = 3R. Changing the

normalization to 3/2, as recommended in Ref. [17], does
not correct the situation, but only results in the shift of

results from level 3 to level 3/2.

Apparently, the authors did not perform normalization to

find the parameter C, but adjusted the coefficient C based

on the results of experimental studies.

Despite this, the authors in this paper tried to apply a

different approach to the problem of heat capacity compared

to Ref. [2–5]— using the concepts of instantaneous-normal

modes.

2. The relationship between internal
energy and the number of stable
instantaneous normal modes

Let us take a closer look at the concept of instantaneous-

normal modes. To do this, let us decompose the potential

energy of the system N of interacting particles up to

and including the second term in a series by atomic

displacements.:

U =
[

∑

i

U(Ri0) + ∂U/∂Ri · (Ri − Ri0)

+ 0.5 · ∂2U/∂Ri∂R j)(Ri − Ri0)(R j − R j0)
]

.

Here Ri are the coordinates of the particles of the system,

Rio are the coordinates of the particles in the equilibrium

position. Let us introduce the notation ∂2U/∂Ri∂R j = Di j ,
∑

i U(Ri0) = U0 and take into account that ∂U/∂Ri = 0.

The internal energy of the system consists of the sum of

kinetic and potential energies:

E = U0 +
∑

i

mṘ2
i

2
+

∑

i, j

1

2
Di j(Ri − Ri0)(R j − R j0)

= U0 +
∑

i

mṙ2i
2

+
∑

i, j

1

2
Di jr i r j , r i = Ri − Ri0.

(12)
Since the matrix of the second derivatives D is a symmet-

ric matrix, there exists such an orthogonal transformation O

that brings the matrix D to the diagonal form 3 with eigen

numbers λ:

OTDO = 3.

The eigenvectors α of the matrix D are equal to

OT r = α.

Then (12) can be reduced to the form

E =
∑

i

mα̇2
i

2
+

∑

i

1

2
λiα

2
i + U0. (13)

The presented expression takes into account that the

internal energy is determined up to a constant, therefore U0

is omitted. The positive eigenvalues of the matrix Dλ ≥ 0

are denoted by mω2
i . The negative eigenvalues of the

matrix D(λ < 0) are denoted by −m�2
i . The eigenvectors

corresponding to the given eigenvalues (modes) are called

instantaneous-normal (hereinafter — just normal) modes.

Modes with positive eigenvalues are called stable modes.

They correspond to harmonic oscillations with frequencies

ω2
i . Modes with negative eigenvalues are called unstable

modes. They correspond to solutions that exponentially

grow/decay with time. The total number of modes is equal

to the total number of degrees of freedom of the system —
3N. Only real frequencies are present in the spectrum of

instantaneous normal modes in case of solids; a region of

imaginary frequencies appears in case of liquids, the number

of which increases with the increase of the temperature; the

distribution is symmetrical for gases, i.e. the number of

stable and unstable modes is the same [24].
Let us derive a formula relating the number of stable

instantaneous-normal modes and internal energy using the

concepts of instant-normal modes.

The total energy of the system can be written as follows

from (13)

〈E〉 =

k
∑

i=1

〈

mα̇2
i

2
+
1

2
mω2

i α
2
i

〉

+

3N
∑

i=k+1

〈

mα̇2
i

2
−
1

2
m�2

i α
2
i

〉

.

Here, the brackets indicate an average over all possible

system configurations.

Let us consider the contribution of each type of mode,

for which we write the equations:







md2α j/dt2 = −mω2
jα j , j = 1 . . . k,

md2α j/dt2 = m�2
jα j , j = k + 1 . . . 3 · N.

Technical Physics, 2025, Vol. 70, No. 1



Heat capacity and the number of instantaneous-normal modes of a simple liquid 13

The solution of the equations has the form







α j = α j1 cosωit + α j2 sinωit, j = 1 . . . k,

α j = α j3 ch� jt + α j4 sh� jt, j = k + 1 . . . 3 · N.

We obtain the average energy from here after transforma-

tions:

〈E〉 =

k
∑

j=1

m
2
ω2

j 〈α
2
j1 + α2

j2〉 +

3N
∑

j=k+1

m
2
�2

j〈(−α2
j3 + α2

j4)〉.

(14)

The first term is responsible for the contribution of

stable modes and has the form adopted for a conventional

harmonic oscillator. Methods developed for a solid body

can be used to calculate it. Averaging is possible at high

temperatures using the Gibbs distribution to obtain the law

of equidistribution over degrees of freedom.

The situation is more complicated with the last term,

since the first term contains a minus sign, which leads to

difficulties with averaging when using the Gibbs distribution.

Apparently, the integration should be carried out within

finite limits, the magnitude of which is not known.

Let us show that the last term is identically zero (at least

in the harmonic case under consideration).

To do this, let us use the concept of the velocity

autocorrelation function, which is important in fluid theory,

and proceed to normal modes

S(t1, t2) =
1

3N

3N
∑

i=1

〈v i(t1)v i(t2)〉 =
1

3N

3N
∑

j=1

〈α̇ j(t1)α̇ j(t2)〉,

and let us take advantage of the fact that it depends only on

the time difference

S(t1, t2) = S(|t2 − t1|).

Let us find the sum for stable modes

k
∑

j=1

〈α̇ j(t1)α̇ j(t2)〉=

〈 k
∑

j=1

α j1(0)α
′

j1(0)ω
2
j sinω jt1 sinω jt2

〉

−

〈 k
∑

j=1

α j1(0)α
′

j2(0)ω
2
j [sinω jt1 cosω jt2+sinω jt2 cosω jt1]

〉

+

〈 k
∑

i=1

α j2(0)α
′

j2(0)ω
2
j cosω jt1 cosω jt2

〉

.

And for unstable modes

3N−k
∑

j=1

〈α̇ j(t1)α̇ j(t2)〉=

〈3T−k
∑

j=1

α j1(0)α
′

j1(0)�
2
j sh� jt1 sh� jt2

〉

+

〈3N−k
∑

j=1

α j3(0)α
′

j4(0)�
2
j [sh� jt1 ch� jt2+sh� jt2 ch� jt1]

〉

+

〈3N−k
∑

j=1

α j4(0)α
′

j4(0)�
2
j ch� jt1 ch� jt2

〉

.

It is taken into account here that the initial conditions

for the same modes, but related to different times, may be

different. The initial conditions in the above expressions

refer to time t1 without a stroke, to t2 with a stroke.

Let us take into account the independence of α j1, α j2,

α j3, α j4, as well as the fact that the average value for the

ensemble is zero for each of them (all initial conditions,

both positive and negative — are equally probable). Then

k
∑

j=1

〈α̇ j(t1)α̇ j(t2)〉 =

=

k
∑

j=1

〈α j1(0)α
′

j1(0)〉ω
2
j
1

2

(

cosω j(t1 − t2)−cosω j(t1 + t2)
)

+

k
∑

j=1

〈α j2(0)α
′

j2(0)〉ω
2
j
1

2

(

cosω j(t1−t2)+cosω j(t1 + t2)
)

,

3N−k
∑

i j=1

〈α̇ j(t1)α̇ j(t2)〉 =

=
3N−k
∑

j=1

〈α j3(0)α
′

j3(0)〉�
2
j
1

2

(

ch� j(t1 − t2)−ch� j(t1 + t2)
)

+

3N−k
∑

j=1

〈α j4(0)α
′

j4(0)〉�
2
j
1

2

(

ch� j(t1−t2)+ch� j(t1 + t2)
)

.

Since the autocorrelation function should depend

only on the time difference (t2 − t1), it means

〈α j3(0)α
′

j3(0)〉 = 〈α j4(0)α
′

j4(0)〉. If t1 = t2, then

〈α2
j3〉 = 〈α2

j3〉, 〈α2
j1〉 = 〈α2

j2〉, hence the proof that the

last term in the expression (14) is zero.

Thus, only stable vibrational modes make a non-zero

contribution to the internal energy, i.e. the average energy

of the system is

〈E〉 =

k
∑

j=1

m
2
〈ω2

jα
2
j1 + ω2

jα
2
j2〉. (15)

In contrast to the approach in Ref. [15] , the number

of stable instantaneous-normal modes in the ratio (15) is
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not fixed, but decreases with temperature, which leads to a

decrease of the heat capacity of the liquid.

At high temperatures, for which the law of

equal distribution of energy in degrees of freedom
m
2
〈ω2

jα
2
j1 + ω2

jα
2
j2〉 = kBT is valid, it is possible to write

〈E〉 = kBT Ns , Ns + Nu = 3N. (16)

Here Ns , Nu are the number of stable and unstable modes,

respectively.

The type of dependence of the internal energy on the

number of stable modes is in good agreement with the

known behavior of the heat capacity during the transition

from a solid for which Ns = 3N and 〈E〉 = 3NkB T to a gas

for which Ns = (3/2)N and 〈E〉 = (3/2)NkB T .
Let us introduce the proportion of unstable

instantaneous normal modes x = 2Nu/(Ns + Nu)
in accordance with Ref. [24], and rewrite (16) as

〈E〉 = (1− x)3NkB T + x(3/2)NkB T , which coincides with

the form of the expression from Ref. [24] and is justified by

the results of moleculardynamic modeling.

Thus, a decrease of the heat capacity for liquids at high

temperatures may be associated with the appearance of

unstable modes in the spectrum Nu(T ) and, as a result,

with a decrease in the number of stable modes.

3. Connection with the
”
phonon“ theory

of the heat capacity of a liquid

Stable modes correspond to real frequencies, unstable

modes correspond to imaginary frequencies. In accordance

with the dispersion relation (5), the imaginary frequencies

correspond to the wave vectors of transverse waves from

the range from 0 to kg . Therefore, the number of unstable

modes can be estimated as

Nu(T ) = 2(2π)−3V
∫ kg

0

4πk2dk = V (3π2)−1k3
g , (17)

and the number of stable can be estimated as

Ns (T ) = 2(2π)−3V
∫ kD

kg

4πk2dk + V (2π)−3

∫ kD

0

4πk2dk.

(18)
Two possible states of polarization of transverse waves

are taken into account here, V is the volume of the system.

We obtain from (16) and (18) that the total energy is

equal to the sum of the energies of the transverse modes

lying above kg and the longitudinal modes.

There is no term related to the diffusion of atoms, as

suggested in Ref. [2].
We obtain the following from (17)

〈E〉 = 3NkB T [1−V (N9π2)−1k3
g ]. (19)

Introducing the maximum wave number

kD = (6π2NV−1)1/3, we obtain

〈E〉 = 3NkBT [1− (2/3) · (kg/kD)3]. (20)

Introducing the notation ωD = ckD ,

ω f = 21/3ckg ∼ τ −1
f , we obtain an analog of the

formula (3).
Formulas (20) and (3) are similar up to a factor of 2.

The difference is attributable to the consideration of the

diffusion motion of particles in (3). There is no contribution

of the diffusion term, at least in the harmonic approximation,

in accordance with the arguments of the previous section,

when moving from the pattern of the motion of individual

particles to the pattern of the propagation of collective

excitations.

Thus, the use of the concept of instant-normal modes

allows obtaining a formula developed in the framework

of the
”
phonon“ theory of heat capacity. Based on the

results of the analysis, it can also be concluded that the total

energy, and hence the heat capacity, in accordance with (20)
depends on the size of the gap kg , which was demonstrated,

for example, by the results of molecular dynamic modeling

in Ref. [25].

4. A simple approximation formula for
calculating the isochoric heat capacity

It may seem that according to (20) the minimum heat

capacity is CV min = NkB at kg max = kD . This is not

entirely true. The minimum value of the heat capacity

corresponds to the case when the number of stable and

unstable modes are equal: Nu = Ns = 3N/2. The ratio

Nu = V (3π2)−1k3
g max = 3N/2 should be fulfilled to ensure

this condition.

We obtain (kg max/kD)3 = 3/4 using the formula for kD ,

i.e. according to (20):

〈E〉 = 3/2NkB T, (21)

as it should be. Let us write the following using

formulas (1), (6), (19)

〈E〉 = 3NkBT [1− 2/3(G∞/
(

c tkDµ(T ))
)3

]

= 3NkbT [1− 2/3(G∞/(c tkDµ0)
3 exp(−3U/T )].

For deriving the approximation formula let us pay atten-

tion to the fact that in the high temperature range, the in-

ternal energy should tend to the expression (21). Therefore,
since exp(−3U/T ) → 1, the product 2/3(G∞/c tkDµ0)

3 can

be replaced by (1/2) for simplification, and the formula can

be rewritten in a simpler form:

〈E〉 = 3NkB T [1− 0.5 exp(−3U/T )].

Then the heat capacity is

CV = 3NkB [1− d(Te−3U/T )/dT ]. (22)

Let us introduce an additional coefficient α to adjust to

the experimental data at the melting point:

CV = 3(1 + α)R[1 − d(Te−3U/T )/dT ]. (23)
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Fig. 1 shows a comparison of the heat capacity calculated

using the formula (23) with experimental data for Ar and

Xe, and Fig. 2 shows a comparison of calculations using the

formula (23) with data for liquid lead and sodium. Isobaric

heat capacity data from Ref. [26] were used to determine

the experimental values of the heat capacity of lead. Density

data, coefficient of thermal expansion, and velocity of sound

from Ref. [27] were used to convert isobaric heat capacity

to isochoric. Data from Ref. [28] were used for sodium. It is

possible to see that the presented simple formula provides a

good approximation of the calculation results.

Conclusion

The approaches for calculating the internal energy and

heat capacity of a liquid have been developed using the

concepts of instantaneous-normal modes. It is shown

that the internal energy in the harmonic approximation is

determined by the contribution of stable modes only. The

presence of a gap in the wavenumber spectrum of transverse

waves is interpreted as a region occupied by unstable modes.

Counting the number of normal modes in a gap with

precision up to a multiplier 2 leads to the formula for

calculating the internal energy proposed in the framework

of the
”
phonon“ theory. The difference is attributable to

the consideration of the contribution of diffusive particle

motion in the framework of the
”
phonon“ theory, which is

not detectable in the analysis of internal energy, at least

in the harmonic approximation. A simple formula for

estimating the heat capacity is proposed, containing one

tuning parameter.

It is worth noting that all the results were obtained

without taking into account the contribution of anharmonic

additives to the internal energy of the liquid. As shown

in Ref. [2], taking into account the anharmonic corrections

1Eanh gives a contribution to the internal energy 〈E〉, equal
in order of magnitude to 1Eanh/E ∼ αT T , where αT is the

coefficient of volumetric thermal expansion of the liquid.

This coefficient, for example, is in the order of 10−4 K

for liquid lead from Ref. [27], i.e. the anharmonic correction

becomes significant after the temperature T ∼ 104 K, which

is significantly higher than the temperatures representing

someor a practical interest. The failure to account for

anharmonic additives can lead to an error of about 10%

at the temperatures of T ∼ 103 K we are interested in.
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