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Introduction

The problem of the formation of water droplets in various

conditions, and especially in the atmosphere, is of great

interest both for understanding ongoing processes and for

developing methods of influencing them: the formation of

rain and hail, the propagation of electromagnetic and sound

waves, etc. Let’s take a closer look at the problems of water

condensation at altitudes from 1 to 3(5) km above the sea

level. As a rule, the main results are based on observational

data. Their main task was, among other things, the desire

to obtain a droplet size distribution function (DF). However,
the evaporation and condensation processes themselves and

the effect of electric fields on them were of no less interest.

This task can cover both the formation of fog and clouds

and their dispersion.

The problem of droplet formation can be divided into

two parts: the formation of droplets due to condensation of

water vapor in the atmosphere as the temperature drops and

the further interaction of droplets with each other and the

surrounding environment. In our opinion, the case of bulk

condensation, and especially homogeneous condensation,

has not been studied sufficiently.

Both processes have different characteristic times. It

can be assumed that the condensation process occurs in

a shorter period of time, after which other mechanisms of

droplet growth begin to prevail. The estimate of the time

of homogeneous condensation obtained in this work can be

used to analyze the droplet size distribution function that

occur when droplets collide with each other and with air

molecules.

It was suggested in Ref. [1], that growth of small droplets

mainly occurs due to condensation, while larger droplets

(of the order of 50 µm and more) grow mainly due to

coagulation. But how to determine the characteristic size

upto which condensation prevails? For example, generally,

it is difficult to determine the minimal size for which vapor

condensation is more significant from the experimental

data [2] (Fig. 1), which can be used to find the initial number

of droplets in the atmosphere. The difficulty of determining

the minimal droplet size is attributable to both the various

kinds of interference that exist in the atmosphere and the

accuracy of the instruments used to determine the droplet

size. Therefore, the problem of particle size distribution

is discussed to a greater extent in the literature. Since it

is necessary to rely on DF for a more detailed analysis of

experimental data, it is worth dwelling on well-known works

devoted to its formulation and analysis for fogs and clouds.

Extensive literature is devoted to these problems [2–7].

Apparently, one of the first fairly fundamental works de-

voted to the formation of fog was the work of Schumann [6],
who, based on the ideas of Smolukhovsky [8], proposed an

integro-differential equation for the droplet size distribution

function:

dn
dt

= −n

∞
∫

0

f (u, v)n(u)du

+
1

2

v
∫

0

f (u, v − u)n(u)n(v − u)du. (1)

Here n(v, t) — the time-dependent droplet volume

distribution function; t — time; f (u, v) — the frequency

of collisions of droplets with volume v with droplets with
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Figure 1. Experimental curves for the distribution density of

cloud droplets of various shapes by size: a — the total number

of measured droplets N = 17 269, r1 = 6.8 µm; b — N = 1029,

r1 = 7.6; c — N = 2469, r1 = 7.1; d — N = 722, r1 = 6.7 [2]
(r1 — the value of the droplet radius corresponding to the DF

peak).

volume u, related to the unit concentration of droplets of

each size.

There are two types of collisions in the author’s approach:

collisions of droplets of a given volume with other droplets

of different sizes, which cause droplets of a given volume to

disappear, and collisions of droplets of different sizes, which

lead to the formation of droplets of a given radius. Firstly,

the author of Ref. [6] considered in his approach the collision

frequencies to be the same and constant. And secondly, the

total number of droplets varies according to the law

dN
dt

= −
K
2

N2,

N =
N0

1 + (1/2)KN0t
, (2)

where K is the coagulation constant, N0 is the initial number

of nuclei droplets per unit volume.

As a result, the following equation is obtained from (1):

dn
dt

= −KnN +
1

2
K

v
∫

0

n(u)n(v − u)du. (3)

The author of Ref. [6] obtained the following solution to

the equation (3) using the expression for N (2), as well as

a number of transformations:

n =
N2

0

V
(

1 + KN0t
2

)2
exp

(

−
N0v

V (1+ KN0t/2)

)

, (4)

where V is the volume of liquid (in all the droplets) in unit

volume.

It should be noted once again that in this approach it is

necessary to know the collision frequencies and the nature

of the change in the total number of particles.

Firstly, this non-stationary solution contains an unknown

value N0. Secondly, although formally it is a solution,

but the expression (4) gives an incorrect result about the

number of small-radius droplets per unit volume with a

size tending to zero. Schumann in his study [6] relied

on experimental data form [9] and compared them not

with the calculation results using formula (4) obtained by

solving equation (3) but with the values of the function

multiplied by the volume occupied by a particle, that is, by

r3, in dimensionless form:

y = x5 exp{5(1− x3)/3},

where y — the reduced DF probability density of droplets

with a size in the range r + dr (r — the droplet radius),
scaled to its expression at r = rm; x = r/rm — reduced

radius, rm — the value of the droplet radius corresponding

to the DF peak.

This is probably why work Ref. [6] did not find a signifi-

cant response from other researchers. More serious attempts

to return to this problem were made in Ref. [5,7,10–13].
These studies are based on the kinetic equation for DF,

given in Ref. [10] without derivation:

u
∂ f
∂x

+
∂

∂r
(ṙ f ) =

I
ρ
δ(r − r∗). (5)

Here u — the longitudinal projection of velocity, x —
the longitudinal coordinate, δ — delta function, r∗ — the

radius of the nucleus of critical size, ṙ — the rate of change

of the droplet radius.

Apparently, kinetic equation (5) was applied for the first

time to the condensing gas problem in Ref. [11,12]. It takes
into account the change of the radius of the particles and

includes the source of droplet formation. The derivation of

the basic kinetic equation is briefly described in Ref. [5].
The authors of Ref. [10–12] have shown that the initial

equation admits an analytical solution in the case when the

droplet growth rate does not depend on their size. Then the

equation can be reduced to a system of ordinary differential

equations for the DF moments.

The method of moments is applied in more complex

situations, using the well-known approach to solving the

Boltzmann equation

�k =

∞
∫

r∗

rk f dr (k = 0, 1, 2).

Further more detailed studies were based on equation (5)
using the method of moments to solve it but differed in the

expression for the nucleation rate. For the gas flow and in

relation to vapor condensation, it was considered by Sternin

2 Technical Physics, 2025, Vol. 70, No. 1



18 O.A. Sinkevich, E.Yu. Skotarenko, A.N. Kireeva

in [5], and then by Korzenstein and colleagues in [13–15],
who developed the proposed algorithm for solving equation

in (5) by the method of moments.

It should be noted that, unlike the approach in Ref. [6],
this approach does not take into account droplet collisions

but only the creation of droplets and the change of their

radii over time. An attempt to partially account for the

process of droplet collisions is made in Ref. [14], where the

first equation in the initial system was supplemented by a

summand in accordance with Ref. [16].
A more detailed consideration of the problem of deter-

mining DF may be the subject of a separate study.

Let us repeat the purpose of the work, which is to

consider the homogeneous condensation of water vapor

in moist air, the effect of an electric field on it, to

find the characteristic times of this process and the total

initial number of particles per unit volume, as well as the

characteristic radius of the formed droplet.

As for the effect of constant electric fields from external

sources on condensation on charged particles, their signif-

icant impact can take place at field strengths significantly

exceeding the voltage at which an electrical breakdown

of air develops. Therefore, such fields can hardly be

realized under the conditions under which the problem

of homogeneous condensation is being considered. It is

shown that with real-world fields, the impact on the process

is small. The impact of alternating electric fields with

fluctuations of the order of radio frequency (from 100kHz

to 10MHz) is of interest. Variable fields can lead to

parametric oscillation of individual droplets, but this task

requires a separate special analysis.

1. Homogeneous condensation: the
radius of a droplet and the pressure
inside it

Analyzing the nature of condensation of moist air in

clouds of the Earth’s atmosphere and in mists, it can

be assumed that the condensation process proceeds in

two stages: the first stage, which occurs during τ1, is

accompanied by the formation of droplets of the same

size, evenly spaced in the volume of condensation. The

formed droplets interact with the surrounding air and with

each other, which leads to the determination of the size of

the droplets during τ2, and that is well observed in many

experiments. This time τ2 exceeds the time τ1, and the first

stage is considered in this part of this study.

The homogeneous condensation implies the process

inside a large volume of humid air, as a result of which

droplets of the same size are formed. It is believed that

homogeneous condensation takes place in a gas mixture

containing steam when complexes (clusters [17]) are formed

in it as a result of fluctuations — clusters of molecules. The

process of homogeneous condensation should be described

in more detail within the framework of the kinetic theory of

cluster formation from water molecules. In this approach, it

is necessary to take into account how a growing cluster

containing n molecules is formed from individual water

molecules, taking into account the fact that its destruction

can take place because of the interaction of the cluster

with the surrounding air. Some of such accumulations

can reach a critical size in supersaturated steam, and

then they become nuclei, which further grow to liquid

droplets [18]. These processes occur at the earliest stage of

water droplet formation, so in the future we will first neglect

the analysis of the initial stage of water cluster growth,

and limit ourselves to the final stable state when droplets

of the same radius are formed. There is a large number

of papers [19–22] devoted to the formation of various

kinds of clusters that contain a small number of particles.

The papers of F.M.Kuni et al. [23,24] consider various

aspects of condensation (homogeneous and heterogeneous)
of supersaturated steam in a volume, including relaxation to

a stationary process, droplet growth to critical sizes in the

case when the steam source has constant power, as well as

the effect of the form of nucleation centers, the presence of

surfactants, etc. on condensation. The purpose of this paper

is to analyze droplets that already contain a significantly

larger number of particles than the various clusters in the

works known to the authors [19–22]. Thus, we will limit

ourselves to the final result of the formation of a droplet

of radius rd , without considering the processes occurring

during its growth from a certain fluctuating size r00 to the

size rd .

Let’s consider the case when the temperature of the

humid air has dropped to a certain value, leading to

complete condensation of water vapor. The main task of

this part of the work is to determine the radius of the

formed droplets, their number per unit volume, the liquid

parameters (pressure and density) inside the droplet and

the characteristic time of the homogeneous condensation of

water vapor in the air.

Let’s start with the fundamental picture related to the use

of the well-known Laplace equation for the pressure jump

at the phase boundary:

1p =
2σ

r
, (6)

where 1p — pressure difference in the condensed droplet

and in the surrounding humid air, [Pa]; σ — surface

tension, [N/m].
It can be seen from equation (6) that the pressure and

density in a liquid droplet depend on its radius in an

isothermal medium at a known ambient pressure. The

smaller the radius under constant conditions, the greater

the internal pressure. This yields different density from the

real equation of state for the liquid, which is usually not

taken into account in publications on this topic.

We will assume that droplets of the same size rd formed

from moist air as a result of homogeneous condensation.

Unfortunately, it is impossible to use equation (6)
directly, because the radius of the droplet and the pressure

inside it are unknown.

Technical Physics, 2025, Vol. 70, No. 1
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Figure 2. Phase diagram for water in pressure−specific volume

coordinates.

This paper deals with moist air, the humidity of which is

less than unity and equals to S1 (the ratio of the partial

pressure of water vapor at a given temperature to the

saturation pressure). Suppose there was a temperature

change from T1 to T2 (T2 < T1). Let’s consider the process

of formation of liquid droplets in a volume. There may be

different processes, but we will focus on one when the water

vapor contained in the air at a temperature of T1 has fully or

partially condensed into a liquid droplet at a temperature of

T2. It is necessary to determine the radius of the droplet

and the parameters of the liquid inside it. As a result

of condensation, liquid from a certain volume of radius

rM is collected into a droplet and can be located on the

isotherm T2 (Fig. 2) at pressures higher than the saturation

pressure at T2. It is assumed that all available moisture

has passed into the liquid during condensation (when the

residual humidity SL satisfies the inequality SL/S ≪ 1).
Let’s estimate the size of the region rM from which the

water has collected into a single drop. Since the mass of

liquid enclosed in a droplet is equal to the mass of water

vapor in a volume of radius rM , it is possible to write the

following equation:

4

3
πr3dρd =

4

3
πr3MρV ,

where ρd is the density of liquid in a drop, ρV is the density

of vapor in a certain region.

Thus, the relationship between the size of the droplet

and the region of moist air from which all moisture is

accumulated into the droplet due to diffusion is as follows:

rd

rM
=

(

ρV

ρd

)1/3

.

However, the above considerations still do not allow using

equation (6) directly, since a new value has appeared —
the characteristic size of the region from which moisture

condenses (accumulates) into a drop. The final solution

requires to take into account the time it takes for vapors to

condense from the region rM into a droplet of the final

radius rd , and the fact that condensation releases heat,

which should be removed, i.e. there are two characteristic

times: the time of motion of the condensation wave and

the time of discharge of condensation heat from region rM

to outside. Therefore, for further discussion, we assume that

the time of motion of the wave front of the condensation

phase transition is equal to the time of condensation heat

dissipation.

It is possible to determine the time of motion of the

condensation wave front τc by solving the one-dimensional

Stefan problem. This is the time it takes for the phase

boundary to travel the distance from rM to rd . Then,

considering that the radius of the humid air region is much

larger than the radius of the water drop, we obtain

τc =
r2M
aV

. (7)

Here aV is the of thermal diffusivity, of moist air, which

consists of the thermal diffusivity of dry air and water vapor.

Heat is released during condensation, therefore, in order

for the formed droplet to be at a temperature of T2, this

heat shall be removed in a certain characteristic time τqc :

Qc = hLG
1

τqc

4

3
πr3MρV .

Here hLG is the heat of the phase transition.

Let’s estimate the time it takes for the heat of conden-

sation Q = qcSM = qc4πr2M to be removed from the region

with a radius of rM . The condensation heat flux rate can

be represented in terms of the condensation heat transfer

coefficient α and the temperature difference between the

source air and the cooled air: qc = α(T1 − T2).
Since bulk condensation is considered, there is practically

no data on the heat transfer coefficient in the literature.

According to [25], the heat transfer coefficient for droplet

condensation can be 40−100 kW/(m2·K).
The empirical formula for the heat transfer coefficient is

given in Ref. [26]

α = T 0.8
s (5 + 0.31T ), (8)

where Ts is the saturation temperature equal to T2;

1T = T1 − T2.

It should be noted that formula (8) is valid for pure water

vapor. In the present problem, the medium is a mixture

of dry air and water vapor, so the resulting values of the

heat transfer coefficient will be somewhat overestimated. To

account for differences in the composition of the medium, it

is necessary to introduce an absolute correction factor less

than one, which is not used here.

As a result, the expression for the cooling time can be

written as

τqc = hLG
rMρV

3α1T
. (9)
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Calculated data for liquid droplets and radius of the humid air region from which water condenses

α, kW/(m2
·K)

Pressure
ρd , kg/m

3 rd ,µm rM ,µminside the droplet

Pd ,MPa

10.27 0.1206 999.95 4.4 248.6

40 0.219 1000 1.13 63.8

70 0.318 1000 0.64 36.5

100 0.418 1000.1 0.45 25.5
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2a, kW/(m  ·K)

Figure 3. The dependence of the droplet radius on the heat

transfer coefficient of droplet condensation and the range of

prevailing droplet sizes in clouds and mists (continuous area).

It should be borne in mind that radiation can also affect

the removal of condensation heat, but a separate analysis

will be devoted to this.

The above assumption is used to obtain the final results

that times (7) and (9) are equal in the process of

homogeneous condensation: τc = τqc .

Using the real equation of state [27], we find the droplet

radius, pressure, and density in a droplet of liquid at a

temperature of T2.

The listed parameters are found using the iteration

method:

P(i+1)
d = Pa +

2σ

rM

[(

ρV

ρd

)

−
1
3
](i)

,

where Pa — ambient air pressure, Pd — pressure in a

droplet of water.

A more detailed calculation using the equation of state

of water [27] was performed in Ref. [28]. The calculations

also used the real equation of state Pd = Ps + a2
0(ρd − ρs ),

where Ps , ρs — pressure and density at the saturation line;

a0 — the speed of sound in water. As a result, the values of

the radius, density of water, and pressure inside the droplet

were obtained for air at an altitude of 1000 m at a certain

temperature (see table, Fig. 3).

The radius values obtained are within the range of the

observed droplet sizes from [2,3,9,29].
As a result, knowing the initial humidity of the air at a

known temperature, it is possible to estimate the droplet

radius, and therefore the initial number of droplets per unit

volume, which will be needed later when discussing the

distribution of drops by size. It is also possible to calculate

the time of the homogeneous condensation process, which

is very important for estimating the initial formation of

droplets.

2. Effect of electric fields
on homogeneous condensation
in atmosphere

When water vapor condenses on charged particles, there

can be at least two extreme cases: when the charge is

located on the surface of a sufficiently large solid particle,

and then the condensed liquid is in the form of a certain

layer, the thickness of which may be less than the radius

of the particle. Another case is when the charge is

concentrated on a solid particle with a very small radius

(approximately 10−8 m), which is many times smaller than

the radius of a liquid droplet formed during homogeneous

condensation. Futher on, let’s focus on the second case.

Let us consider the effect of electric fields on the

condensation process. There are several mechanisms of

such influence. The first is the effect of static electric fields

created by charged particles, the second is the effect of

electric fields from external objects, such as charged clouds

and the earth, and the third is the effect of alternating

electric fields.

Let us consider in more detail the results of homogeneous

condensation when it occurs on an initial particle of radius

r00 carrying an electric charge eZ (this may be a charged

speck of dust). Still, without considering the processes that

take place during condensation and lead to the formation

of a liquid particle of radius rd ≫ r00, we limit ourselves

to the final state, comparing it with the final state in the

absence of charge.

In the atmosphere, at different altitudes, starting from

the Earth’s surface and up to tens of kilometers, there are

various charged particles on which water vapor condenses.

Some of these particles are produced by cosmic rays, which

produce ionization of various kinds of solid and gaseous

Technical Physics, 2025, Vol. 70, No. 1
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inclusions. These can be individual molecules, clusters

consisting of groups of molecules of different or the same

grade, or solid dust particles. In addition, charging can

be caused by the solar radiation exposure of solid particles

with various kinds of metal inclusions. Photoemission

takes place under the direct action of solar radiation:

free electrons escape into the surrounding space, and the

particles acquire a positive charge. In turn, electrons can

”
stick“ to various atoms (for example, oxygen) that have

a high affinity for an electron. Thus, charged particles

can be present in large quantities in the atmosphere. The

list of particles, the mechanisms of charge formation on

them and their maintenance in the atmosphere is a separate

topic [2,30–33]. Therefore, the present work assumes the

presence of particles charged both positively and negatively.

Here, the main focus is on the pressure that is created by

the electric field of the charged center.

Let us consider the problem with the condition that

condensation centers of small radius r00 are present in water

vapor, carrying a charge Q = eZ (e — electron charge, Z —
number of charges). The particle radius should be of the

order 0.1−0.01 µm. At the same time, it cannot accumulate

too many charges Z. Since the charges have the same sign,

repulsive forces arise between them, leading to the breaking

of the particle on which they have accumulated.

The charged center creates a radial electric field around

itself. Let’s assume that a droplet with a radius of rd has

already formed on this center.

The radial part of the electric field induction vector

remains constant when passing through the boundary of

media, therefore, the following relations are valid:

Dd(rd) = Da(rd),

Edε0εd = Eaε0εa .

Then, the electric field strength abruptly changes at the

boundary of the droplet

Ea =
eZ

4πε0εa r2d
,

Ed =
eZ

4π0εdr2d
, (10)

where ε0 — electrical constant; εd , εa — relative permittiv-

ity of water and air.

The electric field creates pressure, which contributes to

and affects the Laplace jump on the droplet surface. Since

the electric pressure is related to the electric field strength as

P j = ε0ε j E2/2 ( j = d, a), according to (10), the pressure

is proportional to the square of the voltage, and therefore to

the square of the electric charge of the condensation center.

Expressions for the electrical pressure in the air and inside

the droplet:

PdE =
(eZ)2

32π2ε0εdr4d
,

PaE =
(eZ)2

32π2ε0εa r4d
.

As mentioned above, the pressure created by the electric

field does not depend on the sign of the charge carried by

the condensation center.

The presence of an electric field leads to a modification of

the Laplace jump. The equilibrium condition on the droplet

surface, taking into account the electric field, has the form

1Phd − 1PE =
2σ

rde
,

where 1Phd — the pressure difference in the droplet and

in the surrounding atmosphere; 1PE = PaE − PdE — the

electrical pressure difference between the surrounding air

and inside the droplet; rdE — the radius of the droplet

formed during condensation in the presence of an electric

field created by a charged condensation center.

Next, we will evaluate the effect of the electric field on

the radius of the formed droplet.

The number of charges Z that can be accumulated on the

condensation center is selected as a variable parameter. A

preliminary assessment showed that Z ∼ 104 is necessary

for the effect of the electrical pressure difference to be

noticeable.

It is chosen for calculations that the relative permittivity of

water inside a droplet is εd = 80 and the relative permittivity

of ambient air is εa = 1.

The analysis is performed by considering the dependence

of the parameters on the number of charges Z and

condensation heat transfer coefficient α.

First, we calculate the electric fields that occur outside

and inside the droplet. Due to the large difference in

the dielectric permittivity of the media, the external field

exceeds the internal field by two orders of magnitude.

Figure 4 shows the values of the external electric field

strength as more significant than the breakdown field

10 30 50 70 90

105

10–2

10–1

1

10

102

103

104

10–3

E
E

a
/

p
r

20 40 60 80 110100

a, kW/(m ·K)2

Z = 107

Z = 102

Figure 4. The relative electric field strength that occurs in

atmospheric air at different heat transfer coefficients of droplet

condensation and the number of charges at the condensation

center; attributed to breakdown strength.
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(Epr = 3MV/m). The dependence is constructed for the

four obtained values of the heat transfer coefficient (see
table). The horizontal line corresponds to the breakdown

voltage in the atmosphere at a given pressure. Isolines with

the same value Z are marked. At high Z, the electric field

should significantly exceed the breakdown field, which is

not realized in the atmosphere.

Figure 5 shows how the difference in electrical pressure

changes with respect to the hydrodynamic Laplace jump as

the number of charges increases. Figures 6, 7 show the

changes of pressure in the droplet and the droplet radius.

The calculation of the radii of a liquid droplet is

performed similarly to the scheme in the previous section
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Figure 5. Relative electrical pressure with different heat

transfer coefficients during condensation and charge numbers

at condensation center: 1 — α = 10.27, 2 — 40, 3 — 70, 4 —
100 kW/(m2

·K).
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Figure 6. Relative pressure in a liquid droplet with different

heat transfer coefficients during condensation and charge numbers

at condensation center: 1 — α = 10.27, 2 — 40, 3 — 70, 4 —
100 kW/(m2

·K).
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Figure 7. Relative radius of a liquid droplet with different

heat transfer coefficients during condensation and charge numbers

at condensation center: 1 — α = 10.27, 2 — 40, 3 — 70, 4 —
100 kW/(m2

·K).

in the absence of an electric field. Now the iterative

calculation formula is supplemented by the difference in

electrical pressures. As a result, after several iterations we

obtain the values of the radii of liquid droplets depending

on the number of charges on the particle using the already

obtained values of the radius of the humid air region from

which the droplet condenses, and the same estimates of

the heat transfer coefficient in case of droplet condensation.

Changes of the droplet radius and pressure in it are obtained.

The results of the calculations show that the droplet

radius in case of homogeneous condensation on charged

particles depends on in practice two parameters: the number

of charges and the heat transfer coefficient. However,

a significant effect of charge at the same heat transfer

coefficients occurs at Z > 104.

It follows from the calculations performed that the droplet

radius practically does not change for a charge value from

zero to the order of 1.6 · 10−16 C, but the pressure of the

liquid inside the droplet increases. Considering charges of

greater importance does not make practical sense due to the

fact that, as noted earlier, this can lead to the development

of an electrical breakdown of the air.

When the electric field changes from zero to certain

values, the presence of a charge leads to an increase

in electric pressure, therefore, from the Laplace jump

condition, the pressure of the liquid inside the droplet

should increase, which is observed in calculations.

It also follows from the calculation results that the

charge sign does not affect the condensation conditions.

However, the effect of the electric field on diffusion was not

taken into account in this consideration, when calculating

the rM region from which the moisture contained in the

air is collected in a droplet. If we consider that water

molecules have a dipole moment d = 61 · 10−29 C/m, then
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the presence of an electric field from a charged particle

affects the motion of molecules towards the condensation

center. In an electric field, a force acts on a molecule,

which is equal to F = d∇E . Therefore, this force leads

to repulsion from the condensation center in case of a

negatively charged condensation center, and it leads to

attraction to the condensation center in case of a positively

charged condensation center. The impact of the charge sign

on the process of homogeneous condensation can actually

be observed in some cases in [34]. Taking this into account

may lead to a change of the value of the radius rM , since the

convective component will also be affected along with the

diffusion component. This impact is not taken into account

in this study, so the result is that the characteristics of

homogeneous condensation do not depend on the sign of

the charge. The authors reserve a more detailed analysis of

this process for the future.

The impact of α in the framework of the proposed model

of equilibrium droplet formation is related to the equality

of the times of the condensation wave and heat release,

depending on the heat transfer coefficient.

The condensation processes on charged particles dis-

cussed in this section may be relevant to the analysis of

the stability of the boundary of a charged cloud, studied in

Ref. [35].
There are papers that study the impact of electric fields

on the displacement of the phase equilibrium of droplets in

an electric field. However, these effects can also occur in

electric fields significantly higher than the field of electrical

breakdown, and therefore are not considered here. The

analysis of the effect of alternating electric fields on the

droplet parameters, which requires further more detailed

analysis, is of greater interest.

Conclusion

Homogeneous condensation of water vapor from moist

air occurring at electrically neutral centers and homoge-

neous condensation at charged centers were considered.

The calculation of the parameters (radius, density, and

pressure) of the formed condensate droplet was based on

the hypothesis that the time of heat removal of the phase

transition and the time of movement of the condensation

wave of water vapor are equal. The values of pressure and

density inside a droplet of water in a volume of moist air

at an altitude of 1000 m were calculated. The proposed

mechanism of homogeneous condensation can be applied

at other altitudes, and in particular, it may be useful for

predicting the formation of fogs near the earth’s surface and

near various facilities.

The effect of charge when homogeneous condensation

occurs on particles carrying an electric charge was studied.

The limits of the impact of the electric field on the

parameters of homogeneous condensation were shown. It

is found that the droplet radius decreases depending on the

particle charge, and the pressure inside the droplet increases

with the an increase in the number of charges and regardless

of the charge sign.
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