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Theory of the structure of icosahedral quasicrystals: types of packings
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A unified theory of the structure of icosahedral quasicrystals is proposed. All possible variants of self-similar

icosahedral packings are analyzed. These include 3 types of quasilattices (P, I, F), which are the analogues of

primitive, body-centered and face-centered cubic lattices; each of them can be either centrosymmetric or non-

centrosymmetric. Substitution rules for I and F-type tetrahedral tilings are fully formalized. An example of

constructing a non-centrosymmetric I-type packing is presented. A method is shown for generating a zonohedral

packing (P) from a tetrahedral packing (I) by joining the neighboring tetrahedra in it. For each packing type, 3

locally isomorphic patches are possible, differing in the choice of node in its center (A, B, C). When the tetrahedral

packings are built up, three locally isomorphic patches cyclically transform into each other after each iteration. As

a consequence, the structures of the three types of characteristic clusters are not independent. An icosahedral

packing of any type can be constructed based on a unified algorithm when initialized with a single tetrahedron.
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Introduction

The present work continues a series of works on the

theory of the structure of icosahedral quasicrystals [1,2].
Higher-dimensional approach (in particular, the cut-and-

project method) is generally accepted today when de-

scribing the structure of quasicrystals. It is based on the

synthesis of Fourier series for a certain periodic distribution

in a six-dimensional space based on data from a diffraction

experiment, identifying it with the distribution of certain six-

dimensional
”
atoms“ and projecting a strip cut out of it in a

certain way into the physical 3D-space [3,4]. As discussed

earlier in Ref. [2], the problems that arise in this case

lead to the identification of several different clusters with

one averaged structure at once, loss of precise icosahedral

symmetry and violation of self-similarity. The theory of the

structure of quasicrystals in its modern form is not devoid

of internal contradictions, including fundamental ones. Let

us quote the monograph [5]:
”
A three-dimensional atom has

a certain pedestrian reality that does not so easily lend itself

to a mapping onto six dimensions“.

The projection method is usually contrasted with the

method based on the tiling theory [6,7], which, generally

speaking, is not clear. After all, both of the most significant

tilings (the Socolar-Steinhardt zonohedral tiling [8] and

the Danzer tetrahedral tiling [9,10]) are themselves also

obtained by projection from 6D-space.

Socolar and Steinhardt showed that if the tiling we

are interested in satisfies the Penrose local isomorphism

property, then it should not contain the oblate rhombohe-

dra. In particular, the basis set can consist of 4 golden

zonohedra [8]. They have also shown that there are exactly

3 perfect packings with icosahedral point symmetry in

Euclidean space. As a result, three types of icosahedral

clusters should be expected to appear in the real structure.

In practice, on the contrary, the tiling into prolate and oblate

rhombohedra is much more often used (Ammann-Kramer-

Neri tiling) [11]. Incomplete or mixed sets of cells [12,13]
or an overlapping cluster model are also used [14], whose

theoretical validity is controversial. As a result, when

elucidating the real structures, it is possible to identify

either just one or, at best, two types of characteristic

clusters [15,17].

There are 3 types of icosahedral quasicrystals — P, I
and F (by analogy with primitive, body-centered and face-

centered cubic crystals) [18,19]. It is proved that the self-

similarity factor for quasilattices of all three types should

be equal to τ 3, and the inflation factor should be equal

to τ for I and F -types and τ 3 for P-type, where τ is

the golden ratio [20,21]. In essence, this fact reflects

the property of self-similarity; it is a direct consequence

of the periodicity of the cubic 6D-lattice from which the

projection is performed. It is believed that the vast majority

of the experimentally determined structures of icosahedral

quasicrystals correspond to the F -type. However, we are not

aware of any work that would verify the conformance of the

analyzed structures with the required inflation parameters.

It is believed [10] that the Danzer tiling is completely

equivalent to the Socolar-Steinhardt tiling, but this statement

surely cannot be true. As we showed earlier in Refs. [22,23],

4∗ 51



52 A.E. Madison, P.A. Madison

they are characterized by different inflation factors, which

is possible only if they correspond to different types of

quasilattices.

The presence of contradictions prompted us to develop a

theory of the structure of quasicrystals based on the tiling

theory and the concept of unit cells [24]. Establishing an

exact correspondence between three types of icosahedral

quasicrystals (P, I , F) and three types of tilings (zonohedral
and two tetrahedral) [1] made it possible to describe

all possible variants of icosahedral packings within the

framework of a single mutually agreed approach. The

general principles of this approach were outlined in the

1st part of the paper [2]. The specifics of constructing

icosahedral packings and clusters for each of the possible

types of quasilattices are explained in detail below.

1. Symmetry analysis

The general principles of packing construction are com-

mon for both icosahedral and a wide variety of axial

quasicrystals [25]. In particular, the value of the inflation

factor is uniquely determined by the fact that the inflation

symmetry of the quasicrystalline 3D-tiling is a consequence

of the symmetry of the n-dimensional generating lattice [20].
In other words, after changing the scale, all the resulting

quasilattice nodes should be projections of the nodes of the

generating lattice.

The entire structure of an icosahedral quasicrystal is

generally considered by us as a list of cells [24]. It is

necessary to specify its type for each cell, as well as its

position and orientation in space. Then it is necessary to

specify a method for filling cells with specific atoms, taking

into account their intrinsic symmetry and local matching

rules, in order to ensure the correct
”
cross-linking“ of

neighboring cells of different types into a single whole. The

local symmetries of the cells and their possible orientations

are determined by the methods of group theory based on

the orbit-stabilizer theorem.

It is not enough for us to know the substitution matrix

to formally write down the substitution rules. For each

of the cells of the corresponding basis set, it is necessary

to select a local coordinate system and place the cell in

it, taking one of the possible orientations as the standard

one. The identity element of the symmetry group will now

correspond to this orientation. Any other orientation will be

set by a certain symmetry element (or by a whole class

of left conjugate elements with respect to the stabilizer

subgroup, if the proper symmetry of the cell is not trivial).
The position of the cell in space will be set by shifting

the local coordinate system of the cell relative to the global

coordinate system of the packing. It is enough to know the

multiplication matrix of the corresponding symmetry group

in order to build a cell packing, but the exact coordinate

representations of matrices of specific symmetry elements

are necessary to determine the positions of atoms.

The rotation group of the icosahedron I has order 60 and

is isomorphic to the alternating group A5. The complete

icosahedral group Ih is formed by adding the inversion

center to the group I , has order 120, and is isomorphic

to the symmetric group S5. Unfortunately, there is no single

approach to numbering the elements of these groups in the

literature. It depends on whether we are talking about an

abstract mathematical group of permutations or a group of

symmetry elements of an icosahedron, whether the elements

are distributed among conjugacy classes, or whether the

numbering is carried out according to the degrees of the

group generators, etc. Moreover, 2 different coordinate axis

settings are possible differing by a rotation by 90◦ relative

to one of the 2-fold axes.

When choosing the orientation of the icosahedron and

the numbering scheme of its vertices, we follow the study

in Ref. [26] (see Fig. 1). We use generally accepted notation

for the symmetry elements, but we specify in parentheses

through which vertex, face or edge the axis of interest passes

for their unambiguous identification [27]. The symmetry

elements, sorted according to their conjugacy classes, are

shown in the list (1).

For example, the 5-fold axis is designated either as C5

when using Schoenflies notations, or by the symbol 5

when Hermann-Mauguin standard international notations

are used. Then, taking into account the clarifications,

C5(1) or 5(1) is the 5-fold axis passing through the vertex

number 1. Similarly, 3(132) is a 3-fold axis passing through

the face △132 and cyclically interchanging its vertices:

1→3→2. This order of permutations is explained by the

fact that we take counterclockwise rotation as the positive

direction of rotation when looking at the icosahedron

from the outside. Element 2(12) is a 2-fold axis passing

through the edge [12] and swapping its vertices 1→2.
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Figure 1. Numbering of the icosahedron vertices.
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15σ = {m(38), m(49), m(37), m(48), m(27), m(15), m(16), m(12), m(13), m(14),

m(34), m(26), m(45), m(23), m(56)}.

(1)

Elements 1 and 1 are the identity element and the inversion,

respectively.

The first 60 elements are the pure (proper) rotations.

They form a group I . The remaining 60 elements are

improper rotations (operations with negative determinant

equal to −1), i.e. inversion itself, rotoinversions (or their

corresponding rotoreflections) and mirror reflection planes.

We would like to remind that improper symmetry elements

change the right coordinate system to the left, and also

replace the external normals of the faces with the internal

ones if they are defined as the vector product of the edges

forming these faces. This should be taken into account when

drawing the cells in the resulting packing later.

We intentionally numbered the elements in such a way

that the composition of any element of the group I with

an inversion would give an element whose number would

be exactly 60 more. For example, the composition of the

2nd element 5(1) with inversion gives 62nd element in

the list — the rotoinversion axis 5 passing through vertex

1: 5(1) = 1 · 5(1). Similarly, the composition of the 26th

element 3(132) with an inversion gives the 86th element in

the list — the rotoinversion axis 3 passing through the face

△132: 3(132) = 1 · 3(132). To determine the permutation

performed by specific rotoinversion, it is necessary to

double the cycle length of the generating element (132132),
and then replace the numbers at even positions (1*2*3*)
with the numbers of opposite vertices. The result is a

permutation: 1→10→2→12→3→9. The composition of

the 46th element 2(12) with an inversion gives the 106th

element in the list — a mirror reflection plane mapping the

vertices 3→8 into each other: m(38) = 1 · 2(12).
A complete list of all symmetry elements is provided in

the Appendix to avoid any discrepancies. The elements are

distributed among the conjugace classes, 120 elements form

a group Ih . The corresponding vertex permutations and

rotation matrices are given for each element.

Now we can proceed to a detailed explanation of

the algorithms for constructing all possible variants of

icosahedral packings.

2. Packings of I and F-types

Let us summarize the conclusions drawn in the previous

part of the paper [1,2,24]. Icosahedral quasilattices of all

three types (P, I , F) are packings of unit cells. The

choice of a basis set of cells is not arbitrary. Their

shape is derived by projecting the Voronoi polyhedron of

the corresponding 6D-lattice. The set of zonohedra for

the quasilattice of P-type is obtained by projecting the

elementary 6D-hypercube of the integer lattice Z6, and the

sets of tetrahedra for I and F-types are obtained from the

root polytope of the root lattice D6. The properties of

various higher-dimensional lattices and the notations used

for them are described in detail in the monograph [28].
The centering scheme of F -type includes all nodes

corresponding to I-type as a subset in spaces of even

dimensions. As a result, the cell sets and substitution rules

for all three types should be completely consistent. New

nodes are added to the quasilattice of P-type to form a

quasilattice of I-type, to which new nodes are added to

form a quasilattice of F -type. In this case, the zonohedra are

dissected into the tetrahedra, which, in turn, are once again

dissected into the tetrahedra of a slightly different basis set.

Thus, the construction of any possible variant of a self-

similar icosahedral packing is based on the joint use of three

mutually consistent tilings, for each of which there are its

own basis set of unit cells and its own substitution rules.

A quasilattice of P-type corresponds to the

Socolar-Steinhardt tiling into four types of zonohedra
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{GR, RD, RI, RT}. The quasilattice of F-type corresponds

to the Danzer tiling. The standard procedure for its

construction is described in Refs. [29,30]. We replace the

basis tetrahedra {A, B,C, K} [9] with their copies reduced

by τ times {a, b, c, k} to meet the requirement of mutual

consistency. This procedure is not limited to a trivial change

in scale, since it is also accompanied by a change in the

types of nodes at the vertices of the tetrahedra. A quasi-

lattice of I-type corresponds to another tetrahedral tiling,

the basis set of which is formed by three copies of Danzer

tetrahedra reduced by τ times and another tetrahedron

of the original size — {a, c, k, K}. The latter tiling was

mentioned in a single line in Danzer’s seminal work [9], but
no one has paid proper attention to it since. Its fundamental

importance as a packing of I-type was indicated by us [1].
It is important to choose the correct standard cell

orientations. The choice was quite obvious for all cells

except the tetrahedron a . The fact is that 3 out of

4 tetrahedra are subsequently used to form the starting

configurations in both basis sets. The corresponding vertex

of the tetrahedron is aligned with the origin of the global

coordinate system of the future packing. In the case of the

group Ih, using the group action on a cell, we get 120 copies

of it — a complete orbit. Combined together, they form a

polyhedron with exact icosahedral symmetry — a possible

starting configuration. In this case, all the edges coming out

of the central node turn out to be the symmetry axes of the

icosahedron — 2, 3 and 5-fold ones. We found it natural to

orient the tetrahedra relative to the coordinate system of the

icosahedron. We would like to emphasize that our choice

differs from the one accepted in the literature [29].
Let us choose the standard orientation for 3 tetrahedra

out of 4 in such a way so that the corresponding initial

vertex would coincide with the origin of the local coordinate

system of the cell; the edge parallel to the 2-fold axis would

be directed along the x -axis; the edge parallel to the 5-fold

axis would lie in the (x − y) plane; the edge parallel to the

3-fold axis would lie in the (x − z ) plane; the coordinates

of all the vertices will be non-negative in this case. The

edge parallel to the 2-fold axis for the tetrahedron a will

be also directed along the x -axis, and the orientation will

be chosen so that the coordinates of all vertices are non-

negative. This choice turns out to be convenient when

formulating a universal packing generation algorithm, but

it will require some correction when considering right and

left enantiomorphic forms.

The coordinates of the vertices of the Danzer tetrahedra

in the orientations assumed by us as the standard ones are

listed in Table 1. We use dimensionless values for the

coordinates of the vertices. The vertex type is specified for

each vertex (A, B, C, F). We use a Roman font for vertices,

and an italic font for Danzer tetrahedra (A, B,C, K) and

Levitov packing types (P, I, F) to avoid confusion when

symbols match in the accepted notations (for explanations,
see Ref. [2]).
Let us pay attention to an important property of all

Danzer tetrahedra — all their edges are parallel to one

Table 1. Danzer tetrahedra

Type Type and coordinates Included in

of tetrahedron of vertices basis set

a A (0, 0, 0) I, F
A (2, 0, 0)
C (1 + τ , τ , 0)
B (1, 0, τ )

b C (0, 0, 0) F
C (2, 0, 0)
A (1 + τ , τ , 0)
B (1 + τ , 0, 1)

c B (0, 0, 0) I, F
B (2τ , 0, 0)
A (τ , 1, 0)
C (1 + τ , 0, 1)

k A (0, 0, 0) I, F
F (τ , 0, 0)
B (τ , 1, 0)
C (τ , 0, −1 + τ )

K C (0, 0, 0) I
F (1 + τ , 0, 0)
A (1 + τ , τ , 0)
B (1 + τ , 0, 1)

of the symmetry axes of an icosahedron (2, 3 or 5-fold

ones), and the normals to all faces are always parallel to the

2-fold axes. The coordinates of all vertices belong to the

ring of quadratic integers of the field Q

(√
5
)

. Therefore,

the coordinates of all the nodes of the packing constructed

from them will also be quadratic integers [31].
As noted above, unlike the Socolar-Steinhardt tiling

into zonohedra, for which the inflation factor is τ 3, the

inflation factor for both tilings into Danzer tetrahedra is

τ . Therefore, the packing generation algorithm remains

virtually unchanged, it is only necessary to replace the

inflation multiplier:

Rk = τ Ri + g iR j ,

gk = g i g j . (2)

Here, as in the case of zonohedral packing [24,27], Ri and

g i denote the position and orientation of the generating

(parent) cell, R j and g j denote the position and orientation

of the generated (daughter) cell in the deflation scheme of

the parent cell in its standard orientation, and Rk and gk

denote the position and orientation of the generated cell,

but in a global packing.

There is another significant difference related to the cyclic

change of node types at each iteration: C→B→A→C. It will

be explained below.

The construction of an icosahedral packing of I-type
based on a tetrahedral ackK-tiling is illustrated in Fig. 2.

The figure above shows 4 tetrahedra {a, c, k, K} oriented
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Table 2. Substitution rules for packing of I-type

� Type Position Orientation

j of cell R j � g j

a → infl(a)
1 K (0, 0, 0) 1 1

2 K (0, 0, 0) 111 m(15)
3 K (0, 0, 0) 28 3(154)

4 k (1 + τ , τ , 0) 104 3
5
(498)

5 k (1 + τ , τ , 0) 20 53(1)

6 k (τ , 0, 1 + τ ) 102 3
5
(387)

7 c (1 + 2τ , 1 + τ , 0) 54 2(56)

8 c (1 + 2τ , 1 + τ , 0) 77 5
7
(4)

K → infl(K)
1 c (0, 0, 0) 1 1

2 k (τ , 1, 0) 76 5
7
(3)

3 k (1 + 2τ , 0, τ ) 55 2(26)
4 K (1 + 2τ , 1 + τ , 0) 54 2(56)

5 K (1 + 2τ , 1 + τ , 0) 63 5(2)
6 K (1 + 2τ , 1 + τ , 0) 41 32(237)

c → infl(c)
1 k (0, 0, 0) 1 1

2 k (2τ , 0, 0) 113 m(12)
3 c (1 + 2τ , 0, τ ) 55 2(26)

4 c (1 + 2τ , 0, τ ) 66 5(5)
5 a (2 + 2τ , 0, 0) 113 m(12)

k → infl(k)
1 K (0, 0, 0) 1 1

relative to the symmetry axes of an icosahedron. The

coordinates of the vertices are specified for such particular

orientation in Table 1. We took it for the standard one.

Nodes of different types are marked with different colors:

A (white), B (black), C (red), F (turquoise). Since

there are 2 types of edges [AB] of the same length, the

edges of the 2nd type are also highlighted by color (for
explanations, see [1]). The order of writing out tetrahedra

in both basis sets was adopted by Danzer [9]: {A, B,C, K}
and {A,C, K, τ K}, after rescaling we get {a, b, c, k} and

{a, c, k, K}, respectively. In the Fig. 2, the enlarged

tetrahedron K is placed second to emphasize the fact that it

is used instead of b in the second basis set. The second row

contains substitution rules: tetrahedra increase by a factor

of τ and are made up of tetrahedra of the original size.

The substitution rules, written as lists of cells, are given in

Table 2.

Next, Fig. 2 shows the substitution rules in the form of

polyhedron packings. A single tetrahedron can be used to

initialize the algorithm for constructing the entire packing.

In total, there are 3 locally isomorphic packing variants

(centered at nodes A, B, C). By acting on the corresponding

tetrahedron by all elements of the symmetry group of the

icosahedron, we obtain 120 copies of it united in the starting

configuration. After applying the 1st iteration, we obtain a

fragment of the packing in the form of a polyhedron of the

initial configuration, but enlarged by τ times.

Let us now explain the property associated with the cyclic

change of node types at each iteration: C→B→A→C. All

nodes are being changed, including the central ones. Apply-

ing the inflation and deflation to the starting configuration of

packing C (a triacontahedron of 120 tetrahedra K) results

not in the adding of the next layer to the initial starting

configuration (as it would be intuitively expected), but in
a patch of packing B in the form of a the triacontahedron

enlarged by τ times. In other words, applying the next

iteration to packing C turns it into packing B. Applying

another iteration to packing B turns it into packing A.

Applying another iteration to packing A turns it into

packing C.

The loop closes after three iterations: C→B→A→C. We

can draw 3 important conclusions. Firstly, the inflation

factor of the substitution algorithm is τ whereas the self-

similarity factor of the packing is τ 3. Secondly, any of

the three packing variants can be constructed from a single

tetrahedron. Any tetrahedron can act as such except for a .
Thirdly, the structure of the characteristic clusters located

at nodes A, B, and C is interrelated. In particular, if in the

structure of an ideal icosahedral quasicrystal the nodes A

and B form a triacontahedron around node C, then C and

A form a τ times larger triacontahedron around B, and B

and C form a τ 2 times larger triacontahedron around A.

As to the software implementation, it is first necessary

to set a starting cell (or a small starting cluster of several

cells, see below). For example, we start building a packing

centered at node A. The starting cell is the tetrahedron k .
The entire packing consists of a single cell at this stage of

the algorithm and the list of cells consists of a single row:

cell type k , position (0, 0, 0), orientation 1 (the identity

transformation). Now we have to multiply the starting cell

by the symmetry group Ih, so we get a starting configuration

in the form of a triacontahedron of 120 tetrahedra k . The

list of cells will then contain 120 rows: the type of all cells

k , the position of all cells is set by the vector (0, 0, 0), but
the orientations are all different — from 1 to 120 (the full

orbit of the cell). The initialization stage is completed, and

now we can proceed to the iterative algorithm of inflation

and deflation.

At this stage, we move each time through the list of

cells, which is generated in the previous iteration. The

appropriate rule is selected from Table 2 for each cell in the

list depending on its type, and a new cluster of appropriately

oriented cells is generated in a particular place according to

the equations (2). In particular, a list of 120 tetrahedra k
(a triacontahedron centered at node A) generates a new list

of 120 tetrahedra K (the τ times enlarged triacontahedron

centered at node C). This transformation is marked by a

curved arrow from A to C in Fig. 2. Let us proceed to

the next iteration. Each of the 120 tetrahedra K generates

6 new tetrahedra according to Table 2 and equations (2).
The result is the τ 2 times enlarged triacontahedron centered

at node B. The starting configuration for node B is inside:
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Figure 2. Construction of an icosahedral packing of I-type based on a tetrahedral ackK-tiling. From top to bottom: a basis set of 4

tetrahedra {a, c, k, K} in standard orientation and substitution rules in the form of ball-and-stick models; substitution rules in the form

of tetrahedron packings; 3 tetrahedra used to initialize the construction procedure of 3 packing variants (centered at nodes A, B, C),
symmetric starting configurations made up of them and the result of application of the 1st iteration to them. Nodes of different types are

highlighted in colors: A (white), B (black), C (red), F (turquoise).

120 tetrahedra c and 240 tetrahedra k , together forming a

star of rhombohedra. This transformation is marked with

an oblique arrow from C to B in Fig. 2. Further, the

packing generation process continues until the desired size

is reached.

An icosahedral packing of F -type is constructed by us

on the basis of the classical Danzer tiling, the tetrahedra of

which are reduced by τ times (Fig. 3). The figure shows

4 tetrahedra of the basis set in the orientations, which we

have accepted as the standard, the substitution rules for
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Table 3. Substitution rules for F-type packing

� Type Position Orientation

j of cell R j � g j

a → infl(a)

1 b (0, 0, 0) 1 1

2 b (0, 0, 0) 111 m(15)
3 b (0, 0, 0) 28 3(154)
4 k (1 + τ , τ , 0) 41 32(237)

5 k (1 + τ , τ , 0) 64 5(3)
6 k (τ , 0, 1 + τ ) 60 2(49)

7 k (1 + τ , τ , 0) 104 3
5
(498)

8 k (1 + τ , τ , 0) 20 53(1)

9 k (τ , 0, 1 + τ ) 102 3
5
(387)

10 c (1 + 2τ , 1 + τ , 0) 54 2(56)

11 c (1 + 2τ , 1 + τ , 0) 77 5
7
(4)

b → infl(b)

1 c (0, 0, 0) 1 1

2 k (τ , 1, 0) 76 5
7
(3)

3 k (1 + 2τ , 0, τ ) 55 2(26)

4 k (1 + τ , τ , 0) 38 32(154)

5 k (1 + 2τ , 0, τ ) 66 5(5)
6 b (1 + 2τ , 1 + τ , 0) 54 2(56)

7 b (1 + 2τ , 1 + τ , 0) 63 5(2)

c → infl(c)

1 k (0, 0, 0) 1 1

2 k (2τ , 0, 0) 113 m(12)
3 c (1 + 2τ , 0, τ ) 55 2(26)

4 c (1 + 2τ , 0, τ ) 66 5(5)
5 a (2 + 2τ , 0, 0) 113 m(12)

k → infl(k)

1 b (0, 0, 0) 1 1

2 k (1 + τ , τ , 0) 41 32(237)

them, the starting configurations, and the result of applying

the 1st iteration. The substitution rules for the Danzer tiling

with reduced tetrahedra are given in Table 3.

The Danzer tiling is also characterized by a cyclic change

of node types: 3 variants of locally isomorphic patches

cyclically transform into each other after each iteration for

both tetrahedral tilings.

There is an analogy here with the properties of the

Penrose tiling. For it, the inflation factor is τ whereas

the self-similarity factor is τ 2. Two configurations (
”
star“

and
”
sun“) cyclically transform into each other after each

iteration [32]. Most likely, self-similar rhombic tilings with

the 7-fold symmetry [33] would have similar property if the

problem with the ambiguity of the deflation rules could be

solved.

We believe that a similar algorithm, after making minor

changes, can be applied to construct almost any tiling

based on substitutions (substitution tilings) [29], including
cyclotomic tilings with higher-symmetry axes [34], self-

similar rhombic tilings with 7-fold symmetry and multiple

substitution rules for tiles of the same shape [33], tilings

with a dense distribution of possible tile orientations similar

to the Conway-Radin pinwheel [35,36] and others.

3. Enantiomorphism

The general principles of constructing non-

centrosymmetric packings were briefly outlined in the

previous part [2]. All 120 copies of each of the tetrahedra

are equivalent in the group Ih. Differently oriented cells and

their mirror copies should be considered different in the

group I . It would be possible to group several tetrahedra

of the same type with their mirror copies into asymmetric

octahedra [29] and then use them as asymmetric unit cells.

There is a simpler solution.

First of all, let us make a clarification. All 3 types

of packings are considered within the framework of the

proposed theory — P , I , F . Here, the symbol I traditionally

denotes the icosahedral analogue of a body-centered cubic

lattice. All 3 types can have both a symmetry group Ih

and a symmetry group I . In this context, the symbol I
corresponds to the group of pure rotations of an icosahedron

in Schoenflies notation. Where there may be discrepancies,

we will add Hermann-Mauguin symbols to the symbols of

the symmetry group: 235 (I), m3̄5̄.

So, let us start by considering a packing of I-type with

symmetry 235 (group I). Let us take the tetrahedra of the

basis set {a, c, k, K} and rotate them with all the symmetry

elements of the group Ih. This will result in 120 orientations

each. Half of them can be considered as
”
right“ while the

other half as the
”
left“ ones. There is no need to choose

the cells of other shapes, and there is no need to make

changes to the packing algorithm. It is enough to look at

the orientation number of a particular cell in the list. If

the number is in the range from 61 to 120, then this is a

mirrored orientation.

The initial orientation and the orientations obtained

from it by using the subgroup of pure rotations I will

be considered as the right-oriented ones for tetrahedra

{c, k, K}, the rest will be considered as the left-oriented

ones. The exception to the general rule is the tetrahedron

a , for which the order of determining the right and left

orientations must be reversed. Thanks to this choice, a

tetrahedron packing will be built according to the
”
face-

to-face“ principle, and the right-oriented tetrahedron in it

will always be adjacent to the left-oriented one, regardless

of its specific type.

When constructing a non-centrosymmetric packing of

F -type, the only difference is that the set {a, b, c, k} is

used instead of the set {a, c, k, K}. The two right and

two left tetrahedra b and k are grouped together and used

instead of the corresponding right and left tetrahedra K.

The general principle that the face of the right tetrahedron

always touches the face of the left one is violated only in the

case of a shared face of a pair of neighboring tetrahedra b
and k .
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Figure 3. Construction of an icosahedral packing of F-type based on a tetrahedral abck-tiling. From top to bottom: a basis set of

tetrahedra {a, b, c, k} in standard orientation and substitution rules in the form of ball-and-stick models; substitution rules in the form of

tetrahedron packings; 3 tetrahedra used to initialize the construction procedure of 3 packing variants (centered at nodes A, B and C), the
symmetric starting configurations made up of them and the result of application of the 1st iteration to them.

The construction of non-centrosymmetric icosahedral

packings is explained in Figs. 4, 5.

Fig. 4 shows the right and left Danzer tetrahedra used to

construct non-centrosymmetric icosahedral packings. The

left orientations are obtained from the right ones using the

inversion operation. If we take the set {a, b, c, k}, which

is used to build the packing F , and choose the pair of right

and left tetrahedra K instead of the corresponding pair of
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A B C

K

a
b

c ky

z x

Figure 4. Principles of constructing non-centrosymmetric icosa-

hedral packings; at the top — the orientation of the coordinate axes

used and the basis sets of right and left Danzer tetrahedra oriented

relative to them; at the bottom — tetrahedron configurations used

to initialize 3 packing variants (centered at nodes A, B, C). Darker
color palettes are used to draw the right tetrahedra in the color

version of the drawing presented in the electronic version of the

article.

tetrahedra b, we obtain a set {a, c, k, K} for building the

packing I .
The right and left tetrahedra in the symmetry group

235 (I) are not equivalent. Formally, the basis sets contain

twice the number of tetrahedra: {a, c, k, K, a, c, k, K} for

packing of I-type generated from a six-dimensional bcc

lattice, and {a, b, c, k, a, b, c, k} for packing of F-type
generated from a six-dimensional fcc lattice. Here, we

used the inversion symbol to denote tetrahedra in the

mirrored orientation. However, once again, the procedure

for constructing packings for groups I and Ih is no different.

Differences for the group I appear only at the next stage,

when the method of decorating cells with specific atoms

is chosen, depending on whether the cell orientation falls

within the range 1−60 or in the range 61−120 (see Table 4

in the Appendix).

Fig. 4 also shows the configurations used to initialize the

procedure for constructing 3 packing variants (centered at

nodes A, B, and C). The starting configurations are two

different stars of rhombohedra (hexecontahedra) and tria-

contahedron in this case. The analogy with the construction

of the Socolar-Steinhardt tiling [22,24] becomes obvious.

This allows establishing an exact correspondence between

packings of tetrahedra and packings of zonohedra, and,

ultimately, between all three types of quasilattices (P, I, F).

The construction of a packing of I-type with symmetry

235 (I) is shown in Fig. 5. The starting configurations

are 2 hexecontahedra (variants A and B of the packing

I), differing in the orientation of the rhombohedra forming

them, and a triacontahedron (variant C of the packing

I). The results of applying 3 consecutive iterations

are presented. The sizes of all patches increase by τ

times with each iteration, and the types of all nodes are

cyclically interchanged C→B→A→C. As a consequence,

3 locally isomorphic packing variants transform into each

other. In particular, 120 tetrahedra K are combined into

a triacontahedron (the starting configuration of the packing

variant C), it increases by τ times and becomes a fragment

of the packing B, then it increases again and becomes a

fragment of the packing A and only after the 3rd iteration

it becomes the packing C again.

Packing variants differ by the type of the node at the

origin: A, B, C. In Fig. 5, larger and larger patches of 3

different packing variants are arranged in horizontal rows.

The starting configurations and the results of applying

3 consecutive iterations to them are arranged in vertical

columns. The arrows indicate that, after each iteration, the

fragments of packings with nodes of various types in the

center not only increase in size, but also cyclically transform

into each other.

Let us pay attention to the fundamental differences in the

symmetry of the ornaments obtained on different faces and

the alternation of the right and left tetrahedra forming the

packing.

A triacontahedron enlarged by τ 3 times contains more

than 12 000 base tetrahedra oriented in various ways, and

the stars of rhombohedra after 3 iterations contain more

than 16 000 tetrahedra. It is not difficult to verify this by

cubing the tiling composition matrix given in the first part

of the work [2].
The construction of a packing of F-type is completely

similar. The generation of large fragments of the Danzer

tiling was reported in the literature [37]. Perhaps the small

number of tetrahedra was not sufficient to establish the

fundamental properties of icosahedral packings, and their

large number complicated the analysis too much.

4. Packing of P-type

There is a well-established opinion in the literature that

the Socolar-Steinhardt tiling into zonohedra is completely

equivalent to the Danzer ABCK-tiling into tetrahedra (with

the correction that equivalence is implied in the sense of

their mutual local derivability) [10]. It has also been argued

that both of these tilings describe icosahedral analogues

of the face-centered cubic lattice [38]. Once again, the

packing of zonohedra describes quasicrystals of P-type, i.e.
analogues of the primitive cubic lattice [1,2].
The substitution rules for the packing of zonohedra were

derived by us in Refs. [22,23] almost three decades after

its discovery [8]. The formalization of the algorithm for

constructing the packing of zonohedra made it possible

to establish a number of important features [24,27]. It

is sufficient to set the positions and orientations of only

12 polyhedra to derive the deflation scheme of a triaconta-

hedron, but after multiplying them by the symmetry group

of the icosahedron, the complete deflation scheme of the
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A

B

C

Figure 5. Construction of an icosahedral packing of I-type with symmetry 235 (I). The starting configurations are 2 stars of rhombohedra

(A and B) and a triacontahedron (C). The results of applying 3 iterations are presented. The sizes of all configurations increase by τ times

with each iteration, and the types of all nodes are cyclically interchanged C→B→A→C.

triacontahedron will already contain a list of 533 entries.

The deflation schemes of the remaining zonohedra are

derived from the deflation scheme of the triacontahedron.

As a result, the whole list of polyhedra forming substitution

rules for all 4 zonohedra occupies several tens of pages.

There is another option — to add the
”
fictitious“ nodes C,

build the I-type packing of tetrahedra {a, c, k, K}, and then

remove all the newly introduced type C nodes from the just

constructed tiling. Since the centering scheme of the I-type
only adds new nodes to the primitive cubic 6D-lattice,

but does not change the lattice Z6 itself, their removal is

expected to return things to the way they were — to the

lattice of P-type. We have already noted that the inflation

factor for quasicrystals of P-type is equal to τ 3. Therefore,

our task is to establish a correspondence between the

substitution rules for zonohedra and the 3rd iteration of the

inflation-deflation algorithm for packing Danzer tetrahedra

with the basis set {a, c, k, K}.
The relationship between the Socolar-Steinhardt tiling into

golden zonohedra and tilings based on Danzer tetrahedra is

illustrated in Fig. 6. As expected, tetrahedra {a, c, k, K}
grouped around a common vertex C form zonohedra
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Figure 6. The relationship between the Socolar-Steinhardt tiling into golden zonohedra and tilings based on Danzer tetrahedra. Above:

tetrahedra {a, c, k, K} grouped around a common vertex C form zonohedra {GR, RD, RI, RT}. In the center: the exact correspondence

between the substitution rules for zonohedra and packing of I-type based on Danzer tetrahedra. A layer cut perpendicular to the 2-fold

axis (packing variant with node C in the center) is shown. Tetrahedra are combined into zonohedra. The spatial arrangement of the

zonohedra exactly reproduces the substitution rule for the triacontahedron in the Socolar-Steinhardt tiling. The arrows indicate the 2, 3

and 5-fold symmetry axes and illustrate their location with respect to the coordinate axes x and y , the z -axis is directed perpendicular to

the layer.

{GR, RD, RI, RT}. An equivalent zonohedron dissection

scheme, but for the standard Danzer tiling, was described

in Ref. [38]. A careful comparison of the packings

allowed establishing an exact correspondence between the

substitution rules for zonohedra and packing of I-type
based on Danzer tetrahedra. Fig. 6 shows the packing

layer, cut perpendicular to the 2-fold axis (coinciding with

the z -axis). This is the variant with node C in the

center. If tetrahedra are combined into zonohedra, then

their spatial arrangement exactly reproduces the substitu-

tion rule for the triacontahedron in the Socolar-Steinhardt

tiling.

It should be noted that the approach based on deriving

the zonohedral tiling from the tetrahedral one, in addition
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to simplifying the packing algorithm, also greatly simplifies

the subsequent procedure for populating cells with atoms.

Let us pay attention once again to the alternation of

right and left tetrahedra. When constructing zonohedral

packing using the set {a, c, k, K}, the right tetrahedra are

always adjacent to the left ones — both when combining

them into zonohedra and when combining zonohedra into a

global packing. This property imposes additional limitations

on the options for decorating cells with atoms, since

in this case, in addition to the local symmetry of the

zonohedra, the local matching rules between the touching

faces should also be taken into account. This property allows

using the
”
plug-and-socket“ principle when assembling

subunits, especially if, for example, we are faced with the

task of constructing full-scale physical models of various

icosahedral packings. It becomes possible to build models

of complex quasicrystalline packings based on the principle

of a children’s designer. It is also possible to map the tiling

to a bipartite graph and derive useful consequences using

graph theory methods.

5. Results and discussion

This paper is the second in a series of papers on

the theory of the structure of icosahedral quasicrystals.

We explained in detail the procedure for deriving three

main types of icosahedral tilings by projection from a six-

dimensional space and established their exact relationship

with three types of icosahedral quasicrystals in our previous

work [2]. It has been shown that the Socolar-Steinhardt

zonohedral tiling corresponds to a quasilattice of P-type.
All vertices of zonohedra have as their prototypes the

nodes of a primitive cubic 6D-lattice generated by six unit

basis vectors — vector [1 0 0 0 0 0] and equivalent vectors

obtained by cyclic permutations of coordinates. The reverse

is not true — not all nodes within the projection strip should

be taken into account when mapping in 3D-space to avoid

violating icosahedral symmetry. All additional nodes of the

quasilattice of I-type have as their prototypes the nodes of

the cubic 6D-sublattice shifted by a vector [ 1
2

1
2

1
2

1
2

1
2

1
2
].

The additional nodes of the quasilattice of F -type have as

their prototypes the nodes of the sublattices shifted by the

vector [ 1
2

1
2
0 0 0 0] and equivalent shifts. The quasilattices

I and F correspond to two tetrahedral Danzer tilings with

basis sets {a, c, k, K} and {a, b, c, k}, respectively. Thus,

the approach based on the tiling theory does not contradict

the methods of higher-dimensional crystallography, but is a

natural and integral part of it.

Well-known statements about the supposedly complete

mutual equivalence of zonohedral and tetrahedral pack-

ings [9,38] may lead an unprepared reader to erroneous

conclusions. The concept of mutual derivability in Ref. [39]
implies not the true equivalence, but only that the polyhedra

of one of the tilings can be dissected into smaller parts,

which can then be re-grouped into polyhedra of the second

tiling. In this sense, a fcc lattice can indeed be derived

from a primitive one, and the result of projecting one

of them can be derived from the result of projecting the

other. It would be useful to mention the kagome grid as

another illustrative counterexample, in which hexagons can

be dissected into smaller parts in such a way that the pairs

of cut triangles can be combined with pairs of equilateral

triangles. This results in a rectangle checkerboard pattern

with alternating centered and empty rectangles. A pair of

plane grids with fundamentally different symmetries satisfies

all the requirements of mutual local derivability, which,

however, does not mean at all that they are equivalent.

Let us formulate an important thesis. The iterative

algorithm of inflation and deflation underlies the procedure

for constructing all the tilings considered in the present

paper. As a result, they have all the properties inherent

in tilings of this type [29]. Any statements that are valid

with respect to the result of the 1st iteration can be

extended to a sufficiently large region of finite dimensions

and elementarily proved by induction.

Some complications may arise in the case of the so-

called
”
imperfect“ substitution rules. The enlarged tiles

are still filled with tiles of the original size, but they may

not completely cover the corresponding areas, or partially

extend beyond their boundaries. Cells located on the

boundaries of supercells are generated several times, and

the overall boundary of the generated area becomes fractal

after several iterations. The problems that arise in this case

are easy to solve algorithmically: all the duplicate elements

in the list of cells should be deleted after each iteration, as

well as cells that go beyond the enlarged area entirely. The

Penrose tiling is the most famous example of an inflation

tiling with imperfect rules. In the three-dimensional case,

the substitution rules for Danzer tetrahedra are perfect, but

the rules for zonohedra built up of them are imperfect.

The substitution rules that we derived for the Socolar-

Steinhardt tiling [22] were later used to construct sufficiently

large representative patches of icosahedral packings by both

us and other researchers. At least 3 papers have been

featured on the covers of the corresponding issues by

the editors of reputable scientific journals [40–42], which

can be indirectly considered as a successful verification of

the theoretical concepts we use, including by independent

researchers. This paper presents the results of applying

a similar approach to the analysis of all currently known

variants of icosahedral packings.

Now we can formulate the main differences of our

theoretical consideration from the widely accepted model

of overlapping clusters and the model with two types of

rhombohedra. The existence of a characteristic structural

motif of two (or more) overlapping triacontahedra was

experimentally established in the structures of approximants.

In particular, it is characteristic of a large class of intermetal-

lic compounds, differing in the number and type of their

constituent components — crystalline 2/1-approximants.

Their structures were determined under the assumption of

the Fedorov space groups Pa3 and Im3 [43].
We would like to remind that the structures of approx-

imants can also be obtained by projection from spaces of

higher dimensions. The only difference is that the structures
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Figure 7. Fundamental differences between fragments of 3 types of icosahedral packings (P, I, F) and their corresponding characteristic

fragments in the overlapping cluster model and in models based on two types of rhombohedra (prolate and oblate). Above: on the

left, a triacontahedron combined with a cluster of three rhombic Bilinski dodecahedra and four prolate rhombohedra, possible ways to

implement a characteristic cluster in packings of three types are shown; on the right, two mutually overlapping triacontahedra in the

structures of crystalline approximants. Below: illustration of the ambiguity of projection and symmetry breaking when using a basis set of

two types of rhombohedra (prolate and oblate) by using the Bilinski dodecahedron as an example; on the left — rhombic dodecahedra in

packings of three types, local 2-fold axes pass through the rhombic dodecahedra; on the right — two variants of dissections of the Bilinski

dodecahedron into prolate and oblate rhombohedra, both of which lead to the loss of the original symmetry.

of quasicrystals are obtained when projected along irrational

directions, and approximants — along rational directions

close to them [44–46]. As a result, the approximants are

characterized by a similar stoichiometric composition and

similar structural motifs, but they are ordinary periodic

crystals (with a sufficiently large number of atoms in a unit

cell). It should be noted that recently the concept of an

approximant has been interpreted in a broader sense [47].
So, overlapping icosahedral clusters were initially found in

crystal structures. The model of overlapping triacontahedra

perfectly agrees with the periodic structure of crystalline

approximants, but poorly agrees with the aperiodic structure

of quasicrystals. Its use is based on a completely natural

structural analogy, but, as shown below, it leads to a

violation of the exact icosahedral symmetry on a larger scale.

Fig. 7 clearly illustrates the incompatibility of structural

models widely used in practice with the detailed structure

of all three main icosahedral packings. On the one hand,

these models are used to fit and refine the structures of real

quasicrystals during projection within the framework of a

higher-dimensional approach. On the other hand, all three

types of icosahedral packings are also derived by projection

from a six-dimensional space. The iterative algorithm of

inflation and deflation greatly simplifies the procedure for

constructing packings compared to the direct projection, but

basically this algorithm is a consequence of the inflation

symmetry, i.e. the substitutions should not contradict the

higher-dimensional approach either.

When comparing the model of overlapping triacontahedra

with the corresponding fragments of zonohedral packing

(Fig. 7), we conclude that the initial triacontahedron is not

adjacent to a second identical triacontahedron overlapping

with the first, but to a cluster of three rhombic Bilinski

dodecahedra and four prolate rhombohedra. Its shape is

similar to that of a triacontahedron, but its internal structure

and symmetry are radically different. It does not have

icosahedral symmetry. An attempt to identify it with a

triacontahedron when fitting a real structure should lead to

a decrease in symmetry and the appearance of statistically

averaged
”
false“ positions, which are usually interpreted as

mixed or partially occupied positions. Further dissection of

zonohedra into Danzer tetrahedra in packings I and F does

not fundamentally change anything — the second half of

the cluster is not identical to the first.

As already noted, the structure of icosahedral quasicrys-

tals is often considered by many researchers as a tiling into

two types of rhombohedra, prolate and oblate (Penrose
3D-tiling, tiling into Ammann rhombohedra, Ammann–
Kramer–Neri tiling). The fundamental problems that arise

with this approach were first pointed out by Socolar and

Steinhardt:
”
It [a triacontahedron] can be resolved into

ten prolate and ten oblate rhombohedra in many different

ways, but in none of them is the full icosahedral symmetry

preserved“ [8]. Later, they attempted to build an Amman

tiling by introducing a set of several local matching rules

which were used depending on the context [48].
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Here is a rather long quote from Steurer’s article in

”
International Tables“ — one of the most reputable

published by the International Union of Crystallography [3]:

”
Ten prolate and ten oblate rhombohedra can be packed to

form a rhombic triacontahedron. The icosahedral symmetry

of this zonohedron is broken by the many possible decom-

positions into the rhombohedra. Removing one zone of the

triacontahedron gives a rhomb-icosahedron consisting of five

prolate and five oblate rhombohedra. Again, the singular

fivefold axis of the rhomb-icosahedron is broken by the

decomposition into rhombohedra. Removing one zone again

gives a rhombic dodecahedron consisting of two prolate

and two oblate rhombohedra. Removing the last remaining

zone leads finally to a single prolate rhombohedron. Using

these zonohedra as elementary clusters, a matching rule

can be derived for the 3D construction of the 3D Penrose

tiling.“ Surprisingly, but a fact — for decades, models

have been used in the structural analysis of quasicrystals

that are obviously incompatible with icosahedral symmetry!

Conversely, models that accurately reproduce local and

global icosahedral symmetry have almost never been used

in structural studies.

The ambiguity of the projection procedure and the

violation of symmetry in the case of using two types

of rhombohedra (prolate and oblate) are explained in

Fig. 7, below using the Bilinski dodecahedron as an example.

The rhombic dodecahedron appears directly as one of the

zonohedra of the basis set in the packings of P-type. It

can be additionally dissected into Danzer tetrahedra of the

corresponding basis sets in the packings of I and F -types.

The local 2-fold axes pass through the rhombic dodecahedra.

The intrinsic symmetry of the zonohedra is not violated in

all three packings we use. There are 2 variants of dissection

of the Bilinski dodecahedron into prolate and oblate rhom-

bohedra, which are shown on the right. Both variants lead to

the loss of the initial symmetry — both the local symmetry

of a particular cell or a cluster of cells and the global

icosahedral symmetry of the packing as a whole are violated.

Once again, the dissection of zonohedra into rhombo-

hedra cannot be defined unambiguously. The ambiguity

of the projection generates a special type of defects in

quasicrystals — phasons [49]. On the contrary, the con-

struction process of all three packings considered by us is

completely deterministic. In our opinion, the choice in favor

of models with ambiguous subdivision into subcells should

be justified by the presence of properties characteristic of

such structures. Experiments should show a real decrease of

local symmetry and a high probability of strongly correlated

effects associated with atomic
”
jumps“ between neighboring

partially occupied positions (if they actually occur), which

should most likely be accompanied by local rearrangements

at the atomic level and the formation of a secondary domain

structure by analogy with ferroelectrics.

We plan to outline the rules for filling the unit cells with

specific atoms in the next paper. We suppose that the

general and special positions should be defined within the

unit cells of quasicrystals similar to the Wyckoff positions

in the unit cells of conventional crystals. This will make it

possible to move from considering packings of polyhedra

to generating quasiperiodic structures with the desired

spatial arrangement of atoms and to studying their possible

physical properties. An important part of this approach is

the averaging over the volume based on substitutions and

adopted to handle the lists of cells [24].

Conclusion

We consider icosahedral quasicrystals as packings of

unit cells. All possible variants of self-similar icosahedral

packings are analyzed within the framework of a single

approach. There are 3 types of icosahedral quasicrystals (P,
I , F) — analogues of primitive, body-centered and face-

centered cubic lattices, respectively. Centrosymmetric and

non-centrosymmetric structures are possible for each type,

for each of which there are 3 locally isomorphic variants.

We concluded that a packing of P-type corresponds to

Socolar-Steinhardt tiling into zonohedra, and packings of I
and F-types correspond to two different tilings based on

Danzer tetrahedra. Despite the fact that each of these

three tilings uses its own basis set of unit cells and its own

substitution rules, they are completely mutually consistent.

The quasilattice I is obtained by adding additional nodes

to the quasilattice P, and the quasilattice F is obtained

by adding nodes to the quasilattice I . The reverse is also

true: some tetrahedra of the packing F can be grouped in a

certain way resulting in the packing I ; in turn, the tetrahedra

of the packing I can be grouped into zonohedra resulting in

the packing P .
Substitution rules for tilings of I and F -types into Danzer

tetrahedra have been fully formalized. They are represented

as lists of cells, each of which is specified by its type,

position, and orientation. It is shown how to construct a

zonohedral packing of P-type from a Danzer tetrahedral

packing of I-type.
Quasicrystals of all 3 types may or may not have an

inversion center (symmetry groups m35 or 235). An

example of constructing a non-centrosymmetric packing of

I-type is presented.

For each type of packing, 3 locally isomorphic variants

are possible depending on the type o the node at the origin

(A, B, C). They cyclically transform into each other after

each iteration C→B→A→C when constructing icosahedral

packings based on Danzer tetrahedra. The consequence of

this is that the structures of characteristic clusters centered

at different nodes are interdependent. One and the same

structural motifs repeatedly appears in all three clusters on

an enlarged scale (in the ratio of τ : 1).
Any type of icosahedral packing can be generated from

a single tetrahedron (including the packing of zonohedra,

since it can be obtained from tetrahedral packing by

combining tetrahedra).
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Appendix

A list of symmetry elements of the groups I (the first 60 elements) and Ih (all 120 elements) is provided in Table 4

in the order used in the formalization of substitution rules. The elements are distributed among conjugacy classes. The

crystallographic designations of the symmetry elements are used with additional clarifying information in parentheses. The

numbers in parentheses for the 2, 3 and 5-fold axes indicate specific edges, faces and vertices through which these axes pass,

and for the mirror planes they indicate one of the pairs of vertices that transform into each other by reflection. The following

columns of the table show the cyclic permutations of the icosahedron vertices corresponding to the symmetry elements

for the numbering order adopted in the article, and the rotation matrix in the chosen coordinate system. The following

abbreviations are used: u = (
√
5 + 1)/4 = τ /2, v = (

√
5− 1)/4 = τ −1/2, where τ = (1 +

√
5)/2 is the golden ratio.

Rotation matrices are obtained by standard methods of the group theory and representation theory. The entire set of

matrices forms the coordinate representation of the group Ih. As usual, the identity element corresponds to a unit matrix,

and all matrices are orthogonal, therefore, for any symmetry element, the determinant of the matrix is equal to ±1. The

first 60 elements are the pure (proper) rotations. The determinant is equal to 1 for them. The remaining 60 elements are

improper rotations (inversion, rotoinversions or rotoreflections, and mirror planes). The determinant is equal to −1 for them.

When implementing the packing algorithm, it is not necessary to perform the routine matrix multiplication, it is just enough

to use the group multiplication table, the entries of which give the result of the multiplication of elements. The rotation

matrices in their explicit form are needed to calculate the coordinates of the atoms in the cells.

Table 4. Symmetry elements of groups I and Ih

� Symmetry element Cyclic permutation Rotation matrix

1 E 1 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

(

1 0 0

0 1 0

0 0 1

)

2 C5(1) 5(1) (1)(2 6 5 4 3)(7 11 10 9 8)(12)

(

1/2 −u v

u v −1/2

v 1/2 u

)

3 C5(2) 5(2) (1 3 7 11 6)(2)(4 8 12 10 5)(9)

(

1/2 −u −v

u v 1/2

−v −1/2 u

)

4 C5(3) 5(3) (1 4 8 7 2)(3)(5 9 12 11 6)(10)

(

v −1/2 u
1/2 u v

−u v 1/2

)

5 C5(4) 5(4) (1 5 9 8 3)(2 6 10 12 7)(4)(11)

(

u v 1/2

v 1/2 −u
−1/2 u v

)

6 C5(5) 5(5) (1 6 10 9 4)(2 11 12 8 3)(5)(7)

(

u −v −1/2

−v 1/2 −u
1/2 u v

)

7 C5(6) 5(6) (1 2 11 10 5)(3 7 12 9 4)(6)(8)

(

v −1/2 −u
1/2 u −v

u −v 1/2

)

8 C4
5(1) 54(1) (1)(2 3 4 5 6)(7 8 9 10 11)(12)

(

1/2 u v

−u v 1/2

v −1/2 u

)

9 C4
5(2) 54(2) (1 6 11 7 3)(2)(4 5 10 12 8)(9)

(

1/2 u −v

−u v −1/2

−v 1/2 u

)

10 C4
5(3) 54(3) (1 2 7 8 4)(3)(5 6 11 12 9)(10)

(

v 1/2 −u
−1/2 u v

u v 1/2

)

11 C4
5(4) 54(4) (1 3 8 9 5)(2 7 12 10 6)(4)(11)

(

u v −1/2

v 1/2 u
1/2 −u v

)

12 C4
5(5) 54(5) (1 4 9 10 6)(2 3 8 12 11)(5)(7)

(

u −v 1/2

−v 1/2 u
−1/2 −u v

)
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Table 4 (continued).

� Symmetry element Cyclic permutation Rotation matrix

13 C4
5(6) 54(6) (1 5 10 11 2)(3 4 9 12 7)(6)(8)

(

v 1/2 u
−1/2 u −v

−u −v 1/2

)

14 C2
5(1) 52(1) (1)(2 5 3 6 4)(7 10 8 11 9)(12)

(

−v −1/2 u
1/2 −u −v

u v 1/2

)

15 C2
5(2) 52(2) (1 7 6 3 11)(2)(4 12 5 8 10)(9)

(

−v −1/2 −u
1/2 −u v

−u −v 1/2

)

16 C2
5(3) 52(3) (1 8 2 4 7)(3)(5 12 6 9 11)(10)

(

−u −v 1/2

v 1/2 u
−1/2 u −v

)

17 C2
5(4) 52(4) (1 9 3 5 8)(2 10 7 6 12)(4)(11)

(

1/2 u v

u −v −1/2

−v 1/2 −u

)

18 C2
5(5) 52(5) (1 10 4 6 9)(2 12 3 11 8)(5)(7)

(

1/2 −u −v

−u −v −1/2

v 1/2 −u

)

19 C2
5(6) 52(6) (1 11 5 2 10)(3 12 4 7 9)(6)(8)

(

−u −v −1/2

v 1/2 −u
1/2 −u −v

)

20 C3
5(1) 53(1) (1)(2 4 6 3 5)(7 9 11 8 10)(12)

(

−v 1/2 u
−1/2 −u v

u −v 1/2

)

21 C3
5(2) 53(2) (1 11 3 6 7)(2)(4 10 8 5 12)(9)

(

−v 1/2 −u
−1/2 −u −v

−u v 1/2

)

22 C3
5(3) 53(3) (1 7 4 2 8)(3)(5 11 9 6 12)(10)

(

−u v −1/2

−v 1/2 u
1/2 u −v

)

23 C3
5(4) 53(4) (1 8 5 3 9)(2 12 6 7 10)(4)(11)

(

1/2 u −v

u −v 1/2

v −1/2 −u

)

24 C3
5(5) 53(5) (1 9 6 4 10)(2 8 11 3 12)(5)(7)

(

1/2 −u v

−u −v 1/2

−v −1/2 −u

)

25 C3
5(6) 53(6) (1 10 2 5 11)(3 9 7 4 12)(6)(8)

(

−u v 1/2

−v 1/2 −u
−1/2 −u −v

)

26 C3(132) 3(132) (1 3 2)(4 7 6)(5 8 11)(9 12 10)

(

−1/2 −u v

u −v 1/2

−v 1/2 u

)

27 C3(143) 3(143) (1 4 3)(2 5 8)(6 9 7)(10 12 11)

(

0 0 1

1 0 0

0 1 0

)

28 C3(154) 3(154) (1 5 4)(2 10 8)(3 6 9)(7 11 12)

(

u −v 1/2

v −1/2 −u
1/2 u −v

)

29 C3(165) 3(165) (1 6 5)(2 10 4)(3 11 9)(7 12 8)

(

0 −1 0

0 0 −1

1 0 0

)

30 C3(126) 3(126) (1 2 6)(3 11 5)(4 7 10)(8 12 9)

(

−1/2 −u −v

u −v −1/2

v −1/2 u

)

31 C3(237) 3(237) (1 8 11)(2 3 7)(4 12 6)(5 9 10)

(

0 −1 0

0 0 1

−1 0 0

)

32 C3(387) 3(387) (1 9 11)(2 4 12)(3 8 7)(5 10 6)

(

−v −1/2 u
−1/2 u v

−u −v −1/2

)
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Table 4 (continued).

� Symmetry element Cyclic permutation Rotation matrix

33 C3(348) 3(348) (1 9 7)(2 5 12)(3 4 8)(6 10 11)

(

−v 1/2 u
1/2 u −v

−u v −1/2

)

34 C3(498) 3(498) (1 10 7)(2 6 11)(3 5 12)(4 9 8)

(

0 1 0

0 0 −1

−1 0 0

)

35 C3(459) 3(459) (1 10 8)(2 11 7)(3 6 12)(4 5 9)

(

u v −1/2

−v −1/2 −u
−1/2 u −v

)

36 C2
3(132) 32(132) (1 2 3)(4 6 7)(5 11 8)(9 10 12)

(

−1/2 u −v

−u −v 1/2

v 1/2 u

)

37 C2
3(143) 32(143) (1 3 4)(2 8 5)(6 7 9)(10 11 12)

(

0 1 0

0 0 1

1 0 0

)

38 C2
3(154) 32(154) (1 4 5)(2 8 10)(3 9 6)(7 12 11)

(

u v 1/2

−v −1/2 u
1/2 −u −v

)

39 C2
3(165) 32(165) (1 5 6)(2 4 10)(3 9 11)(7 8 12)

(

0 0 1

−1 0 0

0 −1 0

)

40 C2
3(126) 32(126) (1 6 2)(3 5 11)(4 10 7)(8 9 12)

(

−1/2 u v

−u −v −1/2

−v −1/2 u

)

41 C2
3(237) 32(237) (1 11 8)(2 7 3)(4 6 12)(5 10 9)

(

0 0 −1

−1 0 0

0 1 0

)

42 C2
3(387) 32(387) (1 11 9)(2 12 4)(3 7 8)(5 6 10)

(

−v −1/2 −u
−1/2 u −v

u v −1/2

)

43 C2
3(348) 32(348) (1 7 9)(2 12 5)(3 8 4)(6 11 10)

(

−v 1/2 −u
1/2 u v

u −v −1/2

)

44 C2
3(498) 32(498) (1 7 10)(2 11 6)(3 12 5)(4 8 9)

(

0 0 −1

1 0 0

0 −1 0

)

45 C2
3(459) 32(459) (1 8 10)(2 7 11)(3 12 6)(4 9 5)

(

u −v −1/2

v −1/2 u
−1/2 −u −v

)

46 C2(12) 2(12) (1 2)(3 6)(4 11)(5 7)(8 10)(9 12)

(

−1 0 0

0 −1 0

0 0 1

)

47 C2(13) 2(13) (1 3)(2 4)(5 7)(6 8)(9 11)(10 12)

(

−u v 1/2

v −1/2 u
1/2 u v

)

48 C2(14) 2(14) (1 4)(2 9)(3 5)(6 8)(7 10)(11 12)

(

v 1/2 u
1/2 −u v

u v −1/2

)

49 C2(15) 2(15) (1 5)(2 9)(3 10)(4 6)(7 12)(8 11)

(

v −1/2 u
−1/2 −u −v

u −v −1/2

)

50 C2(16) 2(16) (1 6)(2 5)(3 10)(4 11)(7 9)(8 12)

(

−u −v 1/2

−v −1/2 −u
1/2 −u v

)

51 C2(23) 2(23) (1 7)(2 3)(4 11)(5 12)(6 8)(9 10)

(

−u −v −1/2

−v −1/2 u
−1/2 u v

)

52 C2(34) 2(34) (1 8)(2 9)(3 4)(5 7)(6 12)(10 11)

(

−1/2 u v

u v 1/2

v 1/2 −u

)

53 C2(45) 2(45) (1 9)(2 12)(3 10)(4 5)(6 8)(7 11)

(

1 0 0

0 −1 0

0 0 −1

)
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Table 4 (continued).

� Symmetry element Cyclic permutation Rotation matrix

54 C2(56) 2(56) (1 10)(2 9)(3 12)(4 11)(5 6)(7 8)

(

−1/2 −u v

−u v −1/2

v −1/2 −u

)

55 C2(26) 2(26) (1 11)(2 6)(3 10)(4 12)(5 7)(8 9)

(

−u v −1/2

v −1/2 −u
−1/2 −u v

)

56 C2(27) 2(27) (1 12)(2 7)(3 11)(4 10)(5 9)(6 8)

(

v −1/2 −u
−1/2 −u v

−u v −1/2

)

57 C2(37) 2(37) (1 12)(2 8)(3 7)(4 11)(5 10)(6 9)

(

−1/2 −u −v

−u v 1/2

−v 1/2 −u

)

58 C2(38) 2(38) (1 12)(2 9)(3 8)(4 7)(5 11)(6 10)

(

−1 0 0

0 1 0

0 0 −1

)

59 C2(48) 2(48) (1 12)(2 10)(3 9)(4 8)(5 7)(6 11)

(

−1/2 u −v

u v −1/2

−v −1/2 −u

)

60 C2(49) 2(49) (1 12)(2 11)(3 10)(4 9)(5 8)(6 7)

(

v 1/2 −u
1/2 −u −v

−u −v −1/2

)

61 C i 1 (1 12)(2 9)(3 10)(4 11)(5 7)(6 8)

(

−1 0 0

0 −1 0

0 0 −1

)

62 S7
10(1) 5(1) (1 12)(2 8 5 11 3 9 6 7 4 10)

(

−1/2 u −v

−u −v 1/2

−v −1/2 −u

)

63 S7
10(2) 5(2) (1 10 7 4 6 12 3 5 11 8)(2 9)

(

−1/2 u v

−u −v −1/2

v 1/2 −u

)

64 S7
10(3) 5(3) (1 11 8 5 2 12 4 6 7 9)(3 10)

(

−v 1/2 −u
−1/2 −u −v

u −v −1/2

)

65 S7
10(4) 5(4) (1 7 9 6 3 12 5 2 8 10)(4 11)

(

−u −v −1/2

−v −1/2 u
1/2 −u −v

)

66 S7
10(5) 5(5) (1 8 10 2 4 12 6 3 9 11)(5 7)

(

−u v 1/2

v −1/2 u
−1/2 −u −v

)

67 S7
10(6) 5(6) (1 9 11 3 5 12 2 4 10 7)(6 8)

(

−v 1/2 u
−1/2 −u v

−u v −1/2

)

68 S3
10(1) 5

9
(1) (1 12)(2 10 4 7 6 9 3 11 5 8)

(

−1/2 −u −v

u −v −1/2

−v 1/2 −u

)

69 S3
10(2) 5

9
(2) (1 8 11 5 3 12 6 4 7 10)(2 9)

(

−1/2 −u v

u −v 1/2

v −1/2 −u

)

70 S3
10(3) 5

9
(3) (1 9 7 6 4 12 2 5 8 11)(3 10)

(

−v −1/2 u
1/2 −u −v

−u −v −1/2

)

71 S3
10(4) 5

9
(4) (1 10 8 2 5 12 3 6 9 7)(4 11)

(

−u −v 1/2

−v −1/2 −u
−1/2 u −v

)

72 S3
10(5) 5

9
(5) (1 11 9 3 6 12 4 2 10 8)(5 7)

(

−u v −1/2

v −1/2 −u
1/2 u −v

)

73 S3
10(6) 5

9
(6) (1 7 10 4 2 12 5 3 11 9)(6 8)

(

−v −1/2 −u
1/2 −u v

u v −1/2

)
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Table 4 (continued).

� Symmetry element Cyclic permutation Rotation matrix

74 S9
10(1) 5

7
(1) (1 12)(2 7 3 8 4 9 5 10 6 11)

(

v 1/2 −u
−1/2 u v

−u −v −1/2

)

75 S9
10(2) 5

7
(2) (1 5 6 10 11 12 7 8 3 4)(2 9)

(

v 1/2 u
−1/2 u −v

u v −1/2

)

76 S9
10(3) 5

7
(3) (1 6 2 11 7 12 8 9 4 5)(3 10)

(

u v −1/2

−v −1/2 −u
1/2 −u v

)

77 S9
10(4) 5

7
(4) (1 2 3 7 8 12 9 10 5 6)(4 11)

(

−1/2 −u −v

−u v 1/2

v −1/2 u

)

78 S9
10(5) 5

7
(5) (1 3 4 8 9 12 10 11 6 2)(5 7)

(

−1/2 u v

u v 1/2

−v −1/2 u

)

79 S9
10(6) 5

7
(6) (1 4 5 9 10 12 11 7 2 3)(6 8)

(

u v 1/2

−v −1/2 u
−1/2 u v

)

80 S10(1) 5
3
(1) (1 12)(2 11 6 10 5 9 4 8 3 7)

(

v −1/2 −u
1/2 u −v

−u v −1/2

)

81 S10(2) 5
3
(2) (1 4 3 8 7 12 11 10 6 5)(2 9)

(

v −1/2 u
1/2 u v

u −v −1/2

)

82 S10(3) 5
3
(3) (1 5 4 9 8 12 7 11 2 6)(3 10)

(

u −v 1/2

v −1/2 −u
−1/2 −u v

)

83 S10(4) 5
3
(4) (1 6 5 10 9 12 8 7 3 2)(4 11)

(

−1/2 −u v

−u v −1/2

−v 1/2 u

)

84 S10(5) 5
3
(5) (1 2 6 11 10 12 9 8 4 3)(5 7)

(

−1/2 u −v

u v −1/2

v 1/2 u

)

85 S10(6) 5
3
(6) (1 3 2 7 11 12 10 9 5 4)(6 8)

(

u −v −1/2

v −1/2 u
1/2 u v

)

86 S5
6(132) 3(132) (1 10 2 12 3 9)(4 5 6 11 7 8)

(

1/2 u −v

−u v −1/2

v −1/2 −u

)

87 S5
6(143) 3(143) (1 11 3 12 4 10)(2 7 8 9 5 6)

(

0 0 −1

−1 0 0

0 −1 0

)

88 S5
6(154) 3(154) (1 7 4 12 5 11)(2 3 8 9 10 6)

(

−u v −1/2

−v 1/2 u
−1/2 −u v

)

89 S5
6(165) 3(165) (1 8 5 12 6 7)(2 3 4 9 10 11)

(

0 1 0

0 0 1

−1 0 0

)

90 S5
6(126) 3(126) (1 9 6 12 2 8)(3 4 5 10 11 7)

(

1/2 u v

−u v 1/2

−v 1/2 −u

)

91 S5
6(237) 3(237) (1 6 11 12 8 4)(2 10 7 9 3 5)

(

0 1 0

0 0 −1

1 0 0

)

92 S5
6(387) 3(387) (1 2 11 12 9 4)(3 6 7 10 8 5)

(

v 1/2 −u
1/2 −u −v

u v 1/2

)

93 S5
6(348) 3(348) (1 2 7 12 9 5)(3 11 8 10 4 6)

(

v −1/2 −u
−1/2 −u v

u −v 1/2

)

94 S5
6(498) 3(498) (1 3 7 12 10 5)(2 8 11 9 6 4)

(

0 −1 0

0 0 1

1 0 0

)
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Table 4 (continued).

� Symmetry element Cyclic permutation Rotation matrix

95 S5
6(459) 3(459) (1 3 8 12 10 6)(2 4 7 9 11 5)

(

−u −v 1/2

v 1/2 u
1/2 −u v

)

96 S6(132) 3
5
(132) (1 9 3 12 2 10)(4 8 7 11 6 5)

(

1/2 −u v

u v −1/2

−v −1/2 −u

)

97 S6(143) 3
5
(143) (1 10 4 12 3 11)(2 6 5 9 8 7)

(

0 −1 0

0 0 −1

−1 0 0

)

98 S6(154) 3
5
(154) (1 11 5 12 4 7)(2 6 10 9 8 3)

(

−u −v −1/2

v 1/2 −u
−1/2 u v

)

99 S6(165) 3
5
(165) (1 7 6 12 5 8)(2 11 10 9 4 3)

(

0 0 −1

1 0 0

0 1 0

)

100 S6(126) 3
5
(126) (1 8 2 12 6 9)(3 7 11 10 5 4)

(

1/2 −u −v

u v 1/2

v 1/2 −u

)

101 S6(237) 3
5
(237) (1 4 8 12 11 6)(2 5 3 9 7 10)

(

0 0 1

1 0 0

0 −1 0

)

102 S6(387) 3
5
(387) (1 4 9 12 11 2)(3 5 8 10 7 6)

(

v 1/2 u
1/2 −u v

−u −v 1/2

)

103 S6(348) 3
5
(348) (1 5 9 12 7 2)(3 6 4 10 8 11)

(

v −1/2 u
−1/2 −u −v

−u v 1/2

)

104 S6(498) 3
5
(498) (1 5 10 12 7 3)(2 4 6 9 11 8)

(

0 0 1

−1 0 0

0 1 0

)

105 S6(459) 3
5
(459) (1 6 10 12 8 3)(2 5 11 9 7 4)

(

−u v 1/2

−v 1/2 −u
1/2 u v

)

106 σ (38) m(38) (1 9)(2 12)(3 8)(4)(5)(6 10)(7)(11)

(

1 0 0

0 1 0

0 0 −1

)

107 σ (49) m(49) (1 10)(2 11)(3 12)(4 9)(5)(6)(7)(8)

(

u −v −1/2

−v 1/2 −u
−1/2 −u −v

)

108 σ (37) m(37) (1 11)(2)(3 7)(4 12)(5 10)(6)(8)(9)

(

−v −1/2 −u
−1/2 u −v

−u −v 1/2

)

109 σ (48) m(48) (1 7)(2)(3)(4 8)(5 12)(6 11)(9)(10)

(

−v 1/2 −u
1/2 u v

−u v 1/2

)

110 σ (27) m(27) (1 8)(2 7)(3)(4)(5 9)(6 12)(10)(11)

(

u v −1/2

v 1/2 u
−1/2 u −v

)

111 σ (15) m(15) (1 5)(2 10)(3 9)(4)(6)(7 12)(8)(11)

(

u v 1/2

v 1/2 −u
1/2 −u −v

)

112 σ (16) m(16) (1 6)(2)(3 11)(4 10)(5)(7)(8 12)(9)

(

1/2 −u −v

−u −v −1/2

−v −1/2 u

)

113 σ (12) m(12) (1 2)(3)(4 7)(5 11)(6)(8)(9 12)(10)

(

−1 0 0

0 1 0

0 0 1

)

114 σ (13) m(13) (1 3)(2)(4)(5 8)(6 7)(9)(10 12)(11)

(

1/2 u −v

u −v 1/2

−v 1/2 u

)
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Table 4 (continued).

� Symmetry element Cyclic permutation Rotation matrix

115 σ (14) m(14) (1 4)(2 8)(3)(5)(6 9)(7)(10)(11 12)

(

u −v 1/2

−v 1/2 u
1/2 u −v

)

116 σ (34) m(34) (1)(2 5)(3 4)(6)(7 9)(8)(10 11)(12)

(

−v 1/2 u
1/2 u −v

u −v 1/2

)

117 σ (26) m(26) (1)(2 6)(3 5)(4)(7 10)(8 9)(11)(12)

(

1/2 u v

u −v −1/2

v −1/2 u

)

118 σ (45) m(45) (1)(2)(3 6)(4 5)(7 11)(8 10)(9)(12)

(

1 0 0

0 −1 0

0 0 1

)

119 σ (23) m(23) (1)(2 3)(4 6)(5)(7)(8 11)(9 10)(12)

(

1/2 −u v

−u −v 1/2

v 1/2 u

)

120 σ (56) m(56) (1)(2 4)(3)(5 6)(7 8)(9 11)(10)(12)

(

−v −1/2 u
−1/2 u v

u v 1/2

)
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