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The analysis of the features of electron hopping transport in the impurity band of a disordered semiconductor

with hydrogen-like impurities, associated with the behavior of the temperature dependence of high-frequency

conductivity in the low-temperature region, is carried out. Based on the pair approximation, the numerical

calculation of the temperature dependence of the real part of the high-frequency conductivity of a disordered

semiconductor in the terahertz frequency range was performed, in which the transition from an almost linear to a

quadratic frequency dependence of the real part of the conductivity was observed under low-temperature conditions

with increasing frequency. It is shown that taking into account the Coulomb interaction between electrons in pairs

causes a non-monotonic saturation of the temperature dependence of high-frequency conductivity with decreasing

temperature due to the opposite direction of changes in the relaxation and resonance contributions to conductivity

with changing temperature. The increase in phononless conductivity with decreasing temperature is due to the

main role of the Coulomb interaction between electrons in resonant pairs at low temperatures, e2/krω > ~ω (rω —
optimal hopping distance at frequency ω).
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1. Introduction

Obtaining information about the features of hopping

transfer mechanisms in disordered semiconductors is

complicated by the universality of the power-law fre-

quency dependence of conductivity, σ (ω) ∼ ωs (s —
constant; as a rule, 0.5 < s < 1), that well describes

σ (ω) = σ1(ω) + iσ2(ω) of disordered semiconductors in

a wide frequency range. Studies of the temperature

dependence of AC conductivity play an important role

for this reason [1]; in particular, in the frequency range,

in which deviations of the frequency dependence of the

conductivity of disordered semiconductors from universality

(s ≈ 1) are observed.

The high-frequency conductivity of disordered semicon-

ductors with hydrogen-like impurities is usually described

using the concept of a frequency-dependent optimal hopping

distance rω , which significantly exceeds the radius of

localization of states a and decreases with the increase

of frequency. Nonmonotonic frequency dependences given

by the theory for resonant (phononless) and relaxation

(phonon) contributions to conductivity [2–6]

σ res
1 (ω) ∼ rn

ωω
m ∼ ωm lnn(ωc/ω),

σ rel
1 (ω) ∼ r̃ l

ωω
q ∼ ωq lnl(ωph/ω), (1)

can be approximated by the power law Cωs with exponent

s(ω) decreasing with the increase of frequency [7]; here

σ res
1 , σ rel

1 — the real parts of phononless and relaxation

contributions to conductivity, σ1(ω) = σ res
1 (ω) + σ rel

1 (ω),
n,m, l, q — integers, ωc — the frequency at which the

optimal hopping distance rω for resonant conductivity

becomes of the order of the radius of localization of states,

ωph — the characteristic phonon frequency, which is the

frequency of electron transition attempts during relaxation

conductivity.

However, the frequency dependences of the conduc-

tivity of the form (1) with the values of the parameter

A = e2/κa~ωc ≈ 1/2 (where κ — the dielectric constant

of the medium, ωc = 2I0/~; I0 ≈ e2/κa — the preexpo-

nential factor of the resonance integral) which are typical

for shallow impurities do not describe the transition of

the frequency dependence of the real part of the low-

temperature conductivity σ1(ω) from almost linear to

quadratic with the increase of frequency that is observed

in SiP [8–10], SiB [11]. At high frequencies, phononless

conductivity prevails over relaxation conductivity; however,

the Coulomb interaction between electrons in resonant pairs

plays a main role, ~ω < e2/κrω , in a wide frequency

range, ω < ωc , according to the theory and the frequency

dependence of phononless conductivity σ res
1 (ω) remains

close to linear (s ≈ 1) up to the frequency ωm ≈ 0.07ωc
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corresponding to the maximum σ res
1 (ω) [12]. It should

be noted that the frequency dependence of conductivity

will be nonmonotonic because the frequency dependence of

the optimal hopping distance; in the paired approximation

for phononless conductivity, the frequency dependence

of the optimal hopping distance rω is related to the

hybridization of wave functions of an isolated pair of centers

and is determined by the equation ~ω = 2Iλλ′(rω), where

Iλλ′ = I0 exp(−rλλ′/a) — resonance integral, rλλ′ — center-

to-center distance, λ — center number.

A significantly smoother transition than is observed

experimentally from the sublinear (relaxation, phononless)
to the subquadratic (phononless) frequency dependence

of the conductivity σ1(ω) in the mode with a variable

hopping distance can be explained only at small values

of the parameter A < 10−5, which are atypical for shallow

impurities. The dependence of the conductivity σ1(ω) will

be nonmonotonic with a maximum in the vicinity of the

transition frequency [12]. However, the non-monotonicity

of the frequency dependence of the conductivity σ1(ω)
of disordered semiconductors in the transition frequency

range predicted by the theory has not been experimentally

detected [8–11].

The calculation of the real part of low-temperature

conductivity (e2/κrω , ~ω > kT ) in a pair approximation

made in Ref. [13] showed that the transition from an

almost linear to a quadratic frequency dependence σ1(ω)
can be associated with the transition from conductivity with

variable hopping distance rω to conductivity with constant

hopping distance ropt with the frequency increase. The

transition from a variable hopping distance rω = a ln(ωc/ω)
to a constant hopping distance ropt ≈ 4a occurs at ropt ≈ rω
(ωopt ≈ 0.02ωc) in case of a phononless conductivity;

ωc/2π ∼ 1013 Hz for Si:P. The phononless conductivity has

the following known form [3,6] at low frequencies ω < ωopt

(rω > ropt) in the variable hopping distance mode

σ res
1 (ω) = (π2/3)e2aρ20r4ωω(~ω + e2/κrω); (2)

ρ0 is the density of states, considered constant. Since

the Coulomb interaction between electrons inside resonant

pairs of centers plays the main role [12], ~ω < e2/κrω , the
frequency dependence of phononless conductivity remains

sublinear (s ≈ 0.8)

σ res
1 (ω) = (π2/3)e4aρ20r3ωω/κ. (3)

The main contribution to conductivity is made by

electronic transitions within pairs with a center-to-center

distance of the order of ropt at high frequencies ω > ωopt

(ropt > rω) according to Ref. [13], when the effects of

hybridization are insignificant. At high frequencies in

the constant hopping distance mode ropt , the phononless

conductivity is equal to

σ res
1 (ω) = (π2C1/3)e

2ρ20a5ω(~ω + e2/κropt), (4)

where C1 = 315 is the numerical coefficient. The frequency

ωopt ≈ 0.02ωc (rω ≈ ropt) at which the transition to a con-

stant hopping distance occurs, of the order of the crossover

frequency in (4), ~ωcr ≈ e2/κropt (ωcr ≈ 0.1ωc); i. e., the
transition from linear to quadratic frequency dependence of

the real part of the conductivity occurs in the vicinity of the

frequency ωopt ∼ ωcr [13]. We have the following equation

under conditions of low temperatures in the high frequency

range, when the Coulomb interaction between electrons in

pairs with an optimal center-to-center distance ropt can be

neglected, for phononless conductivity

σ res
1 (ω) = (π2C1/3)e

2ρ20a5
~ω2. (5)

The phononless conductivity transitions to a constant

hopping distance under conditions kT > ~ω, e2/κropt

in the high frequency range like in the case of low

temperatures. The transition for phononless conductivity

from a variable rω to a constant hopping distance ropt

occurs at ropt ≈ rω(ωopt ≈ 0.02ωc) according to Ref. [14].
The phononless conductivity at low frequencies ω < ωopt

(rω > ropt) in the variable hopping distance mode rω is

equal to [7]

σ res
1 (ω) = (π2/3)e2aρ20~r4ωω

2, (6)

i. e. σ res
1 (ω) (6) has a subquadrate character (s ≈ 1.5).

The phononless conductivity has the form (5) at high

frequencies ω > ωopt (ropt > rω), when the effects of

hybridization are insignificant, in the mode with a constant

hopping distance ropt . High-frequency phononless conduc-

tivity is independent of temperature according to (6), (5)
under conditions kT > ~ω, e2/κropt . The frequency of

transition of phononless conductivity from a variable to a

constant hopping distance is of the order of the crossover

frequency, in the vicinity of which the transition from rela-

xation conductivity to phononless conductivity occurs [14].
Accordingly, the transition from the sublinear (s < 1) to the

quadratic frequency dependence σ1(ω) with the increase of

the temperature can persist and be caused by the transition

from relaxation conductivity with variable hopping distance

to phononless conductivity with constant hopping distance

with the increase of the frequency.

We would like to remind that the expression for the

real part of the high-frequency relaxation conductivity

has the following form in the low temperature range,

e2/κ r̃ω > kT [5]

σ rel
1 (ω) = π2e4ρ20ar̃3ωω/(6κ), (7)

where r̃ω = (a/2) ln(ωph/ω) is the optimal hopping dis-

tance for relaxation conductivity at the frequency ω;

ωph/2π ∼ 1013 Hz for Si:P. It should be noted that the

expressions for the real parts of low-temperature relaxation

conductivity (7) and low-temperature phononless conducti-

vity in the transition frequency range (3) have a single form

(s ≈ 0.8); this, in particular, is associated with the difficulty
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of interpreting experimental data on the frequency depen-

dences of the conductivity of disordered semiconductors and

obtaining information about the features of the mechanism

of hopping charge carrier transfer in them.

The real part of the relaxation conductivity begins

to depend on temperature as the temperature increases,

kT > e2/κ r̃ω ; at the same time, its frequency dependence

does not significantly change (s ≈ 0.6) [4]

σ rel
1 (ω) = π4e2ρ20akT r̃4ωω/24. (8)

The interpolation expression for the real part of the

relaxation conductivity has the form [7]

σ rel
1 (ω) = (π4/24)e2aρ20ωr̃4ω(kT + (4/π2)e2/κ r̃ω). (9)

It should be noted that the expression (6) for phonon-

less conductivity at high temperatures, kT > ~ω, e2/κrω ,
coincides with the expression for phononless conduc-

tivity in the high-frequency range at low temperatures,

~ω > e2/κrω > kT ; the Coulomb interaction between elec-

trons in resonant pairs can be neglected in these cases.

However, the Coulomb interaction between electrons in

resonant pairs plays a main role, ~ω < e2/κrω , in a wide

frequency range at low temperatures, according to [12];
at the same time, the frequency dependence of the

real part of low-temperature phononless conductivity (3),
e2/κrω > ~ω > kT , turns out to be weaker than the

frequency dependence of phononless conductivity at high

temperatures (6), kT > ~ω, e2/κropt . The phononless

conductivity of a disordered semiconductor increases with

the decrease of the temperature at a constant frequency

according to (2), (3), and (6), while the relaxation conduc-

tivity of (9), on the contrary, decreases. Accordingly, the

temperature dependence of the conductivity σ1(ω, T ) in the

low temperature range may have a nonmonotonic character,

which is attributable to the prevalence of the phononless

contribution to the conductivity in the transition frequency

range and the main role of the Coulomb interaction

between electrons in resonant pairs at low temperatures,

e2/κrω > ~ω > kT .
The ratio of relaxation (7) and phononless (3) contribu-

tions to conductivity, σ1(ω, T ) = σ res
1 (ω, T ) + σ rel

1 (ω, T ),
is equal to

σ rel
1 (ω)/σ res

1 (ω) = (1/16)
(

ln(ωph/ω)/ ln(ωc/ω)
)3
. (10)

The resonant contribution to low-temperature conductivity

prevails over relaxation contribution, σ rel
1 (ω)/σ res

1 (ω) ≪ 1

in case ωph ∼ ωc in the frequency range ω < 0.1ωc ;

formally, the ratio of contributions to conductivity does

not depend on frequency, σ rel
1 (ω)/σ res

1 (ω) ≈ 5 · 10−2, with

ωph = ωc .

Thus, the real part of the conductivity σ1(ω, T ) (at
a given frequency) should decrease with an increase of

temperature at the initial stage; this is not consistent

with the dependences σ1(ω, T ) obtained in Ref. [8] in

experiments on Si:P, according to which the conductivity

of σ1(ω, T ) reaches saturation monotonously decreasing as

the temperature decreases (to T ≈ 3K). This discrepancy,

related to the behavior of the temperature dependence of

the high-frequency conductivity of disordered semiconduc-

tors in the low-temperature region, may be significant in

assessing the degree of impact of Coulomb effects on the

frequency dependence of the low-temperature conductivity

of disordered semiconductors and necessitates its further

study. The purpose of this work was to calculate the

temperature dependence of the high-frequency conductivity

of disordered semiconductors in the transition frequency

range and to study the features of its behavior at low

temperatures.

Calculation of the temperature
dependence of high-frequency
conductivity in the transition
frequency range

The expression for the real part of phononless conduc-

tivity has the following form in the pair approximation

according to the theory of hopping transport (see, for

example, [15])

σ res
1 (ω) =

πe2ω
V0

∑

{λ,λ′}
λ 6=λ′

∣

∣

∣
〈ψ−

λλ′ |(n, r)|ψ+
λλ′〉

∣

∣

∣

2

×
(

nF(ε−λλ′) − nF(ε+
λλ′)

)

δ(ε−λλ′ − ε+
λλ′ + ~ω). (11)

The electronic hopping transport through the impurity

zone is determined by the ground impurity states in the

transition frequency range (for Si:P ν ∼ 10GHz − 1THz)
under low temperature conditions. The matrix elements in

the considered case of hydrogen-like impurity centers are

equal to [13]

〈ψ−
λλ′ |(n, r)|ψ+

λλ′〉 = (n, rλλ′)
Iλλ′

Ŵλλ′

+
(ε0λ − ε0λ′)〈ψλ|(n, r)|ψλ′〉

Ŵλλ′
; (12)

here ψ±
λλ′ = C±

λ ψλ + C±
λ′ψλ′ — hybridized wave functions

of the ground states of the electron ψλ, ψλ′ on isolated

localization centers λ and λ′, n — a unit vector parallel

to external electric field, rλλ′ — radius vector of the center

λ′ relative to the center λ, nF(ε) — average filling number of

states with energy ε, V0 — system volume, ε0λ , ε
0
λ′ — initial

energies (excluding hybridization), Iλλ′ = 〈ψλ|Ûλ|ψλ′〉 —
resonance integral; Iλλ′ = I0 exp(−rλλ′/a), I0 ≈ e2/κa ,

Ŵλλ′ =
√

(ε0λ − ε0λ′)
2 + 4I2λλ′ . In the case of shallow impurity

centers with weak doping, a < N−1/3
d (Nd — concentration

of impurity centers), the potential energy of a localized

electron at the location of the center with the number λ can

be represented by in the form Uλ = −e2/κ|r− rλ| + eϕ(rλ);
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here rλ — the radius vector of the center λ, eϕ(rλ) —
the Coulomb shift caused by other charged centers at the

point rλ .

The matrix elements in (12) have the following form

for hydrogen-like impurities in the case of a large center-

to-center distance, rλ,λ′ > a , in the approximation of the

isotropic dispersion law [13]

〈ψλ|(n, r)|ψλ′〉 ≈
r3λ,λ′
a2

exp(−rλ,λ′/a) cos θ, (13)

where θ is the angle between the vectors n and rλ,λ′ ,

ψλ(r)=(1/
√
πa3) exp(−|r− rλ|/a).

Proceeding from summation to integration in (11), for the
real part of phononless conductivity we obtain [13,14]

σ res
1 (ω) = σ res

1a (ω) + σ res
1b (ω) + σ res

1c (ω), (14)

σ res
1a (ω) =

4π2e2ρ20ω
3

×
∞
∫

rω

drλλ′r
4
λλ′

∞
∫

−∞

dε−λλ′

∫

dε+
λλ′8(ε−λλ′ , ε

+
λλ′ , rλλ′)

× I2λλ′
(ε+
λλ′ − ε−λλ′)

2
(nF(ε−λλ′) − nF(ε+

λλ′))δ(ε
−
λλ′ − ε+

λλ′ + ~ω),

(15.1)

σ res
1b (ω) =

4π2e2ρ20ω
3

∞
∫

rω

drλλ′
r6λλ′
a2

exp(−rλλ′/a)

×
∞
∫

−∞

dε−λλ′

∫

dε+
λλ′8(ε−λλ′ , ε

+
λλ′ , rλλ′)

2Iλλ′

(ε+
λλ′ − ε−λλ′)

2

×
√

(ε+
λλ′ − ε−λλ′)

2 − 4I2λλ′ (nF(ε−λλ′) − nF(ε+
λλ′))

× δ(ε−λλ′ − ε+
λλ′ + ~ω), (15.2)

σ res
1c (ω) =

4π2e2ρ20ω
3

∞
∫

rω

drλλ′
r8λλ′
a4

exp(−2rλλ′/a)

×
∞
∫

−∞

dε−λλ′

∫

dε+
λλ′8(ε−λλ′ , ε

+
λλ′ , rλλ′)

× ((ε+
λλ′ − ε−λλ′)

2 − 4I2λλ′)

(ε+
λλ′ − ε−λλ′)

2

(

nF(ε−λλ′) − nF(ε+
λλ′)

)

× δ(ε−λλ′ − ε+
λλ′ + ~ω), (15.3)

here

8(ε−λλ′ , ε
+
λλ′ , rλλ′) =

ε+
λλ′ − ε−λλ′

√

(ε+
λλ′ − ε−λλ′)

2 − 4I2λλ′

is the Jacobian of the transition from the initial energies

ε0λ , ε
0
λ′ (excluding hybridization) to the energies ε−λλ′ , ε

+
λλ′

corresponding to the wave functions ψ−
λλ′ and ψ

+
λλ′ ,

ε±λλ′ =
ε0λ + ε0λ′

2
± 1

2

√

(ε0λ − ε0λ′)
2 + 4I2λλ′ , (16)

Ŵλλ′ = ε+
λλ′ − ε−λλ′ . The difference of the average occupation

numbers, taking into account the Coulomb interaction

between electrons localized simultaneously on a pair of

centers λ, λ′, that is present in (15.1)−(15.3) can be

represented as [14]

nF(ε−λλ′) − nF(ε+
λλ′)

=
(1− exp(−~ω/kT ))

exp
(

−(ε+
λλ′ + e2/κrλλ′ − µ)/kT

)

+

+ exp(−~ω/kT ) + 1 + exp((ε−λλ′ − µ)/kT )

,

(17)
where ε+

λλ′ = ε−λλ′ + ~ω, ε−λλ′ + ε+
λλ′ = ε0λ + ε0λ′ .

Integration (15.1)−(15.3) under the condition kT < ~ω,

e2/κrω (kT > ~ω, e2/κropt) gives for the real part

of phononless conductivity (14) in cases of low

(ω < ωopt) and high (ω > ωopt) frequencies expressions (2)
and (4) [13] ((6) and (5) [14]); in this case, we have

∞
∫

−∞

(nF(ε−λλ′) − nF(ε−λλ′ + ~ω))dε−λλ′ = ~ω + e2/κrλλ′

for kT < ~ω, e2/κrω, (18.1)

∞
∫

−∞

(nF(ε−λλ′) − nF(ε−λλ′ + ~ω))dε−λλ′ ≈ ~ω

for kT > ~ω, e2/κrω . (18.2)

Let us present the ratios (15.1), (15.2), (15.3), (17) in the

following form for calculating the phononless conductivity

in the intermediate temperature range

σ res
1a (ω) = C0σ0

∞
∫

2 ln(ωc/ω)

x4 exp(−x)
√

(ω/ωc)2 − exp(−x)
dx

×
∞
∫

−∞

(nF(ε−λλ′) − nF(ε−λλ′ + ~ω))d(ε−λλ′/~ωc),

(19.1)

σ res
1b (ω) = C0σ0

∞
∫

2 ln(ωc/ω)

x6 exp(−x)dx

×
∞
∫

−∞

(nF(ε−λλ′) − nF(ε−λλ′ + ~ω))d(ε−λλ′/~ωc),

(19.2)
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σ res
1c (ω) = C2σ0

ω

ωc

∞
∫

2 ln(ωc/ω)

x8 exp(−x)

√

1− exp(−x)

(ω/ωc)2
dx

×
∞
∫

−∞

(nF(ε−λλ′) − nF(ε−λλ′ + ~ω))d(ε−λλ′/~ωc)

(19.3)
where σ0=π

2e4ρ20a4ωc/(3κ)=π
2e2ρ20a5

~ω2
c/6, ωc=2I0/~,

I0 = e2/κa , rω = a ln(ωc/ω), x = 2rλλ′/a , C0 = 1/24,

C2 = 1/26 — numerical coefficients,

nF(ε−λλ′) − nF(ε−λλ′ + ~ω)

=
(1− exp(−ω/(ωcϑ)))

exp(−(ε̃−λλ′ + ω/ωc + 1/x)/ϑ) +

+ exp(−ω/(ωcϑ)) + 1 + exp(ε̃−λλ′/ϑ)

(20)

ϑ = kT/~ωc , ε̃
−
λλ′ = (ε−λλ′ − µ)/~ωc ; in this case, we have

∞
∫

−∞

(

nF(ε−λλ′) − nF(ε−λλ′ + ~ω)
)

d(ε−λλ′/~ωc) = ω/ωc + 1/x

for kT < ~ω, e2/κrω [13], (21.1)

∞
∫

−∞

(

nF(ε−λλ′) − nF(ε−λλ′ + ~ω)
)

d(ε−λλ′/~ωc) ≈ ω/ωc

for kT > ~ω, e2/κrω [14].
(21.2)

It should be noted that the energy integra-

tion in (15.1)−(15.3) yields
∫ ∞

−∞
(nF(ε−λλ′) −

−nF(ε−λλ′ + ~ω))dε−λλ′ = ~ω without taking into account the

Coulomb interaction of electrons falling on isolated pairs

of centers (summand e2/κrλλ′ in (17)); in this case, the

frequency the dependence of the real part of the phononless

conductivity σ res
1 (ω) (14) is independent of temperature

and corresponds to the expressions (6) at ω < ωopt and (5)
at ω > ωopt , i. e. it agrees with the expressions for σ res

1 (ω),
obtained taking into account the Coulomb interaction of

electrons in pairs at high temperatures kT > ~ω, e2/κropt .

2. Results and conclusions

The results of numerical calculation of the frequency

dependences of the real part of phononless conductivity

(14) at different temperature values are shown in Figure 1.

The results of calculation of σ res
1 (ω, T ) (14) are consistent,

respectively, with the expressions (3), (6) at low frequencies

ω < ωopt in cases of low (e2/κrω , ~ω > kT ) and high

(kT > ~ω, e2/κropt) temperatures; and they are consis-

tent with the expression σ res
1 (ω) (5) at high frequencies

ω > ωopt . An increase of phononless conductivity with a

decrease of temperature at a given frequency (ω < ωopt)
is attributable to the main role of the Coulomb interaction

between electrons in resonant pairs at low temperatures,

e2/κrω > ~ω > kT .
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s

0
/

Figure 1. Frequency dependences of the real part of phononless

conductivity σ res
1 (ω, T ) (14) at different temperature values;

curve 1 — T = 0K (e2/κrω , ~ω > kT ), curve 2 — T = 0.1K,

curve 3 — T = 0.7K, curve 4 — T = 8K, curve 5 — kT > ~ω,

e2/κropt . The curves 1 and 5 at low frequencies ω < ωopt

correspond to expressions (3) and (6), i. e. σ res
1 (ω) in these cases

has a sublinear (s ≈ 0.8) and subquadratic (s ≈ 1.5) character,

respectively; curves 1 and 5 are consistent with the expression (5)
(s ≈ 2) at high frequencies ω > ωopt .
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1
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s
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1
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/

1 2
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Figure 2. Frequency dependences of the real part of conductivity,

σ1(ω, T ) = σ res
1 (ω, T ) + σ rel

1 (ω, T ), at different temperature val-

ues; curve 1 — σ1(ω) ≈ σ res
1 (ω) at T ≈ 0K, curve 2 — σ1(ω, T )

at T = 2.1K, curve 3 — σ1(ω, T ) at T = 10K, curve 4 —
frequency dependence of relaxation conductivity σ rel

1 (ω, T ) at

T ≈ 0K (7), curve 5 — frequency dependence of the interpolation

expression for relaxation conductivity σ rel
1 (ω, T ) (9) at T = 10K,

curve 6 — frequency dependence of phononless conductivity

σ res
1 (ω, T ) (14) at T = 10K.

Figure 2 shows the obtained frequency depen-

dences of the real part of the conductivity, taking

into account the resonant and relaxation contributions,

σ1(ω, T ) = σ res
1 (ω, T ) + σ rel

1 (ω, T ), at different temper-
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Figure 3. Temperature dependences of high-frequency con-

ductivity, σ1(ω, T ) = σ res
1 (ω, T ) + σ rel

1 (ω, T ), at various defined

frequency values; curve 1 — ω/ωc = 0.007, curve 2 —
ω/ωc = 0.014, curve 3 — ω/ωc = 0.025, curve 4 —
ω/ωc = 0.043, curve 5 — ω/ωc = 0.071. The dashed curve

numbers correspond to the temperature dependences of the

phononless contribution to conductivity calculated at specified

frequency values.
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Figure 4. Frequency dependences of the real part of phononless

conductivity σ res
1 (ω, T ) (22) at different temperature values;

curve 1 — T = 0K (kT ≪ ~ω, e2/κropt), curve 2 — T = 0.1K,

curve 3 — T = 0.7K, curve 4 — T = 10K, curve 5 — kT > ~ω,

e2/κropt . The curves 1 and 5 correspond, respectively, to

expressions (4) and (5).

ature values. According to the calculation results, the

temperature dependence of high-frequency conductivity

with a decrease of temperature reaches saturation in a

non-monotonic way due to the multidirectional changes of

relaxation and resonance contributions to conductivity with

a change of temperature (Figure 3); thus, the contribution

from relaxation conductivity decreases with a decrease of

temperature at a given frequency, and the contribution

from phononless conductivity increases. The results of the

conductivity calculations shown in the figures correspond to

the characteristic values of the parameters ωc = 1013 rad/s,

ωph/ωc = 5.

It should be noted that the sublinearity (s < 1) of the

frequency dependence of the conductivity of disordered

semiconductors, generally speaking, can be determined by

the relaxation rather than the resonance component in

the transition frequency range at ω < ωcr . For instance,

the hybridization involving states of intermediate centers

can misalign the energy levels in resonant pairs with a

large center-to-center distance at low frequencies ω ≪ ωc

corresponding to large values of the optimal hopping

distance rω > N−1/3
d , in case of the transition of the

charge carrier not to the nearest localization center with

a close initial energy. Calculation of the real part of

phononless conductivity using the basis of localized atomic

type functions, 〈ψ−
λλ′ |(n, r)|ψ+

λλ′〉 ≈ 〈ψλ|(n, r)|ψλ′〉,

σ res
1 (ω)=πe2ωρ20

y
dελdελ′, drλλ′

∣

∣〈ψλ|(n, r)|ψλ′〉
∣

∣

2

×
(

nF(ελ) − nF(ελ′)
)

δ(ελ − ελ′ + ~ω),
(22)

σ res
1 (ω) = C2σ0

ω

ωc

∞
∫

0

x8 exp(−x)dx

×
∞
∫

−∞

(nF(ελ) − nF(ελ + ~ω))d
(

ελ/~ωc

)

, (23)

yields the expression (4) in the low temperature range,

kT ≪ ~ω, e2/κropt , and it yields the expression (5) in the

conditions, kT > ~ω, e2/κropt ; the frequency dependences

of the real part of phononless conductivity σ res
1 (ω) (22) over

the entire temperature range studied are superlinear (s > 1)
(Figure 4). The calculation of phononless conductivity

using the basis of atomic-type functions (in the mode

with a constant hopping distance) gives a lower value of

conductivity in the frequency range ω < ωcr ∼ ωopt com-

pared to the result of calculation of phononless conductivity

using the basis of pairwise hybridized wave functions (in
the mode with a variable hopping distance); at the same

time the sublinearity of the frequency dependence of the

conductivity of disordered semiconductors in the frequency

range ω < ωcr is determined by the predominant relaxation

component (Figure 5). The non-monotonicity of the

temperature dependence of the real part of the conductivity

is smoothed out in the frequency range ω ≪ ωcr according

to the performed calculations; at the same time, the non-

monotonicity albeit less pronounced in the behavior of

σ1(ω, T ) is still present for frequencies corresponding to

the transition region (Figure 6). The non-monotonicity of

the temperature dependence of conductivity σ1(ω, T ) in

the low temperature region is attributable to the multidirec-

tional changes in relaxation and resonance contributions to

conductivity with temperature changes, the predominance

of phononless contributions, and the main role of the
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Figure 5. Frequency dependences of the real part of

the conductivity at different temperature values; curve 1 —
σ1(ω, T ) = σ res

1 (ω, T ) + σ rel
1 (ω, T ) at T ≈ 0K, curve 2 — fre-

quency dependence relaxation conductivity σ rel
1 (ω) (7), curve 3 —

frequency dependence of phononless conductivity σ res
1 (ω, T ) (22)

at T ≈ 0K, curve 4 — σ1(ω, T ) at T ≈ 10K, curve 5 — fre-

quency dependence of the interpolation expression for relaxation

conductivity (9) at T = 10K, curve 6 — frequency dependence

of phononless conductivity σ res
1 (ω, T ) (22) at T = 10K.
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Figure 6. Temperature dependences of high-frequency con-

ductivity, σ1(ω, T ) = σ res
1 (ω, T ) + σ rel

1 (ω, T ), at various defined

frequency values; curve 1 — ω/ωc = 0.007, curve 2 —
ω/ωc = 0.014, curve 3 — ω/ωc = 0.025, curve 4 —
ω/ωc = 0.043, curve 5 — ω/ωc = 0.071. The shaded curve num-

bers correspond to the temperature dependences of the phononless

contribution to conductivity (22), calculated at specified frequency

values.

Coulomb interaction between electrons in pairs contributing

to phononless conductivity in the low temperature region,

e2/κropt > ~ω > kT .
A superlinearity (s > 1) of the frequency dependence

of the real part of low-temperature conductivity σ1(ω) was

found in some experiments on Si:P [9] in the frequency

range of 100−500GHz, which was associated with a

manifestation of the Coulomb gap in a single-particle

density of states describing the distribution of self-consistent

energies εi of interacting localized charge carriers in the

ground state of the system. We would like to remind that

the soft Coulomb gap in a single-particle density of states

ρ(ε) in the vicinity of the Fermi level is determined by the

stability of the ground state of the system relative to single-

electron transitions. However, the spectrum of excitations

created by photon absorption at low temperatures is not

directly related to the single-particle density of states ρ(ε),
which describes the distribution of self-consistent energies

corresponding to the addition of an electron to the ground

state of the system. The energy of the final state ϕ f during

the transition corresponds to the addition of an electron

to a state that differs from the ground state in that the

center i is empty (occupied by a hole); in this case, we

have ϕ f = ε f − e2/κr i f , ϕi = εi , where r i f is the center-

to-center distance.

The calculation of low-temperature phononless conductiv-

ity in Ref. [16] using the concept of self-consistent energies

showed that the frequency dependence of phononless

conductivity has the form (4), i. e. it is consistent with

the results of calculating the frequency dependence of low-

temperature phononless conductivity at high frequencies,

when the effects of hybridization are insignificant and the

optimal hopping distance ropt does not depend on the fre-

quency [13]. The optimal hopping distance ropt corresponds

to transitions outside the Coulomb gap. Extrapolation of the

results of the standard approach from the region of almost

linear frequency dependence of conductivity with variable

hopping distance to the region of quadratic frequency

dependence of conductivity with constant hopping distance

corresponds to a sublinear frequency dependence of con-

ductivity in the low frequency region (s ≈ 0.8 at ω ≪ ωcr ).
Thus, the superlinearity of the frequency dependence of

the conductivity σ1(ω) in the transition frequency range

may be due to the transition from a variable to a constant

(independent of frequency) optimal hopping distance ropt .

Based on the above, we would like to note that data on

its temperature dependence in the low temperature region

are essential to establish the characteristics of the effect

of Coulomb effects on the low-temperature high-frequency

conductivity of disordered semiconductors.
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