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Hybrid modes in the antiferromagnet|ferromagnet heterostructure
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1. Introduction

The possibility of using the transfer of spin (or mag-

netic moment) of electrons instead of transferring their

charge (spintronics and magnonics) is currently studied

for creation of a new class of devices for receiving,

processing and transmitting information [1–3]. The active

element in the prototypes of such devices is a layer of

magnetically ordered material such as ferromagnet (FM)
or antiferromagnet (AFM). Two-layer heterostructures of

the antiferromagnet|ferromagnet type are also actively stud-

ied along with structures containing only one layer of

magnetically ordered material. An exchange interaction

occurs between the magnetic moments in the AFM and

the magnetic moments in the FM in the interface layer

in such heterostructures. It leads to the appearance of

unidirectional anisotropy in FM [4–7], which is manifested

in the so-called exchange bias. The presence of an exchange

bias leads to a change of the width, shape and position

of the magnetization curve M(H) of the FM layer of the

heterostructure [8,9], that is, the AFM layer acts as an

element modifying the properties of the FM layer.

However, the interaction between the magnetic moments

in AFM and FM also leads to hybridization of the

homogeneous resonance modes in AFM and FM in addition

to the exchange bias. The mode hybridization phenomenon

constitutes a change of the nature of resonant oscillations of

magnetization in two connected magnetic layers relative to

these oscillations in unrelated layers due to mutual influence.

This phenomenon has been observed for magnetics, for

example, in case of the exchange interaction in synthetic

AFM. A synthetic AFM consisting of two antiparallel

magnetized ferromagnetic CoFeB layers separated by a thin

metal layer was experimentally studied in Ref. [10]. It has

been shown that the size of the gap between the acoustic

and optical branches of ferromagnetic resonance can be

controlled by changing the direction of the applied magnetic

field. A similar pattern is observed in Ref. [11], where the

AFM CrCl3 is experimentally studied, whose sublattices

can be considered as ferromagnetic layers under certain

conditions. The excited acoustic and optical resonance

branches hybridize with each other as a result of the

exchange coupling between the layers. The hybridization

was observed in Refs. [12,13] when studying the magnon-

photon interaction of magnons in FM with ultrahigh-

frequency photons. It is shown in Ref. [14] that magne-

tization oscillations in FM can interact with magnetization

oscillations in AFM indirectly through coupling with the

electromagnetic mode of the resonator. At the same time,

hybridization of the resonator mode and the modes of

ferro- and antiferromagnetic resonance is also observed.

AFM|FM heterostructure (Mn2Au|Py) was theoretically

and experimentally studied in Ref. [15], and it was shown

that the frequency of the spin-wave resonance mode in the

FM layer changes due to the exchange interaction between

AFM and FM.
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In order to observe the hybridization of resonant modes

in magnetic heterostructures, it is necessary to have an

exchange interaction between the layers, which is achieved

by breaking rotational symmetry relative to the direction of

the external magnetic field [11]. Such symmetry breaking

can be introduced into the structure in various ways,

for example, using ferromagnets with different saturation

magnetizations [16], with different thicknesses [17], or

applying an additional magnetic field outside the plane [11].
The purpose of this work is a theoretical study of mode

hybridization in a two-layer AFM|FM heterostructure.

2. Mathematical model

We assume that in the considered heterostructure, the

magnetic moments of the FM involved in the exchange

coupling with the magnetic moments of the AFM of both

sublattices. In our case, the breaking of rotational symmetry

is caused by the difference in saturation magnetization of

FM and AFM. The considered heterostructure is a thin

layer of antiferromagnet with easy-plane anisotropy, on

which a thin layer of ferromagnet is applied. The entire

heterostructure is placed in an external dc magnetic field, as

shown in Figure 1.

To solve this problem, it is sufficient to consider a

conservative system, so that Gilbert damping can be

neglected. The dynamics of the magnetization vectors of

the sublattices of AFM M1,2 and the magnetization vector

of FM M3 are described by the Landau-Lifshitz equations

∂M j

∂t
= γM j ×

∂W
∂M j

, (1)

where j = 1, 2, 3, γ is gyromagnetic ratio modulus, W is

the total energy of the AFM|FM heterostructure:

W = − µ0H(M1 + M2 + M3) −
µ0He

2Ms

(

(M1y)
2 + (M2y)

2
)

+
µ0Hh

2Ms

(

(M1z)
2 + (M2z)

2
)

+
µ0Hex

Ms

M1M2

+
µ0

2
(M3z)

2 +
µ0Hc

Ms

(M1 + M2)M3, (2)

where µ0 is the vacuum magnetic permeability, Ms is

the saturation magnetization of AFM, H = Hy is the

external magnetic field vector, He,h is the effective fields of

magnetocrystalline anisotropy along the easy and hard axes,

respectively, Hex is the effective field of exchange interaction

between AFM sublattices, Hc is the effective field of

exchange interaction between AFM and FM. The demag-

netizing field in the AFM is neglected due to its smallness.

The Cartesian coordinate system is chosen in such a way

that the equilibrium state of magnetization is directed along

the y-axis. Let us represent the magnetization vector as

the sum of vectors defining the equilibrium state and small

oscillations around it as M j = M jyy + m jxx + m jzz. In this

case, the normalization condition M2
jy + m2

jx + m2
jz = 1 is

satisfied.

AFM

FM M
3

M
2

M
1

HA
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H

x

z
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Figure 1. Diagram of the studied heterostructure. M1,2 is the

magnetization vectors of the first and second AFM sublattices,

M3 is the magnetization vector of FM, EA and HA are axes of

easy and hard magnetization of AFM, H is the external magnetic

field vector aligned with the easy axis.

3. Analytical calculation

It is convenient to analyze the considered system using

the Hamiltonian formalism [18,19], which is well suited

for analyzing both homogeneous and inhomogeneous mag-

netization oscillations in FM and AFM [14,20–22]. This

requires a transition from the Landau-Lifshitz equations to

the Hamilton equations. Let us introduce new complex

variables a j = a j(M j) for this transition which are related

to the amplitude of magnetization oscillations, proposed by

Holstein and Primakoff [23].

a j =
m jz ± im jx
√

Ms ± M jy
, (3)

where j = 1, 2, and the projections of the magnetization

vectors M1 and M2 obtained by the inverse transformation

have the form

M jy = ±Ms ∓ |a j |
2, (4)

m jx = ∓i
1

2

√

2Ms − |a j |2(a j − a∗

j ), (5)

m jz =
1

2

√

2Ms − |a j |2(a j + a∗

j ). (6)

Expressions for the vector M3 are obtained from (3)−(6)
by replacing the index 1 with 3 and the constant Ms with

MsF, where MsF is the saturation magnetization of FM.

Substituting (4)−(6) into (2), we can write the Hamil-

tonian of the system as a series in powers of variables a j .

Since the problem of finding the frequencies of a homo-

geneous resonance is solved without taking into account

nonlinearity, we will keep only the quadratic terms [18,19].
Then the Hamiltonian has the form

H = H1 + H2 + H3, (7)

H1 =A1|a1|
2 + A2|a2|

2 + B1(a1a2 + a∗

1a∗

2)

+
1

2
C1(a

2
1 + a∗2

1 + a2
2 + a∗2

2 ), (8)

H2 = A3|a3|
2 +

1

2
C2(a

2
3 + a∗2

3 ), (9)
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H3 = − µ0Hc

MsF

Ms

(|a1|
2 − |a2|

2)

+ B2(a1a
∗

3 + a∗

1a3 + a2a3 + a∗

2a∗

3), (10)

where the Hamiltonian coefficients are

A1 = µ0

(

He +
Hh

2
+ Hex + H

)

, (11)

A2 = µ0

(

He +
Hh

2
+ Hex − H

)

, (12)

A3 = µ0

(

H +
MsF

2

)

, (13)

B1 = µ0Hex, (14)

B2 = µ0Hc

√

MsF

Ms

, (15)

C1 =
µ0Hh

2
, (16)

C2 =
µ0MsF

2
. (17)

The terms H1 and H2 in (7) describe a homogeneous

resonance in the layers of AFM and FM, respectively, and

the term H3 is the interaction between AFM and FM. The

next step is to find expressions for the natural oscillations

of magnetization in the AFM|FM system, which would

have the form of equations for an autonomous conservative

system of two coupled linear oscillators. H1 and H2 can

be represented in matrix form and then diagonalized to find

resonant frequencies. Let us use the method proposed in

Ref. [24] for diagonalization, which is a generalization of the

Bogolyubov transformations [25]. For the antiferromagnetic

layer

H1 =
1

2
X̂∗

1

(

Ĥ1 Ĥ2

Ĥ2 Ĥ1

)

X̂1 =
1

2
Ŷ∗

1

(

ω̂ 0̂

0̂ ω̂

)

Ŷ1, (18)

where X̂1 =









a1

a2

a∗

1

a∗

2









, Ŷ1 =









b1

b2

b∗

1

b∗

2









,

Ĥ1 =

(

A1 0

0 A2

)

, Ĥ2 =

(

C1 B1

B1 C1

)

,

(

ω1 0

0 ω2

)

.

For the ferromagnetic layer

H2 =
1

2
X̂∗

2

(

A3 C2

C2 A3

)

X̂2 =
1

2
Ŷ ∗

2

(

ω3 0

0 ω3

)

Ŷ2, (19)

where X̂2 =

(

a3

a∗

3

)

, Ŷ2 =

(

b3

b∗

3

)

,

Next, let us perform a linear transformation of the old

complex variables a j into the new ones b j to diagonalize

the coefficient matrix for complex variables

X̂1 =

(

Ŝ1 Ŝ2

Ŝ2 Ŝ1

)

Ŷ1, (20)

X̂2 =

(

u −v

−v u

)

Ŷ2, (21)

where

Ŝ1 =

(

s11 s12
s21 s22

)

, Ŝ2 =

(

s13 s14
s23 s24

)

.

Orthonormal relations for transition matrices can be

obtained based on the commutation relations [a j, a∗

j ] = 1,

[a∗

j , a j ] = −1, [a j, a j ] = 0 [19]

(

Ŝ1 Ŝ2

Ŝ2 Ŝ1

)−1

=

(

1̂ 0̂

0̂ −1̂

) (

Ŝ1 Ŝ2

Ŝ2 Ŝ1

) (

1̂ 0̂

0̂ −1̂

)

, (22)

(

u −v

−v u

)

−1

=

(

1 0

0 −1

) (

u −v

−v u

) (

1 0

0 −1

)

,

(23)

where 1̂ is the identity matrix. Let us find the natural

frequencies by using the relations that can be obtained by

substituting (20) and (21) into (18) and (19), and also

considering (22)−(23) [19]:

(

Ĥ1 Ĥ2

Ĥ2 Ĥ1

) (

Ŝ1 Ŝ2

Ŝ2 Ŝ1

)

=

(

1̂ 0̂

0̂ −1̂

) (

Ŝ1 Ŝ2

Ŝ2 Ŝ1

) (

1̂ 0̂

0̂ −1̂

) (

ω̂ 0̂

0̂ ω̂

)

, (24)

(

A3 C2

C2 A3

) (

u −v

−v u

)

=

(

1 0

0 −1

) (

u −v

−v u

) (

1 0

0 −1

) (

ω3 0

0 ω3

)

.

(25)

The solution of the system of equations (24)−(25) allows

obtaining the following expressions for the lower and upper

modes of antiferromagnetic resonance ω1,2 and for the

ferromagnetic resonance mode ω3:

(

ω1,2

γ

)2

=
1

2

(

A2
1 + A2

2 − 2(B2
1 + C2

1) ∓
(

(A2
1 − A2

2)
2

− 4(A2
1 + A2

2)
2B2

1 + 16B2
1C

2
1

)1/2
)

, (26)

(

ω3

γ

)2

= A2
3 −C2

2. (27)

Substituting (20) and (21) in H3, we also obtain an

expression describing the interaction of AFM and FM
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in variables b1, b2 and b3. As will be seen later, the

ferromagnetic resonance mode does not hybridize with the

upper antiferromagnetic mode, so we can discard terms that

depend on b2. Then the Hamiltonian in variables b1 and b3

will have the form

γH = (ω1 + c1)|b1|
2 + ω3|b3|

2 + c2(b
2
1 + b∗2

1 )

+ c3(b1b3 + b∗

1b∗

3) + c4(b1b∗

3 + b∗

1b3), (28)

where the coefficients responsible for the coupling:

c1 = −γµ0Hc

MsF

Ms

(s211 + s213 − s221 − s223), (29)

c2 = −γµ0Hc

MsF

Ms

(s11s13 − s21s23), (30)

c3 = γB2

(

(s13 + s21)u − (s11 + s23)v
)

, (31)

c4 = γB2

(

(s11 + s23)u − (s13 + s21)v
)

. (32)

Let us now write down the equations describing the

dynamics of magnetization in the Hamiltonian formalism, to

which we have moved from the Landau-Lifshitz equations.

They will look as follows in variables b1 and b3

∂b1

∂t
= −iγ

∂H

∂b∗

1

= −i(ω1 + c1)b1 − i(2c2b∗

1 + c3b
∗

3 + c4b3), (33)

∂b3

∂t
= −iγ

∂H

∂b∗

3

= −iω3b3 − i(c3b∗

1 + c4b1). (34)

Equations (33)−(34) are called the form of coupled

oscillations [26]. Their solution gives the natural frequencies

of a system of coupled oscillators. In this case, ω1 and

ω3 are the partial frequencies of such a system, that is, the

frequencies of individual oscillators (in our case, the AFM

and FM layers) without regard to coupling. Let us look

for a solution of (33)−(34) in the form of b j = b j(0)e−iωt ,

b∗

j = b∗

j (0)e
−iωt ( j = 1, 3). Let us find the determinant of

the resulting system of algebraic equations. The characte-

ristic equation is obtained by equating the determinant to

zero
∣

∣

∣

∣

∣

∣

∣

∣

ω1 + c1 − ω c4 2c2 c3

c4 ω3 − ω c3 0

2c2 c3 ω1 + c1 − ω c4

c3 0 c4 ω3 − ω

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(35)
Assuming that the interaction between AFM and FM is

weak [26], we can neglect the coefficients c2 and c3 linking

b to b∗. Then the characteristic equation takes the form
∣

∣

∣

∣

ω1 + c1 − ω c4

c4 ω3 − ω

∣

∣

∣

∣

= 0. (36)

Finally, from (36) we can obtain expressions for the

natural oscillation frequencies in the system of exchange-

coupled AFM and FM

ωa,b =
1

2

(

ω1 + c1 + ω3 ∓
(

(ω1 + c1 − ω3)
2 + 4c2

4

)1/2
)

.

(37)

4. Results

Figure 2 shows the dependences of the natural os-

cillation frequencies ωa,b on the external magnetic field
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Figure 2. Dependences of the resonant frequency on the mag-

netic field for various effective coupling fields: a — µ0Hc = 0.1 T;

b — µ0Hc = 0.15 T; c — µ0Hc = 0.2 T.
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Figure 3. The dependence of the gap width and the external field

at which hybridization is observed on the effective coupling field.

H at different values of the effective coupling field.

These dependencies were built using the values of

constants for nickel oxide NiO (AFM) and permalloy

Ni80Fe20 (FM) γ/2π = 28GHz/T, MsF = 800 kA/m [27],
Ms = 351 kA/m [28], µ0He = 0.011 T [29], µ0Hh =
= 0.635 T [29], µ0Hex = 968.4 T [29]. It is shown in [26]
that the introduction of coupling into an autonomous

conservative system of two oscillators should increase the

interval between the natural frequencies of the linear system.

Figure 2 shows that when the resonant frequencies of the

two magnetic subsystems (antiferromagnetic and ferromag-

netic) approach each other, a gap in the frequency spectrum

is formed at the place of their intended intersection. It

should be noted that the expression (37) is valid for a

limited range of values Hc. Figure 3 shows the dependence

of the width of the gap 1 f and the external field H0, at

which hybridization is observed, on the effective coupling

field Hc. With an increase in the effective coupling field,

an expansion of the interval between modes is observed, as

well as a strong shift of the hybridization region towards

large magnetic fields. The values 1 f and H0 increase non-

linearly with the increase in Hc.

5. Conclusion

A two-layer AFM|FM heterostructure is considered. It is

shown that the exchange interaction between the magnetic

moments of AFM and FM leads to hybridization of

resonant modes. This phenomenon has been studied by

the method of Hamiltonian formalism, and expressions have

been obtained for the natural frequencies of the AFM|FM
structure as a system of two coupled linear oscillators. The

dependences of the gap width and the external field at which

hybridization is observed on the effective coupling field are

analyzed. The results are demonstrated using the nickel

oxide|permalloy structure as an example.
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