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1. Introduction

Currently, the use of terahertz devices in magnonics

seems to be a near-term prospect [1,2]. High-energy

magnons belonging to the exchange wavelength range

(exchange spin waves, ESW) correspond to the exchange

spin modes in antiferromagnets. The practical application

of ESW makes it possible to reduce the size and heat

losses in magnonic waveguides [1]. At the same time,

magnetic structures with nonreciprocal properties are of

interest for creating, in particular, magnon valves. These

properties can manifest themselves in structures with an

heterogeneous ground state with a certain chirality of the

spin helicoid [2], and in case of the propagation of exchange

dipole waves [3].

The ground state in the form of a spin helicoid is

realized, in particular, in structures with the Dzyaloshinski

interaction. The scattering and generation of ESW by a

relativistic spiral were studied in Ref. [4,5]. The competition

of short-range and long-range exchange interactions may be

another mechanism of its formation. Magnetic materials

in which such structures exist are discussed in detail in

Ref. [5]. Their characteristic spatial period has an order

of magnitude of 100−200 of lattice constants, so that it

can be considered long-period. Boundary conditions (BC)
for waves in heterogeneous structures were obtained in the

continuum approximation in Ref. [6] to solve the problems

of ESW scattering. Recent studies [7–9] have shown that

ESW can be both volumetric and evanescent in limited

magnetic structures, which also differ from volumetric ESW

by precession chirality. For this reason both nonreciprocal

properties and a greater variety of possible wave types

can be expected in more complex magnetic structures with

competing exchange interactions.

The propagation, scattering, and generation of ESW in

such long-period structures is theoretically studied in this

paper.

2. Ground state in magnetic structures
with competing exchange interactions

Let us consider an unlimited magnetic structures with

competing exchange interactions in which the dynamic

variables are functions only of the coordinate z . We assume

that the exchange interaction between the nearest atoms is

ferromagnetic, and it is antiferromagnetic between the atoms

of the second coordination sphere. The Hamiltonian of such

a structure can be written as:

WH =
AH

16

∑

n

(

SnSn+2 − (4 + 1)SnSn+1

)

, (1)

where Sn is the spin of the nth lattice node, AH > 0 is

an exchange constant, 1 is a dimensionless parameter, the

meaning of which will become clear later.

The first term in (1) describes the exchange interaction

with the spins of the second coordination sphere and is

antiferromagnetic in nature. The second term corresponds

to the ferromagnetic exchange interaction of neighboring

atoms, and its minimum is provided by their collinear

mutual orientation. Thus, competition occurs between the

two types of exchange, which can lead to an exchange

spiral.
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The spin dynamics of the considered structure is de-

scribed by the Landau-Lifshitz equation:

~Ṡ =
1

SH

[

S× ∂WH

∂S

]

, (2)

where SH is the spin value, ~ is the Planck constant.

Let us write the dynamics equation as follows after

substituting (1) into (2):

~SH Ṡn =
AH

16

[

Sn ×
(

(Sn+2 + Sn−2 − 2Sn)

− (4 + 1)(Sn+1 + Sn−1 − 2Sn)
)

]

. (3)

Hence follows the equation defining the ground state:

(S
(0)
n+2 + S

(0)
n−2 − 2S(0)

n ) − (1 + 1)(S
(0)
n+1 + S

(0)
n−1 − 2S(0)

n ) = 0.

(4)
The solution (5) in the form of a spin helicoid (z n = ndH)

has the form:

S(0)
n± = S(0)

nx ± iS(0)
ny = SHe±iKHz n (5)

and it yields the possible values of the wave number after

substituting in (3):

KH =
2

dH
arcsin(

√
−1), 1 ≤ 0,

KH = 0, 1 ≥ 0. (6)

Thus, the long-range order of the exchange interaction

distorts the collinear structure under the condition 1 < 0.

KHdH ≪ 1 in real long-period structures. If N ≫ 1 is

the period of the structure in lattice constants, then

|1| ≈
(

π
N

)2 ≪ 1. The estimate |1| ∼ 10−3 is obtained for

N = 100. The ground state is homogeneous when 1 ≥ 0.

3. Types of waves in uniformly
magnetized magnetic structures
with competing exchange interactions
and uniaxial ferromagnets

Let’s assume S
(0)
Hn = SNex considering the ground state

to be homogeneous (1 ≥ 0). We will look for small

perturbations in the form of ESW described by equation (3)
in the first approximation (sH ∼ e−iωt):

−iEsHnSH =
[

S
(0)
Hn × χHn

]

, (8)

where

χHn =
AH

16

(

(sH(n+2) + sH(n−2) − 2sHn)

− 4(1 + 1)(sH(n+1) + sH(n−1) − 2sHn)
)

, (9)

and E = ~ω is the magnonic energy.

Then for the cyclic components of the dynamic spin:

s (l/r)
Hn = sHny ± isHnz ,

χ
(l/r)
Hn =

AH

16

(

(s (l/r)
H(n+2) + s (l/r)

H(n−2) − 2s (l/r)
Hn )

− 4(1 + 1)(s (l/r)
H(n+1) + s (l/r)

H(n−1) − 2s (l/r)
Hn )

)

(10)

the system follows from (8):

χ
(l/r)
Hn ± Es (l/r)

Hn = 0 (11)

and after substituting s (l/r)
Hn = D(l/r)

H eikH ndH we obtain:

(

sin2
kHdH

2

(

sin2
kHdH

2
+ 1

)

± E

AH

)

D(l/r)
H = 0. (12)

A straight clockwise-polarized wave (Dl
H = 0, D(r)

H 6= 0)
corresponds to two wavenumber values:

k(r)
H±dH = 2 arcsin

√

√

√

√±
√

12

4
+

E

AH
− 1

2
. (13)

The boundary of the first band k(r)
H±dH ∪ [0 . . . 2π] cor-

responds to the energy interval E ∪ {0, (1 + 1)AH}, where

k(r)
H+ is real, and k(r)

H− is purely imaginary.

Wave numbers of left-polarized waves (D(r)
H =0, D(l)

H 6=0)

k(l)
H±dH = 2 arcsin

√

√

√

√±
√

12

4
− E

AH
− 1

2
(14)

are purely imaginary in the range of magnon energies

E ∪ [0, 12

4
AH ]. k(l)

H± have real and imaginary parts outside

this range and are mutually conjugate, corresponding to

volume-surface waves.

The energy dependences of the real and imaginary parts

of the wave numbers are shown in Figure 1.

Thus, taking into account the long-range order of the

exchange interaction leads to an increase of the order of

the dispersion equation and a doubling of the number of

waves. Its four solutions form a complete system within the

framework of the linearized Landau-Lifshitz equation.

The lattice Hamiltonian in uniaxial ferromagnet with

”
easy axis“ anisotropy type (ox):

WF = −1

4

∑

n

(AFSnSn+1 + 2BFS2
nx ) (15)

(all constants are positive). The ferromagnet is uniformly

magnetized in the direction of the axis x in the ground

state. The linearized equation (3) for ferromagnet has the

form:

−iESFsn = [S(0)
n × χFn], (16)

where

χFn = −AF

4
(sn+1 + sn−1 − 2sn) + BF(snyy + snz z). (17)
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Figure 1. Dependence of the provided wave numbers k(r/l)
H±

dH on the magnonic energy for 1 = 0 (a) and 1 = 2 (b).

The solution of (16) is represented as:

s (l/r)
Fn = D(l/r)

Fn ei(kF ndF−ωt) (18)

and after substitution we obtain:

(

AF sin2
kFdF

2
+ BF ± E

)

D(l/r)
Fn = 0 (19)

The clockwise-polarized wave in the ferromagnet

(s (r)
F 6= 0, s (l)

F = 0) has a real wavenumber, and the

counterclockwise-polarized wave is purely imaginary:

k(r)
F dF = 2 arcsin

(

√

E− BF

AF

)

,

k(l)
F dF = 2i arsh

(

√

E + BF

AF

)

. (20)

Having established the types of waves in a magnetic

structure with competing exchange interactions and ferro-

magnet, we proceed to solving the problem of scattering

and generation of electromagnetic waves by their interface.

4. ESW scattering by an isolated
boundary ferromagnet-magnetic
structure with competing
exchange interactions

Let’s consider the normal incidence of the ESW from fer-

romagnet (z < 0) on a magnetic structure with competing

exchange interactions (z > 0). This choice of model is at-

tributable to the presence of the fixing light axis x in the fer-

romagnet structure. Due to the ferromagnet coupling at the

boundary, the ground state in the magnetic structures with

competing exchange interactions is fixed along the axis x .
Since all waves have circular polarization in the consi-

dered model, only traveling waves are excited in case of FM

coupling between ferromagnet and magnetic structure with

competing exchange interactions in the ferromagnet above

the activation energy — incident wave (with an amplitude

taken as one) k(r)
F and reflected wave (−k(r)

F ), and while a

travelling wave (k(r)
H+) and an evanescent wave (k(r)

H−) are

excited in the magnetic structure with competing exchange.

Waves with numbers k(l)
H+ and −k(l)

H− are physical in case

of AFM coupling in the magnetic structure with competing

exchange interactions.

In each case, the amplitudes of three waves are to be

determined, which requires three boundary conditions. Let’s

write down the Hamiltonian of the entire system, taking into

account the exchange interaction of ferromagnetic type:

W =
AH

16

∑

n≤0

(

SnSn+2 − (4 + 1)SnSn+1

)

− 1

4

∑

n≥0

(AFSnSn+1 + 2BF S2
nx) − σ JSF0SH0, (21)

where J is the constant of the interlayer exchange in-

teraction, σ ± 1 is for the ferromagnetic/antiferromagnetic

interlayer interaction.

The boundary conditions are the dynamics equations for

the boundary spins 0 and 1 for magnetic structures with

competing exchange interactions and 0 for ferromagnet in

the lattice model [6]:

iEsF0 +

[

x×
(

− AF

4
(sF1 − sF0) + BF

(

(sF0y)y + (sF0z)z
)

− σ J
(

sH0 −
sH

sF
sF0

)

)]

= 0,

iEsH0 +

[

σ x×
(

AH

16

(

(sH2 − sH0) − 4(1 + 1)(sH1 − sH0)
)

− σ J
(

sF0 −
sF

sH
sH0

)

)]

= 0,
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Figure 2. Coefficients (a−c) and phases (d−f) of scattering of clockwise-polarized waves for the values of the interlayer interaction and

exchange constants in the first Brillouin zone indicated on the tab. a, d is the reflected wave; b, e is the transmitted volume wave; c, f is

the transmitted surface wave. Dependencies are constructed for the following model values of constants AF = AH = 1 (relative units),
SF = SH = 1 (relative units), BF = 0.01.

iEsH1 +

[

σ x×
(

AH

16

(

(sH3 − sH1)

− 4(1 + 1)(sH2 − sH0) − 2sH1

)

)]

= 0. (22)

On the one hand, their structure differs from the

equations for internal spins. On the other hand, their

solution also represents a wave.

The equations (22) have the following form after lin-

earization and transition to cyclic variables:

(BF ± E)s (l/r)
F0 − AF

4

(

s (l/r)
F1 − s (l/r)

F0

)

− σ J
(

s (l/r)
H0 − sH

sF
s (l/r)

F0

)

= 0,

±σEs (l/r)
H0 +

AH

16

(

(s (l/r)
H2 − s (l/r)

H0 ) − 4(1 + 1)

× (s (l/r)
H1 − s (l/r)

H0 )
)

− σ J(s (l/r)
F0 − sF

sH
s (l/r)

H0

)

= 0,

±σEs (l/r)
H1 +

AH

16

(

(s (l/r)
H3 − s (l/r)

H1 ) − 4(1 + 1)

× (s (l/r)
H2 + s (l/r)

H0 − 2s (l/r)
H1 )

)

= 0. (23)

It is necessary to take into account that the incident wave

has a clockwise-polarized, and let us represent the dynamic

spin components in each medium as:

s (r)
Fn = 1 · eik(r)

F ndF + r r e−ik(r)
F ndF (n = 0,−1,−2, . . .),

s (r)
Hn = tr+eik(r)

H+
ndH + tr−eik(r)

H−

ndH (n = 0, 1, 2, . . .). (24)

By substituting (24) into (23), we obtain a system for

the amplitudes for σ = +1. Counterclockwise-polarized

waves are not excited by the clockwise-polarized field of

the original wave due to the opposite chirality [9,10]. The

dependences of the scattering coefficients obtained from

(23) and their phases on the magnonic energy are shown in

Figure 2.

5. Generation of ESW by an isolated
boundary of the magnetic structures
with competing exchange
interactions section

Let us consider a model in which the ground state

is homogeneous (1 > 0) and introduce a fixing uniaxial

anisotropy field BH
2

S2
nx and an external variable pumping
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Figure 3. Logarithms of the relative amplitudes of wave generation for the cases indicated in the table with a single amplitude

of the circular pumping field. The blue curve corresponds to the wave in FM, the black solid curve corresponds to the volume wave,

dotted curve corresponds to surface waves in magnetic structures with competing exchange interactions. The values of the constants 1 = 2,

J = AF = AH = 1 (relative units), SF = SH = 1 (relative units), BF = 0.01, BH = 0.02. Hilbert attenuation constants αF = αH = 0.01.

field h · Sn into the Hamiltonian (21). The equations of

dynamics in an unlimited magnetic structure with compet-

ing exchange interactions in this case, taking into account

Hilbert attenuation:

−iEsn = [σ x× (χHn − h− iEαHsn)] (25)

they will have the following form in cyclic variables

χ
(l/r)
Hn + (BH + E(±σ − iαH))s (l/r)

Hn = hl/r , (26)

where χ
(l/r)
Hn are determined by the formula (10).

The solution (26) contains a general solution of the

homogeneous equation s (U)
n in the form of a superposition

of waves (24) and a partial solution of the heterogeneous

equation in each medium corresponding to homogeneous

oscillations s (l/r)
(h)Hn = const:

s (l/r)
(h)H =

hl/r

BH + E(±σ − iαH)
. (27)

Wave numbers (13)−(14), taking into account uniaxial

anisotropy and attenuation, will be written as:

k(r)
H±dH = 2 arcsin

√

√

√

√±
√

12

4
+

(σ + iαH)E− BH

AH
− 1

2
,

k(l)
H±dH = 2 arcsin

√

√

√

√±
√

12

4
− (σ − iαH)E + BH

AH
− 1

2
.

(28)

Let us consider four cases corresponding to different po-

larizations of the pumping field and the ground state of the

magnetic structure with competing exchange interactions,

for which the possible types of waves are indicated in the

table.

The boundary conditions similar to (23) will have the

following form by virtue of (27):

−AF

4
(s (l/r)

F1 − s (l/r)
F0 ) − σ J(s (l/r)

H0 − sH

sF
s (l/r)

F0 ) = 0,
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Polarization of the pumping field and the ground state of the magnetic structures with competing exchange interactions

Polarization of Waves

Polarization of pumping field ground state of magnetic structures Waves in FM in magnetic structure

with competing exchange interactions, σ with competing exchange interactions
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Figure 4. The distribution of the dynamic spin field in terms of the amplitude of the pumping field relative to the boundary along the

normal to it for the cases of equilibrium orientation in the ferromagnet and in the magnetic structure with competing exchange interactions

shown in the table.

AH

16

(

(s (l/r)
H2 − s (l/r)

H0 ) − 4(1 + 1)(s (l/r)
H1 − s (l/r)

H0 )
)

− σ J(s (l/r)
F0 − sF

sH
s (l/r)

H0 ) = 0,

AH

16

(

(s (l/r)
H3 − s (l/r)

H1 )

− 4(1 + 1)(s (l/r)
H2 + s (l/r)

H0 − 2s (l/r)
H1 )

)

= 0, (29)

where the following should be substituted:

s (r)
Fn = D(r)

F e−ik(r)
F ndF +

hr

BF − E(1 + iαF)
,

s (l)
Fn = D(l)

F e−ik(l)
F ndF

+
hl

BF + E(1− iαF)
, (n = 0,−1,−2, . . .),

s (r)
Hn = D(r)

H+eik(r)
H+ndH + D(r)

H−eik(r)
H−

ndH +
hr

BH − E(σ + iαH)
,

s (l)
Hn = D(l)

H+eik(l)
H+

ndH + D(l)
H−e−ik(l)

H−

ndH

+
hl

BH + E(σ − iαH)
, (n = 0, 1, 2, . . .). (30)
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The solution (29), when decompositions (30) are sub-

stituted into it, yields the desired generation amplitudes

shown in Figure 3, which are determined by the value of the

coupling constant J and the difference in the susceptibilities

of the interfacing media. The calculated distribution of the

dynamic spin field for the cases of equilibrium orientation

in the ferromagnet and in the magnetic structure with

competing exchange interactions is shown in Figure 4.

6. Conclusion

The magnon spectrum for a ferromagnet is obtained

in this study taking into account the long-range order of

the exchange interaction. It has been established that

volume-surface waves occur in such structures in addition to

evanescent waves, which differ in the direction of precession

and have chirality opposite to volume and evanescent waves.

The scattering and generation of ESW at the boundary

of such a structure with a ferromagnet are considered in

the framework of the lattice model, since the continuum

approximation is not applicable for structures with a long-

range interaction order.
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