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1. Introduction

The study of the magnetization dynamics of antiferromag-
nets (AFMs) is important because of the significant role it
plays in various fields of science and technology, such as
spintronics, magnonics, biomedical applications, etc. [1-5].
The concept of a magnetic structure of the antiferromagnetic
type was proposed by Néel and Landau [6,7]. The basic
theory, according to which antiferromagnets consist of sub-
lattices with antiparallel orientation of magnetic moments,
was developed by Néel [8-11]. The dynamics of the
magnetization of each of the sublattices obeys the Landau-
Lifshitz-Gilbert equation (LLG) [2,6].

The development of terahertz (THz) technologies [12],
and the advancement of ultrafast memory based on spin
systems [13,14] require studying the dynamics of magneti-
zation over ultrashort time intervals. Thus, the possibility of
switching the magnetization of an AFM by femtosecond
laser pulses was discussed in Refs. [14,15]. Theoretical
studies have shown that it is necessary to take into account
the inertia of the magnetization when describing ultrafast
relaxation processes and ultrahigh-frequency properties of
magnetic materials [16,17]. The inertia of the magnetization
changes the nature of the motion of the magnetization
vector, namely, the nutation motion is superimposed on
the regular precession around the effective field [18-22].
The nutation of the magnetization vector is caused by a
continuous redistribution of a small fraction of the energy
(since the inertia is quite small) from potential to kinetic and
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back during the motion. The nutational nature of the motion
of the magnetization vector is reflected in the occurrence of
a nutation resonance (NR) in the THz part of the spectra of
the components of the susceptibility tensor of the magnetic
material. In addition, if the time of external exposure is
so short that the orientation of the magnetization virtually
does not change during exposure, the magnetization, due to
the presence of inertia, can acquire kinetic energy sufficient
to overcome the potential barrier between metastable states
after the end of exposure. This mechanism of magnetization
switching becomes especially relevant on femtosecond time
scales [16]. In this case, the choice of optimal switching
parameters of the activating pulse directly depends on the
dynamic characteristics of the magnetization.

The role of inertia of magnetization has been theoretically
studied in ferromagnets (FMs) [22-25], AFMs [26,27], as
well as in the formation of nutation waves [28-31]. Only
recently the most convincing experimental data on the
observation of NR at THz frequencies have been presented
for ferromagnetic films NiFe, CoFeB [32,33] and for Co
films [34]. The inertial dynamics of the magnetization
of antiferromagnetic particles can differ in many ways
from ferromagnetic particles due to properties inherent in
antiferromagnetic materials. The AFM resonant frequencies
shift into the high-frequency region of the spectrum due to
the exchange interaction even in the non-inertial limit [6,26].
The frequencies of NR associated with the inertia of
magnetization in AFMs can also shift to the high-frequency
region of the spectrum [27].
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AFMs with two sublattices are considered next. The
inertial dynamics of the magnetizations M; (i = 1,2) of
the AFM sublattices coupled by exchange interaction can
be described by a system of interrelated LLG equations
supplemented by inertial terms [18-22] containing second-
order time derivatives of the magnetizations, namely

M; =y [HT > Mi] + % [M; x Mj] + % [M; x Mj],
| (1)

where MY = |Mj| is the length of the magnetization vector
that does not change during the motion, HfT is the
effective magnetic field, y; is the gyromagnetic ratio, ¢; is
the dimensionless dissipation parameter, and 7; is the
inertial relaxation time of the ith sublattice (5 =t for
identical sublattices). Theoretical models confirming the
inertial behavior of magnetization described by the inertial
term in Eq. (1) have been developed in addition to the
phenomenological approach to accounting for the inertia
of magnetization (see, for example, [18,22]). In particular,
they include studies based on the calculation of the torque
correlation [35], on the generalization of the Fermi surface
model [36], on the application of the electronic structure
analysis method [37], on the consideration of relativistic spin
dynamics [38], and others. The value of the parameter
associated with the inertial term plays an important role,
since it is necessary to take into account the effects
caused by the inertial term on sufficiently small time scales
(smaller than 7) [32]. Recent theoretical studies show a
significant variation in estimates of 7, ranging from tens of
femtoseconds to tens of picoseconds [18,20,37-40]. A more
precise value of this parameter is determined experimen-
tally [32], for example, based on the magnetization nutation
recorded in ferromagnetic thin films with an extremely
high frequency fn = wpn/2m, which is several orders of
magnitude higher than the Larmor precession frequency,
namely fn~ 0.5THz (r ~ (27f,)~! ~ 0.3 ps) for NiFe,
CoFeB films [32] and f,, ~ 2.09, 1.40, 1.31 THz (7 ~ 0.76,
0.11, 0.12ps) for Co films with three different types of
crystal lattices [34]. The effective magnetic field HST of
i-th sublattice in the Eq. (1) is defined in terms of the free
energy density of the magnetic material V (M, M) as

of 1 dV(My, My)
H™ = m oM, (2)
where wo = 4 - 1077 J/(A’m) in the international SI sys-
tem of units. The function V(M;, M) has several local
minima [6], the positions of which depend on the strength
of the external magnetic field. It is not only the positions of
the minima that can change with a change in the strength
of the external field, but also their number, which allows
identifying several different states of the AFM [6].
Although the inertial equation of LLG has been success-
fully used to study NR in FM [18-25], a limited number
of papers have been devoted to the study of the effect of
inertia on the frequencies of antiferromagnetic resonance
and NR in an AFM [26,27]. For instance, only one of the

possible AFM states in a uniform external field is considered
in [26], namely, a state corresponding to a weak external
field applied along the easy axis of the sublattice in the
approximation of two identical AFM sublattices. Changes
of the AFM state due to changes in the magnitude of
the external field (,,spin-flop” and ,spin-flip transitions)
were not considered in Ref [26]. Expressions for the
eigenfrequencies of an AFM were obtained in Ref. [27] in
the approximation of a negligible dissipation o;j — 0.

We analyze in this paper the effect of the inertial
dissipative (& # 0) dynamics of the magnetization of AFM
sublattices, located in a uniform external field of arbitrary
strength, on its spectral characteristics. In particular, we use
the general method of theoretical mechanics to study small
oscillations in the coordinates of complex systems charac-
terizing the position of the system through the linearization
of their related dynamic equations [6]. In our case, this
approach allows one to obtain analytical expressions for the
eigenfrequencies of the AFM, which, in turn, determine the
frequencies of the antiferromagnetic (now inertia-corrected)
and nutation resonances in all possible AFM states corre-
sponding to different values of the external field [6]. The
method was successfully applied earlier to estimate NR
frequencies in single-domain ferromagnetic nanoparticles
and in ferromagnetic films [23,41]. In this paper we consider
an AFM with two sublattices of the ferromagnetic type
having uniaxial magnetocrystalline anisotropy with parallel
easy axes. This type of magnetocrystalline anisotropy
is widely used in basic models for studying relaxation
processes in magnets and materials [6,42]. We consider
two main directions of the external field, namely along and
across the special (easy) axis of the internal anisotropic
potential of the sublattices, and analyze the dependence of
the nutation frequencies on the strength of the external field.
Moreover, we demonstrate how the inertial relaxation time
affects the precession and nutation frequencies, increasing
or decreasing them depending on the AFM state. The
contribution of the dissipation parameter to the half-widths
of the NR lines is also discussed.

2. Eigenfrequencies of small oscillations
of the magnetization components
of the AFM sublattices in
the inertial regime

Solving coupled equations, Eq. (1), is an important point
in the theory of magnetic oscillations in AFM. To find
solutions of vector Egs. (1) it is convenient to transform
them into a system of scalar equations for spherical
coordinates of the magnetizations of M; of the sublattices,
which have the form

T — @i sin®j — 77 cos Vi sin ¥ + 3,V + adh =0, (3)

.. : - 1 — .
T@; sin U + U + 27 U @i cos O + pr—y 9oV + agi sint) =0,
I
@)
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where ¥ and ¢; are the polar and azimuthal angles of the
spherical coordinate system defining the orientations of the
magnetizations M;, and V = pV/(uoMy) is the normalized
free energy density function. We consider an AFM with
identical sublattices in Eqgs. (3) and (4), for simplicity, and
neglect the difference of the length of the vectors M;, so
that [Mj| = M? =My, y = yi, 7 = 11, and @ = a.

We find the eigenfrequencies of small orientation os-
cillations of the components of the vectors M; and M,
by studying the case of their small deviations from stable
orientations (minima of free energy density). In this case,
the coordinates of these vectors make small oscillations
near the angular coordinates ¥™" and @™", corresponding
to the minima of the function V(ﬁl, @1, U2, ¢2), namely
i (t) = OMin + AD; (1) and @i (t) = ™" + Ag; (t). Substitut-
ing these expressions into Egs. ( (3) and (4) and discarding
the terms nonlinear in At and Ag;, we obtain a system
of eight linear differential equations for eight variables
AV, A@i, wg and w, (i =1, 2), namely, AY; = wy,

A@i = wy and

. 1

Wy, = — Wy, SINVj — g Wy,
T T

1 — —
-3 (vl,il,jAf},» +V19i(ij(pj), (5)
i=1,2
g = — ! Wy — < Wy — !
2T T Tsing;, U T TP T L gin? O
X Z ( (P|19|A0] +V(P|(PJA(pl) (6)

=12

All functions and derivatives \_/Xin are calculated for
Oi=0™" and @j=@™" in Eqgs. (5) and (6). This con-
dition guarantees that for the function V (04, @1, V2, @2)
all its derivatives with respect to ¥ and ¢; at the point
Omin = {OMIn, @inin, Ymin pmin} of four-dimensional space
are zero, namely Vy [, =0 and Vi, |, =0. The follow-
ing linear approximations are used as a result

N 2 J— N

AV %V 2

— — 1 Agpj], 7
00 <az9.az9, '+80i8(pj 0. w’) 7
I 2 —

Y 9%V %V )
— i + Apj ). (8
o (8<p.819, AT S, A1) ®

min

The system of linear differential equations can be reduced
to a matrix equation

C(t) + AC(t) = 0, 9)

where the vector C(t) consists of eight variables, namely

T
ClH)= (Aﬁl (), Api (1), AD,(1), Apa(t), @y, (1), Wy, (1), @y, (1), @y, (t)) :

(10)
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Here, the symbol ,,T“ means transposing a row into a
column. The system matrix A includes four submatrices

A= (\Z, BI), (11)

where Z and 1 are the zero and unit submatrices, re-
spectively. The submatrix V is determined by the second
derivatives of the function V (¥4, @1, 02, ¢2)

\7191 U \7191 @1 \7191 2] \7191 )

\7(01191 \_/(,01(,01 \7(01192 \_/(Pl(Pz

1 | sin®9, sin®9, sin’® sin’ 0
v=— [ 7 T R T (12)

T Vl92191 Vl?zfﬂl Vl92192 Vl?zfﬂz

V(le91 V(PZ(PI V(le92 V(PZ(PZ

sin? 1053 sin’ 05 sin? 05 sin’ 1053

whereas the matrix D is given as
a —sintq 0 0
b 1 |sin~toy a 0 0
T 0 0 a —sin,
0 0 sin™!' 9, a

(13)
Equation (9) has the general solution [43]

C(t) = exp[—At]C(0) = Ue *U~'C(0), (14)
where 1 is a diagonal matrix composed of the eigenvalues
{A} of the system matrix A, and U is a right-sided
matrix composed of the eigenvectors of the matrix A.
The eigenvalues of the system Ak = —iwk = —i (wy +iwy),
which determine the oscillation frequencies wy and their
attenuation rate wy/, are found from the solution of the
characteristic equation

det(A — ATI) = 0. (15)

If the exchange coupling between the sublattices is negli-
gible, the variables in the free energy density are separated
by V(01, @1, U2, @2) =V (91, @1) + V (2, ¢2), and the two
sublattices behave like two independent FMs with similar
equations for eigenvalues (¢ = ¥ and @; = @), namely,

yA(TA —a) ( Voo )
— " Vyy +
oMo T in?
VZ(VMVW - Vﬂz(p)
(‘quo sin 19)2

a)+1)+

=0 (16)

The solution of Eq. (16) is given in Ref. [23] for @ = 0 and
in Ref. [41] for @ # 0. The solution of Eq. (16) for a =0
gives the well-known Sula-Smith formula for ferromagnetic
resonance frequencies in the non-inertial limit 7 = 0 [6].
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Figure 1. Geometry of the problem: a—c — the easy axis is directed along the Y-axis, n = ey, the external field is directed along the
easy axis Hp = Hoev; d, e — the easy axis is directed along the Z-axis, n = ez, the external magnetic field Hy is applied perpendicular to

the easy axis Ho = Hoex.

3. Solution of the characteristic equation
for the longitudinal and transverse
directions of the external field

Next, we consider an AFM with two sublattices having
one axis of cyclic symmetry of the magnetocrystalline
anisotropic potential (uniaxial magnetic anisotropy). In the
general case, the energy density V(M;, M) of the AFM
in a uniform external magnetic field Hy consists of the
densities of the exchange energy, the energy of interaction
with the internal field due to magnetic anisotropy, and the
energy of the Zeeman interaction with the external field.
The energies of interaction with the internal and external
fields are composed of the corresponding energies of each
sublattice of the AFM. If we take n as a unit vector along
the easy axis of the AFM, then the free energy density
V(M;, M) is equal to [6,26]

A Mi -n 2
V (M, M) = V! M; M, —i_zl:z (K %4‘#0H0 : Mi>-
(17)
where A is the parameter of the exchange interaction
between the sublattices, and K = K; is the constant of
uniaxial anisotropy of the sublattices.

We are interested in two cases when the external mag-
netic field is directed along the easy axis (Hy = Hoey and
n = ey) and perpendicular to it (Hy = Hpex and n = ez)
(see Figure 1). Here ex, ey and ez are unit vectors along
the axes X, Y and Z, respectively. The positions of the

minima of the function V(M;, M3) (or the orientations of
the stable positions of the magnetizations Mo and My
of the sublattices corresponding to the coordinates of the
minima 9™" and ¢™") vary depending on the magnitude
of the field Hy. Moreover, three different states are possible
in the case when the field Hy is directed along the easy axis
(Figure 1,a—c), and two different states are possible in the
case when the field Hy is perpendicular to the easy axis
(Figure 1,d and 1, ¢) [6].

The normalized free energy density V in a spherical
coordinate system has the form

\_/H = wa(sin Y sin Y, cos(@1 — @2) + cos Py cos ¥)

_ Z (% sin? 9; sin® @i + wg sin V) sin<pi) (18)
i=1,2

for Hy || n and

V| = wa(sin ¥ sind, cos(@; — @2) + cos ¥y cos V)

- Z <% cos? i 4 w sin V; cosgoi> (19)
i=1,2

for Hy L n, where wp = yHa, Hao = A/(1oMy) is a field
due to the exchange interaction of sublattices, wx = yHk,
Hk = 2K/(1oMy) is a field due to magnetic anisotropy, and
wo = YHy is the Larmor precession frequency in an external

magnetic field.
It follows from the symmetry of the problem that the
stable directions of the magnetization Mo and My, the

Physics of the Solid State, 2025, Vol. 67, No. 1
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Table 1. States of the AFM and the positions of the minima in them

Field direction Range of field values (Figure 1) Positions of minima
Hy || n (a) 0 < Hp < y/HkHS Ve = 9P = 71/2, @ = 71/2, P = 37/2
(b) \/HKHE < Hy < H® t?mi“b = arcsinfwo/wC ], 19;“‘“*’ =a— ﬁ{“‘“b,
(p;nmb (p;ninb _ .7[/2
(c) Ho > HE Ot = 9 = /2, e = @i = 71/2,
Ho L n (d) 0 < Hp < HS O = arcsinfwo /@S], V3™ = 7 — 9™,
(pinmd _ (p;nmd =0
(e) Hi < H0 ﬁimne ﬂmme _ JT/2 (pmme (p;mne _ 0’
Table 2. Equations for eigenfrequencies in various states of the AFM
Figure 1. Equation
(a) (a)(rw—ia)—wi) (a)(rw—ia) —a)K) — (a)():lza))2 =0
(b) (o1 —ia)[wé—(wg)z} + [(u‘r —ia)? }
(wg)z(wz(w‘r —ia)? - — (01 — Ia)(u(ug — 2a)Ka)A) — wSwd (w(w‘r —ia) — 2a)A) =0
(¢) (a)(rw—Ia)—wo—a)K:tw)(a)(Tw—ia)—wo+a)S :ta)):()
(d) o [(or —ia)? — 1](0%)* + o ((uéw + (@ )sz) —o(wr —ia) [a)o(u + 2(w0$)* (wx + a)A)] =0
o’ (ot —ia)®> — 1)w$ + ((wi)2 - a)é)(uK + o(wr — Ia)( — 205 (wk +a)A)) 0

o1 —ia) — w)’ + (w(wr —ia) —
— o+ 0f)(w(tw —ia)

field Hy and the easy axis of magnetic anisotropy lie in the
same plane [6]. The potentials \7”, 1 (Y1, @1, V2, @2), given
by Egs. (18) and (19), projected onto these planes, represent
the closed lines shown in Figure 1 for all considered cases.
These contours in polar coordinates {r, 6} are defined as

r(0) =V (0, o™, 1 — 0, 3™) =V L (Omin,), (20)
where j=a, b, ¢, d, e, and O, :(l‘}{ni“i, (p;ninj Hmin (pgﬂni)

is the minimum point for the state j. A more general
procedure for finding the minima and transitions between
states with a change of the external field Hy is described,
for example, in Ref. [6], where the non-inertial dynamics of
magnetization is considered.

The positions of the minima corresponding to different
directions and ranges of the external field strength Hj
are listed in Table 1. For instance, the stable states
of the magnetizations Mj9 and M,y have an antiparal-
lel orientation in the case of a longitudinally directed
relatively weak external field (0 < Ho < y/HkH$, where
HS = 0% /y = 2HA + Hk) (not to be confused with the
orientations of the magnetizations themselves M; and M)
(Figure 1,a). A transition to a non-collinear state takes
place as the field increases (Figure 1, b), which is known as
,»spin-flop“ transition [2,6].

10* Physics of the Solid State, 2025, Vol. 67, No. 1

o)k — w* =0
— o + 2wp) —

®w=0

Both states (a) and (b) are possible in the range of fields
\/HKHE < H¢ < /HkHS. This interval is quite narrow,
since Hx < Hp for most AFMs. For this reason it is
possible ignore the difference between HS and HE and
use the approximation Hi ~HE ~2H,. With a further
increase of the external field, the angle between the direc-
tions Mjo and My decreases, and a transition takes place
to the third state with parallel directions of My and Mjq at
Ho > HE (Figure 1,c¢). This transition is known as ,,spin-
ﬂip“ [2,6] Man, FCCIZ, GdAlO3, Kz[FeCIS(Hzo)], Fer
are examples of AFM in which ,,spin-flop* and/or ,,spin-flip“
transitions were observed [2,6]. The field required for the
,»spin-flop“ transition to occur (Hg ~ /2HkH) varies from
~ 1T (GdAIO3) to ~ 42T (FeF,) [2,6]. The angle between
Mo and M gradually decreases with the increase of Hy in
the case of the transverse direction of the uniform external
field (Figure 1,d). A transition to a state with co-directional
Mo and M;, takes place at Hy > HE (Figure 1, ¢e).

The AFM eigenfrequencies are found from the solution
of the quartic equation in the presence of dissipation and an
inertial term. These equations corresponding to the different
states of the AFM are given in Table 2. The solutions of
the equations are complex. They can be found analytically
using, for example, the Ferrari method [44]. These solutions
(precession frequencies a)lp’2 and nutation frequencies o ,)
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Table 3. Eigenfrequencies for different AFM states

Figure 1.

Frequencies

(a) ol ~ \JoxwS £ wy — (k + oa) (V/oxoS £ o) [1(\/oko$ £ o) —ia]/y/oxes

ol ~ 771 —ia) + ok + o £ wp
(b) op” \ﬁ\/ +rot + $D1/2+'2(;(1$D "),
p,n D1/2 Ia (2 81$1)(1 :,:Dzl)a
T W, (UC wzwc ‘l'(l)2
D, (l+‘rw + 0);) +87%w5 (0x — 775 ), D2=1+710 — o0

(c) o=

p.n Flt+iaty/(1Fia)2+47 (wg+ax)

27

>

Fl+ia+ (1Fia)2+47 (o 7m8)
a)gn = I 2IT - 4
wa® 12 g -
(d) P! = | (1 +27 (0 — wp + 2(‘(’0—52) FD/2) T+ 2 (1FD; ) +0(e?)
oy = ﬁr (1427 (ok +oa — 3%) F D1/2)1/2 + 5 (1FD,"%) +0()
w20® - 2 w? 2
D1 = 4r0S + (1+2T(T[) 7 wp)), Da=drwx+ (1427 (wr — %))
¢
(e) of" = (147200 — k) FD*)'? + £ (15 D; ') + 0(@?)
Wb = <= (147 (200 — ok — 4oa) F D)2 + £(1FD; %) + 0O(c?)

are provided in Table 3 in the form of a parameter expansion
a with only the linear term for a for simplicity. The
exceptions are cases (a) and (¢). The complex solutions
are simplified for the case (a) by the decomposition into two
smallness parameters 7 and a, whereas the general solutions
have a simple form for the case (¢). Since both experimental
and theoretical estimates of the parameter o give values
of the order of 0.001—-0.1 [42], it is sufficient to use the
expressions from Table 3 for many computational purposes.
It should be noted that the solutions presented for a =0
are consistent with the results obtained in Ref. [27], where
the dissipation in the system was not considered, which
made it possible to find the eigenfrequencies of the AFM
from the solution of the second-order equation. Setting
the inertial relaxation time 7 to zero one obtains the well-
known expressions for the frequencies of antiferromagnetic
resonance [6].

4. Components of the susceptibility
tensor

Let us consider the dynamics of the magnetization of the
AFM sublattices under the impact of a weak alternating field
H.(t) = H. expliwt], where the field amplitude is given
as Ho = H (sind¥. cos@~, sin?v, sin@~, cosv..). In this
case, the Zeeman energy in an alternating field will be

Dy =4rwp + (1 —tax)?, Da=4rwo+ (1 —1wk)® — 8Tma

added to the free energy density V(M;, M»)

V(Mi, Ma) =—poH~ - (M; + M) = —poMoH . expli o]

XZ (cos ¥, cos Vi + sin V... sin V; cos(@~ — @i)).
i=1,2

(21)
The solution of Egs. (3) and (4) is sought
in  the form  Oi(t) = O™ + AV expliot]  and
@i (t) = @M" + Agj expliwt]. After substituting these
expressmns into Egs. (3) and (4) and their linearization,
taking into accoun Eq. (21), we obtain a system of algebraic

equations that can be represented in matrix form

(0?1 —iwD — V)X =F, (22)
where
AV, Vo,
1 [sin 29,V
X — Agq CF=1 sin Lﬁlv(pl . (23)
A T Vo,
A sin 2 0,V,,

Here we take into account that in the general case
V|, #0 and V,| #0. It should be noted that the

| Omin
‘min

condition for having a nontrivial solution to a homogeneous
system, namely det/w?l — iwD — V] = 0, leads to the same
solutions as Eq. (15), while the solutions of both equations

Physics of the Solid State, 2025, Vol. 67, No. 1



Nutation resonance in different states of an antiferromagnet switched by an external magnetic field

149

207 Hj|/n 7
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Figure 2. Precession frequency '’ = Re[wP] of the total magnetization of the AFM sublattices and the deviation of the magnetization
frequency Aw' = Re[w('] — 1/7 depending on the magnitude of the external field Hy for « = 0.01, 7wk = 0.01, wa/wx = 10: (a) the
field is directed along the easy axis; (b) the field is directed perpendicular to the easy axis.

| o Hj|n a
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Figure 3. Imaginary parts o’™" = Im[w™"] of the complex frequencies of precession and nutation of the AFM magnetization depending
on the magnitude of the external field Ho for @ = 0.01, Twk = 0.01, wa/wk = 10: (a) the field is directed along the easy axis; (b) the

field is directed perpendicular to the easy axis.

are related as Ax = —iwx. The solution of the matrix
Eq. (22) can be formally written as

X = (w1 —iwD - V)"'F, (24)
The solution of Eq. (24) allows the determination of
the components of the complex susceptibility tensor
Xe6 = Xes — ixée (G =X,Y,2).

Let’s direct the alternating field along one of the axes
X,Y,Z and consider the projection of the magnetization
on this axis. The following expressions are valid for the
projections of the magnetization

Mx(t)/Mo = Y _ sin® (t) cos g (t)
i=1,2

=M% (t)/Mo + xxx () expliot], (25)
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My (t)/Mo = > sin®; (t) sin g (t)
i=1,2

=M (t)/Mo + xvv (@) expliwt], (26)

Mz(t)/Mo = Z cos Vi (t) = M$(t)/ M + xzz(w) expliwt].
i=1,2
(27)
The constant components in the expressions (25)—(27) are
defined as (they can be zero in various configurations)

M$/Mo = > sind™" cos o™, (28)
i=1.2
MS /Mg = Z sin 9" sin ™", (29)
i—1.2
MS /My = Z cos Ymin, (30)
i—1.2
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The components of the susceptibility tensor ygg(w) are
expressed in terms of the elements of the vector X, namely
through Ad; and Ag;, as

axx (@) = Z (cos 9™ cos MMAY; — sin 9™ sin MM Ag; ),
i=1,2

(31)

vy (@) = Z (cos ™" sin M"AW; + sin 9™ cos M A ),
i=1,2

(32)

Xzz(w) == sin9MAY;, (33)

i=1,2

5. Results and discussion

Figure 2 shows the precession frequencies @'’ = Re[w]]
of the total magnetization of the AFM sublattices and the
deviations Aw" = Re[w!"] — 7! of the nutation frequencies
of the magnetization of the AFM sublattices from the
fundamental frequency set by the inverse value of the
inertial relaxation time 7 ~!, depending on the magnitude
of the external field Hy. The values of Aw depend
on the field H, attributable to the exchange interac-
tion and on the field Hk attributable to the magnetic
anisotropy. The sharp changes of the curves shown in
Figure 2 at Hy = v2HAHk and at Hy = Hi = 2HA + Hg
are explained by transitions between AFM states (,,spin-
flop“ and ,spin-flip transitions) and are analogous to
similar changes observed for precessional frequencies [2].
It should be noted that in inertial corrections in the
expressions for some eigenfrequencies of AFM a factor
with a dimensionless multiplier 7®$ ~ 27w, dominates
(see Table 3), whereas a similar multiplier in FM is formally
estimated as Tw$ = twk (wp =0). Since wp > wi is
common in AFMs, such inertial corrections in an AFM
are significantly larger than the corresponding corrections
for the eigenfrequencies of a FM. This effect of increas-
ing the contribution of inertia to the correction for the
eigenfrequencies of an AFM compared to a FM was noted
in Ref[26] when considering the case (a). However, as
follows from Table 3, it is not observed in other states for
all eigenfrequencies (see, for example, the expression for
o" in the case (c)).

Figure 3 shows the imaginary parts of the complex
frequencies of precession and nutation of the AFM mag-
netization as a function of the magnitude of the external
field Ho. It should be noted that the imaginary parts of the
complex expressions for the eigenfrequencies of the AFM
determine the half-widths of the resonant lines observed at
these frequencies. As can be seen from Figure 3, an increase
of the magnitude of the external field leads to a change
(increase or decrease, depending on the selected mode)
of the half-width of the NR lines. Moreover, a half-width
change is observed in case of the ,spin-flop™ transition.

Figure 4 shows the frequency dependences of the real
x'77 and imaginary x”,, parts of the AFM linear suscep-
tibility tensor xzz in the case (a). A general precession

a
110 120
05 i I: oy/og=0.1
L ] 2: op/wg=0.5
-1.0 | 3: wp/wg=3.0
-1.5 e e
1 10 102
1.0 b

120
107!
N
=
1072
]
11 n alals gl L i |
1 10 102

Figure 4. Realyy, (a) and imaginary x7, (b) parts of the linear
susceptibility tensor component xzz = xzz — ixzz (Eq. (33)) AFM
depending on w/wk for @ = 0.01, Tk = 0.001, wp/wk = 10 and
various values of wy/wxk corresponding to the state (a). Frequency
labels are solutions of equation (a) from Table 2 for a = 0.

of the sublattice magnetization is observed in a weak
external field, which leads to the occurrence of only one
AFM peak. The AFMR is divided into two peaks with
an increase of the external field relative to the anisotropy
field. The frequencies of these resonances can be estimated
as o} ~ \/oxw$ +wy (for a more accurate estimate
(see Table 3, case (a)). As can be seen in Figure 4, a
weaker paired NR appears at frequencies exceeding by two
orders of magnitude the frequency of the AFM resonance
o'l ~ 77! + wk + ®p + wp in addition to the paired anti-
ferromagnetic resonance caused by the precessional motion
of the magnetization of the AFM sublattices. The frequency
separation between the peaks decreases as the magnitude
of the external field Hy decreases, and they merge at
wyo =yYHop=0. It can be seen from the expressions for
the resonance frequencies that the relative frequency shift
of NR due to the external field Aw'l/7 ! ~ 7wy is not
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as significant as the similar relative frequency shift of
AFM resonance Ao //wkw$ ~ wo/\/wkwS. The inertial
correction to AFM resonance frequencies is estimated as
~ Twp(wkwy)'/? according to the expression for @! from
Table 3 (case (a)). This correction can be compared
with the inertial correction to FM resonance frequencies,
which can be formally estimated as ~ rwg if we put
wp =0 in the expressions for a)i. Thus, the ratio of
correction values is determined by the frequency ratio
as ~ (wp/wk)*?, which means that the inertial correc-
tion for AFM is significantly greater than for FM, since
wp > wk [24].

Figure 5 and 6 show the dependencies for the compo-
nents of the susceptibility tensor for the states (b) and (d),
respectively. Figure 5 shows that as the magnitude of
the external field increases, the resonant frequencies w!"
(see Table 3, case (b)) shift to the high-frequency region
for xzz(w), whereas the resonant frequencies wf are shifted
to the low frequency range for xyy(w). A similar picture
is observed in Figure 6, where, with an increase of the

N —_—
=N 100 110 120
=
= I I: og/og =5
-1 - 2: og/og =10
ot 3: op/or=15

Figure 5. Realyg (a) and imaginary x¢g (b) parts of the linear
susceptibility tensor component yee = x6s — ixee (Eq. (33))
of AFM depending on w/wk for @ =0.01, 7wk = 0.001,
wp/wk = 10 and various values of wo/wk corresponding to the
state (). Solid lines: G = Z, dashed lines: G =Y.
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Figure 6. Realys (a) and imaginary xdg (b) parts of the linear
susceptibility tensor component xcc = xoe — ixee (Eq- (33))
of AFM depending on w/wk for a =0.01, 7wk =0.001,
wp/wk = 10 and various values of wo/wk corresponding to the
state (d). Solid lines: G = X, dashed lines: G = Z.

magnitude of the external field, the resonant frequencies
™" (see Table 3, case (d)) are shifted to the high frequency
range for yzz(w), and the resonant frequencies a)g’n are

shifted to the low frequency range for yxx(w).

6. Conclusion

The method of linearization of the system of inertial
LLG equations describing the inertial dynamics of the
magnetization of AFM sublattices, taking into account
the dissipation in them, enables one to obtain analytical
expressions for the eigenfrequencies of AFM. The real parts
of these expressions determine the frequencies of both
antiferromagnetic resonance and NR, while the imaginary
parts affect the half-widths of these resonance lines. The
dependences of both the resonant frequencies and the
half-widths of the lines on the magnitude of the external
field are presented, taking into account the dissipation in
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the AFM material. It is shown that the direction of
the shift of the resonant frequencies with the increase of
the field depends on the AFM state and the considered
resonant mode in this state. The individual components of
the AFM magnetization tensor in the inertial regime are
calculated. It is demonstrated how switching the AFM
state by an external field impacts the NR frequencies in
the AFM. The expressions obtained also make it possible
to evaluate the effect of magnetization inertia on resonant
frequencies and half-widths of lines in various AFM states.
It is noted that the more inertial corrections there are for
FM, the greater the ratio ws/wk in different AFM states
for individual resonant modes. A decrease of the half-
width of NR lines on individual modes by an external
field (see Figure 3) while maintaining the area under the
resonance curve (Gordon’s integral rule [45]) leads to an
increase of the resonance amplitude, which may be useful
in developing a technique for experimental observation of
nutation resonances. Moreover, the effective half-width of
the nutation resonance line, defined as the ratio of the
imaginary part of the complex resonant frequency (see Ta-
ble 3) to its real part Im[w]']/Re[w]], decreases in some
AFM states with the increase of the ratio Hy/Hk = A/2K.
Accordingly, the resonance amplitude will be greater in
such an AFM, which makes them more convenient for
observing the nutation resonance [26]. For example, such
an AFM include structures containing NiO [46,47] and
CrPt [48,49]. The results obtained correspond to weak
external variable fields (the condition for linearization of
the equations). The fact that AFM and ferrimagnets
have a similar magnetic ordering nature [6,26] allows the
generalization of the presented method for analyzing the
resonant frequencies of ferrimagnets. In the future, it is of
interest to study nonlinear corrections to the components
of the linear susceptibility tensor and to study nonlinear
effects in AFM in the field of nutation resonance. The
results of the study of nonlinear effects in FM under the
conditions of inertial dynamics of magnetization can be used
as a basis [50]. We hope that the presented results will be
useful in setting up future experiments for the study of NR
in AFM structures.
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