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Stability of potential rotation of ideal fluid
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The stability of potential rotation of ideal incopressible homogenious fluid is considered in linear approximation.

It is shown, that for rigid boundaries there are no asymmetric modes as stable so unstable. There are only stable

singular modes.
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The problem of stability of an ideal incompressible

rotating fluid is a classical problem of hydrodynamics [1–4].
It is common knowledge that solid-body rotation is stable

with respect to any perturbations in the linear approximation

(see, e.g., [5]).
The stability condition for an ideal incompressible rotating

fluid with uniform density with respect to axisymmetric

perturbations was obtained by Rayleigh [6]. The Rayleigh

condition in a cylindrical coordinate system (r , ϕ, z ) takes

the form
1

r3
d

dr
(r2�) > 0, (1)

where � is the angular rotation velocity. It has been

demonstrated later in [7] that condition (1) is necessary

and sufficient for stability. The motion of an incompressible

ideal fluid with uniform density ρ is characterized by the

Euler and continuity equations

∂U

∂t
+ (U∇)U = −

1

ρ
∇P, divU = 0, (2)

where U is velocity and P is pressure. A cylindrical

coordinate system (r , ϕ, z ) is convenient for a rotating

fluid. Its velocity in this system is written as

U = (0, r�(r), 0), (3)

where �(r) is the angular rotation velocity. In the case of an

ideal fluid, this velocity is an arbitrary (sufficiently smooth)
function of radius that satisfies Eq. (2) and the boundary

conditions. In the stationary case, Eq. (2) for velocity (3)
takes the form

�2r =
1

ρ
∇P. (4)

The method of small perturbations is used to study stability

in the linear approximation. The solution is then presented

as
U + u =

(

ur(r, ϕ, z , t), r�(r)

+ uϕ(r, ϕ, z , t), uz (r, ϕ, z , t)
)

,

P + p = P(r) + p(r, ϕ, z , t), (5)

where quantities ur , uϕ, uz , and p are small compared

to the unperturbed ones. Inserting expressions (5) into

system (2) and retaining only the terms linear in perturbed

quantities, one obtains a linear system of equations for

perturbed quantities with coefficients that depend on radial

coordinate r only. The solution may then be presented as a

sum of normal modes of the form

F = F(r) exp
(

i(mϕ + kz + ωt)
)

, (6)

where F(r) is an arbitrary sought-for function. With the

geometry of the problem taken into account, axial number

k may assume arbitrary real values, azimuthal number m is

an arbitrary integer, and increment ω is an arbitrary complex

number. The expansion in normal modes (6) transforms a

three-dimensional problem into a one-dimensional one. If

natural frequencies ω have only positive imaginary parts,

the flow is linearly stable. If at least one natural frequency

with a negative imaginary part is present, the flow is

unstable. Simple transformations allow one to reduce the

linear system to a single second-order equation for radial

velocity ur

ω2
d

d
dr2

[

r2

k2r2 + m2

1

r
d
dr

(rur )

]

− ω2
d ur

− ωdmr
d

dr

[

r2

k2r2 + m2

d
dr

(r2�)

]

ur

+
k2r2

k2r2 + m2

1

r3
d
dr

(

r2�
)2

ur = 0, (7)

where ωd = ω + m� is the Doppler increment. Note that

Eq. (7) matches Eq. (18) from [5] if the axial velocity is

zero (W = 0 in the notation of [5]). It is important for us

that Eq. (7) is derived without division by ωd , which may

turn to zero at point r0 such that

ω = −m�(r0). (8)

Boundary conditions are needed to complete the formu-

lation of the problem. In the present study, we consider
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a region that is not limited in axial coordinate z , extending
from inner radius r in > 0 (as will be shown below, potential

rotation cannot reach the axis of rotation; see (10)) to outer

radius rout < ∞ and occupying the entire angular sector of

0 6 ϕ 6 2π. Impermeability boundary conditions are used:

ur(r in) = ur(rout) = 0. (9)

Equation (7) with boundary conditions (9) constitutes an

eigenvalue problem for frequency ω. It is clear that

condition (8) may be satisfied only if the imaginary part

of ω is zero. In addition, it is assumed in the derivation of

(7) that numbers k and m cannot be both equal to zero. It

is easy to verify that boundary condition (9) is not satisfied

if k = m = 0. Let us demonstrate that there are no non-

trivial solutions to Eq. (7) for potential rotation of a fluid

if condition (8) is not satisfied. Rotation is potential if

rotU = 0. This condition for velocity (3) implies that

� = Cr−2, (10)

where C is a constant determined by boundary conditions.

Note that, according to (10), potential rotation cannot

extend to the axis of rotation. In addition, according to

(1), potential rotation is stable with respect to axisymmetric

perturbations and (e.g., in the case of a cylindrical Couette

flow) separates stable flows from unstable ones (see,
e.g., [1]).
Let us assume that condition (8) is not satisfied at

r in 6 r 6 rout and demonstrate that Eq. (7) has no non-

trivial solutions in this case. Indeed, suppose the opposite:

there exist non-trivial solutions of Eq. (7) such that condition

(8) is not satisfied. Equation (7) may be divided by ω2
d

in this case. Multiplying the resulting equation by ru∗

r ,

where u∗

r is the complex conjugate function of ur , and

integrating by parts with account for boundary conditions

(9), we obtain

r out
∫

r in

r
k2r2 + m2

∣

∣

∣

∣

d
dr

(rur )

∣

∣

∣

∣

2

dr

+

r out
∫

r in

(

1 +
mr
ωd

d
dr

[

r2

k2r2 + m2

d
dr

(

r2�
)

]

−
k2

k2r2 + m2

1

r
d
dr

1

ω2
d

(

r2�
)2

)

r |ur |
2dr = 0. (11)

Accordingly, the third and fourth terms are zeroed out for

potential flow (10), and expression (11) takes the form

r out
∫

r in

r
k2r2 + m2

∣

∣

∣

∣

d
dr

(rur )

∣

∣

∣

∣

2

dr +

r out
∫

r in

r |ur |
2dr = 0. (12)

Both terms in expression (12) are positive for non-trivial

solution ur . Therefore, this expression cannot be satisfied.

Consequently, the initial assumption of existence of a non-

trivial solution to Eq. (7) with boundary conditions (9) in

the case of violation of condition (8) is incorrect, which is

the required result.

Thus, it was demonstrated that the problem of linear

stability of rotation of an ideal fluid of the form (3)
with respect to asymmetric perturbations is unsolvable for

normal modes if this rotation is potential (i.e., has the form

(10)).
Note that Eq. (7) may be resolved for singular modes

with condition (8) satisfied at a certain point in the flow.

However, as was noted above, the fulfillment of condition

(8) implies that the natural frequency is a real number and,

consequently, that the corresponding mode is stable. With

the stability of potential flow (according to criterion (1))
to axisymmetric perturbations taken into account, potential

rotation of an ideal fluid is, in common with solid-body

rotation, stable with respect to any perturbations.

It should be emphasized that the condition of fluid

homogeneity is essential. For example, in the case of stable

vertical density stratification, potential rotation becomes

unstable with respect to asymmetric perturbations (see,
e.g., [8–10]).
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