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The processes of elastic and plastic deformation of materials are considered within the framework of the modified

model of the acoustoplastic effect. The conditions of reducing it to the widely used empirical Bodner–Partom model

for describing experimental stress–strain curves are analyzed. The conditions of applicability of this empirical

model are noted. The relationship between the parameters used in the Bodner–Partom model and such material

parameters as the internal friction stress, the activation volume of defects, their relaxation time and their equilibrium

concentration, as well as with the parameter characterizing the degree of interaction of defects is determined.
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1. Introduction

A number of stress-strain properties of a material are

currently determined using loading machines to set a

particular strain rate and to record the applied stress

corresponding to this strain [1,2]. At the beginning of the

elastic segment of the stress–strain curve, its linear part is

defined by Young’s modulus of the material. Strain analysis

in the plastic strain area determines the yield stress and

strain hardening variables. Complexity of physical processes

flowing in the material during transition from elastic to

plastic strain requires that quite sophisticated physical and

mechanical strain models be developed taking in account

defect formation, interaction and propagation processes. The

lack of such models facilitated a widespread occurrence of

a number of empirical models describing the correlation

between stress and strain in the plastic region. When used

for interpreting experimental results, these models provide

quantitative characteristics for describing inelastic behavior

of a material using a set of variables, physical meaning of

which is often not fully understood.

As shown in [3], an acoustoplastic material strain model is

used to substantiate a number of empirical strain models and

to explore the physical and mechanical nature of variables

used for the models. Efficiency of such approach was

demonstrated for the Johnson–Cook empirical model [4–6]
and more specific Voce [7,8] and Hollomon [9,10] models.

Conditions, in which the acoustoplastic model data allows

the above-mentioned empirical models to be used for

describing the strain-stress correlation in the plastic region,

were established.

In 1975, Bodner and Partom proposed an empirical

model [11] based on the approach other than the Johnson–

Cook model. It is currently being developed in the same

way as the Johnson–Cook model and widely used for

describing stress–strain curves [12,13].

2. Physical and mechanical justification

Let’s provide a physical and mechanical substantiation of

the Bodner–Partom model in terms of the acoustoplastic

effect, consider potential Bodner–Partom model substan-

tiation within the acoustoplastic effect model and give

physical interpretation for the model variables. For this,

the main equations will be used for describing the stress

behavior on a sample in terms of the acoustoplastic effect

in nonstationary strain [14,15]

1

E
∂σ

∂t
= ε̇ − ε̇p, (1)

where E is Young’s modulus of material, ε̇ is the object’s

total strain rate from an external source, ε̇p is the plastic

strain rate of the material.

In order to determine the plastic strain rate ε̇p, it is usually

assumed that defects in a material are generated according

to the Arrhenius activation law and may be found from

ε̇p = ε̇ν exp

(

�
(

σ − σ f − σp(ε)
)

kBT

)

, (2)

where σ f is the stress induced by internal friction for

defects; σp is the sample stress associated with defects gene-

rated in the sample; the preexponential factor ε̇ν describes

the material strain rate due to dislocation displacement, and

is generally assumed to be constant; � is the activation
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volume of a defect; kB is the Boltzmann constant; T is the

sample temperature.

Traditional approach to the acoustoplastic effect usually

uses equations (1) and (2). Dependence of the strain

hardening σp on ε has to be introduced empirically [14].
In [3,16–18], it was shown that the form of this dependence

may be determined from the kinetic equation for defect

concentration taking into account defect relaxation proper-

ties and interaction behavior. Analysis of this approach

determines a stress-strain correlation in the plastic region

using the following relation

σp(εp) ≃ σ f �n(εp) − n(εp)ep, (3)

where ep is the plastic strain energy per defect.

Expression (3) is a generalization of the known re-

lation σ = E�n [19] that considers the stress in the

material’s elastic region in the presence of defects with

the concentration n(ε). General stress on the sample in

the plastic strain region is determined by the expression

σ (εp) ∼= σ f + σp(εp). When considering material behavior

in the plastic region, σ f is more suitable than E . The

last term in expression (3) reflects the stress variation in

a sample due to the energy release ep near the defect.

In [3], it was shown that solution to equation (1) with

respect to σ using expressions (2) and (3) may be given by

σ (ε) = Eε −
kBT
�

ln

[

1 +
�E
kBT

ε̇ν

ε
∫

0

dε′
1

ε̇′

× exp

(

�(Eε′ − σ f −�σ f n(ε′) + n(ε′)ep(ε
′))

kBT

)]

,

(4)
where n(ε), according to [3,16], varies as follows

n(ε) = nr
[

1− exp
(

−(ε/ε̇ντ )β
)]

,

nr is the equilibrium concentration of defects, τ is the defect

relaxation time, β is the coefficient characterizing the degree

of defect interaction [20]. Equation (4) may be treated as a

sufficiently general equation of state of a material in strain

both in the elastic and plastic regions.

To obtain the phenomenological Bodner–Partom depen-

dence, behavior of relation (4) in the plastic strain region

shall be addressed with ε ≥ εe , where εe is the maximum

strain corresponding to the elastic region. In this case, the

first term in the exponent makes the main contribution,

and the other terms may be assumed as slowly varying

functions of strain. In these plastic strain region conditions,

expression (4) may be rearranged to

σ (εp)≃−
kBT
�

ln
ε̇ν

ε̇p
− kBTn(εp) ln

ε̇ν

ε̇p
+ σ f + �σ f n(εp).

(5)
In accordance with expression (5), the following relation

is obtained for the plastic strain rate

ε̇p ≃ ε̇ν exp

(

�

kBT
σ (εp) − σ f (1 + n(εp)�)

1 + n(εp)�

)

. (6)

Using expression (3), this relation is written as

ε̇p = ε̇ν exp

(

−
�

kBT
n(εp)ep

1 + n(εp)�

)

. (7)

Relaxation processes in deformation experiments with

materials generally run sufficiently slowly, and εp ≤ ε̇ντ can

be considered to be fulfilled. Then the defect concentration

may be determined from n(εp) ≃ nr(εp/ε̇ντ )β . We also

assume that ep = κn(εp), where κ is a constant. When

the defect volume is � ≈ 10−28 m3, n� ≪ 1 is fulfilled

to sufficiently high defect concentrations 1027 m−3. If the

above-mentioned conditions are considered as fulfilled, then

for (7) we obtain

ε̇p ≃ ε̇ν exp

(

−
κ�n2

r

kBT

( εp

ε̇ντ

)2β
)

. (8)

In the right-hand side of equation (8), εp may be

expressed in terms of stresses using equation (3). Then,

taking into account that εp
∼= �n(εp), we obtain

εp =
�2

2κ

[

σ f −
√

σ 2
f − 4

κ

�2
(σp − σ f )

]

. (9)

When (σp − σ f )κ/(�σ f )
2 ≪ 1 is fulfilled, equation (8)

is reduced to

ε̇p ≃ ε̇ν exp

(

−
κ�n2

r

kBT

( 1

ε̇ντ

)2β(σp − σ f

σ f

)2β
)

. (10)

For a one-dimension case, equation (10) may be given

a form used in the Bodner–Portom model. For this, the

following function shall be introduced

Z =
1

ε̇ντ

(

2κ�n2
r

kBT

)1/2β

(σp − σ f )

and σ f shall be assumed as approximately coinciding with

the uniaxial stress σ11 applied to the sample, and εp

coincides with component ε
p
11 of the plastic strain tensor.

Then expression (10) takes a form accepted in the Bodner–
Partom model:

ε̇
p
11 =

2
√
3

D0 exp

(

−
1

2

( Z
σ11

)2β
)

, (11)

where D0 is introduced in accordance with notations

in [11,12] as accepted in the Bodner–Partom model

D0 =
√
3
2
ε̇ν .

Important comments shall be made regarding the ob-

tained result. One of them refers to the form of dependence

of ε̇
p
11 on Z. Thus, if the Bodner–Partom model establishes

the form of this dependence empirically, the acoustoelastic

approach substantiates this form quite naturally. Moreover,

in the Bodner–Partom model, when function Z is introduced

into the equation for ε̇
p
11, the nature of this function is

still not fully understood. Note that Z at a certain time

shall reflect some sample loading history during previous
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periods. For this, it is proposed to use the following

equation to determine this function without considering

thermal reduction processes [11,12]

Ż = −m1ẆpZ + m1ẆpZ1, (12)

where m1 describes the material strain hardening rate; Ẇp is

the deformation machine running speed required to achieve

the plastic strain of the material; Z1 is the value of Z
corresponding to its saturation.

We show that the equation for Z given by (12) may be

derived from the kinetic equation for defect concentration

used in [3,16]. We assume that the defect rate in the

material in plastic strain is set by the deformation machine.

Then the kinetic equation for the concentration of defects

that are formed during material straining may be written as

follows in accordance with [3,16]:

dn
dt

= −
n
τ

+ ġ, (13)

where ġ is a defect generation rate set by the loading

machine.

When we restrict ourselves in the expression for Z to

terms linear in defect concentration, then the function is

written as

Z =
σ f �

ε̇ντ

(

2κ�n2
r

kBT

)1/2β

n.

Using this equality, equation (13) may be rearranged to

dZ
dt

= −
Z
τ

+
ġ ′

τ ′
, (14)

where

ġ ′ =
σ f �

ε̇ν

(

2κ�n2
r

kBT

)1/2β

ġ.

Moreover, when assuming that the defect generation rate

is defined by the rate of plastic strain energy arrival to

the material in accordance with 1/τ = m1Ẇp, then equa-

tion (14) takes the form of the Bodner–Partom equation

for Z, whereas Z1 = ġ ′. If the defect generation rate ġ is

assumed as a constant or slowly varying function over time,

then Z1 may be considered as a parameter.

In accordance with the findings, Z is an integral strain

parameter. This function also plays the same role in the

Bodner–Partom model, however, this model cannot specify

the form of this function. The acoustoplasticity model makes

this possible and shows that, pursuant to equations (13)
and (14), it is closely related to the concentration of defects

accumulated in the material during deformation.

3. Conclusion

The findings show that the acoustoplastic effect theory

together with the kinetic equation used for describing the

material defect subsystem behavior makes it possible to

substantiate the phenomenological Bodner–Partom model

that is widely used in physics and mechanics for describing

the stress-strain correlation in the material plasticity region.

Previously in [3], it was shown that the acoustoplasticity

may be used to substantiate another important phenomeno-

logical model — Johnson–Cook model. Consideration

of two different phenomenological models within a single

acoustoplastic approach makes it possible to identify also

some aspects of the use of these models. Thus, while the

Johnson–Cook model correlates the plastic strain energy

per defect with the plastic strain rate, the Bodner–Partom
model determines the plastic strain energy per defect by

the defect concentration. In the both cases, the acousto-

plastic theory used to review the stress-strain dependence

correlates the values of phenomenological variables used

in the empirical approaches with material properties such

as yield stress, activation volume of defects, equilibrium

defect concentration, relaxation time and degree of defect

interaction.

Funding

This study was supported by the grant provided

by the Russian Science Foundation No. 24-19-00716

(https://rscf.ru/project/24-19-00716/).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] J.E. Field, T.M. Walley, W.G. Proud, H.T. Goldrein, C.R. Siv-

iour. Int. J. Impact Eng. 30, 7, 725 (2004).

[2] T. Bhujangrao, C. Froustey, E. Iriondo, F. Veiga, P. Darnis,

F.G. Mata. Metals 10, 7, 894 (2020).

[3] A.L. Glazov, K.L. Muratikov, A.A. Sukharev. Phys. Solid State

66, 9, 1422 (2024).

[4] G.R. Johnson, W.H. Cook. Proceed. Seventh Symposium on

Ballistics, The Hague, The Netherlands (1983). P. 541–547.

[5] G.R. Johnson, W.H. Cook. Eng. Fracture Mechan. 21, 1, 31

(1985).

[6] T.J. Jang, J.B. Kim, H. Shin. J. Computat. Design. Eng. 8, 4,

1082 (2021).

[7] E. Voce. J. Institute. Metals 74, 537 (1948).

[8] C. Zhang, B. Wang. J. Mater. Res. 27, 20, 2624 (2012).

[9] J.H. Hollomon. Trans. Metallurg. Soc. AIME 162, 2, 268

(1945).

[10] R.K. Nutor, N.K. Adomako, Y.Z. Fang. Am. J. Mater.

Synthesis. Process. 2, 1, 1 (2017).

[11] S.R. Bodner, Y. Partom. J. Appl. Mech. 42, 2, 385 (1975).
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5, 1856 (2023).

[14] G.A. Malygin. Phys. Solid State 42, 1, 72 (2000).

Physics of the Solid State, 2025, Vol. 67, No. 2



224 A.L. Glazov, K.L. Muratikov, A.A. Sukharev

[15] A.V. Kozlov, S.I. Selitsen. Mater. Sci. Eng. A 131, 1, 17

(1991).
[16] A.L. Glazov, K.L. Muratikov. Phys. Solid State 66, 3, 345

(2024).
[17] A.L. Glazov, K.L. Muratikov. J. Appl. Phys. 131, 24, 245104

(2022).
[18] A.L. Glazov, K.L. Muratikov. Phys. Rev. B 105, 21, 214104

(2022).
[19] A.M. Kosevich. Fizicheskaya mekhanika real’nykh kristallov.

Nauk. dumka, Kiev (1981), 328 s. (in Russian).
[20] K. Trachenko, A. Zaccone. J. Phys.: Condens. Matter 33, 31,

315101 (2021).

Translated by E.Ilinskaya

Physics of the Solid State, 2025, Vol. 67, No. 2


