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Electrostatic mechanism of ferroelectric instability
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A microscopic mechanism of ferroelectric instability is proposed, based on the idea that in the ferroelectric phase,

the main state of the system should be a state with a nonzero constant electric field inside the crystal. It is shown

that this approach can provide a unified description of the physical mechanism for transitions that have traditionally

been considered transitions of different types:
”
displacement type“ and the

”
order-disorder“ type. The dependence

of free energy on polarization differs from the Ginzburg−Landau functional, although it has similar properties and

is reduced to the usual Ginzburg−Landau functional near the transition temperature.
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1. Introduction

Historically, ferroelectricity has been considered as a phe-

nomenon almost completely analogous to ferromagnetism.

This analogy led to the fact that the concept of local electric

polarization (electric dipoles) was the basis of the theory.

The occurrence of macroscopic polarization was interpreted

as the alignment of existing (or emerging) electric dipoles

in a crystal in one direction [1–3]. Therefore, the order

parameter has traditionally been associated with some kind

of lattice distortion or atomic displacement. The theory

was based on the Ginzburg–Landau (GL) functional [4],
in which the order parameter was called the polarization of

the system, understood as a certain quantity associated with

the displacement of the atoms of the crystal.

At the same time, there was an understanding of the

fact that it is not possible to introduce the concept of local

static electric polarization in a crystal from the point of

view of electrodynamics because of the ambiguity of its

definition, unlike the phenomenon of magnetism. There

have been attempts to correct the situation by considering

not the polarization as such, but the changes of polarization

in case of the ferroelectric transition. For example, R.Resta

formulated the so-called
”
modern theory of ferroelectricity“,

which considered the change of polarization and currents

flowing through the crystal at the moment of switching to

the ferroelectric state [5,6]. These quite correct arguments,

however, did not provide an answer about the physical

mechanism of the occurrence of the macroscopic field. The

current understanding of ferroelectric physics is described,

for example, in Ref. [7] and a brief overview in Ref. [8].
If we associate the occurrence of polarization with

structural distortions of the lattice, then we have to answer

the question why in some cases the structural transition is

accompanied by the occurrence of ferroelectricity, and in

some cases not. It seems more logical to directly use the

average field inside the crystal (i. e., polarization in the direct

electrodynamic sense) as an order parameter.

We are discussing here only proper ferroelectrics, the

order parameter of which is represented by a vector quantity.

To explain and describe the mechanisms of improper

ferroelectric phase transitions with order parameters of a

more complex structure, it is necessary to construct a more

complex description (see chapter 4 in Ref. [3]).
This article proposes a new view on the cause of the

ferroelectric state, based on the idea that the main feature of

ferroelectric is that it is a material for which it is
”
beneficial“

to be in a state with a certain constant electric field in

volume. In this sense, the specific mechanism of providing

this field with charges at the edges of the ferroelectric

becomes secondary. But the main question is under what

conditions the occurrence of a constant electric field inside

the sample is energetically beneficial.

It is possible to imagine the situation as the occurrence

of instability in such a complete system: a ferroelectric

sample in between plates with a charge transfer between

them. A charge spontaneously occurs on the plates

due to instability. In another language, this instability

can be interpreted as the occurrence of a divergence in

the dielectric permittivity. The relation of the acquired

expressions with the experimental situation is discussed in

more detail in Section 5.

The proposed approach does not contradict the GL

theory, which is phenomenological in nature and always

valid near the transition temperature. However, in our

approach, we try to answer the question of the microscopic

causes of the transition, and this allows expanding the GL

theory beyond taking into account only the first terms of

the free energy expansion in the Taylor series with respect

to polarization. It can also be noted that the modern theory

of ferroelectricity complements the approach presented here

by describing the currents that will appear inside the sample
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when charge is transferred from one edge of the sample

to the other in order for a constant field to appear in the

sample.

Describing the macroscopic details of ferroelectric behav-

ior, the physics associated with the division into domains,

etc., is an independent task. A coherent picture of

many phenomena has developed in this field over the

decades. However, it seems that a new look at microscopic

instability may lead to a new understanding of a number of

macroscopic phenomena.

2. Instability mechanism

Using the example of two classical ferroelectrics NaNO2

and BaTiO3, we will try to show that the division of

ferroelectrics into different types, conventionally called

”
order-disorder“ and

”
displacement“ [9], is not necessary

and these ferroelectrics can be described qualitatively in

exactly the same way.

To begin with, let’s consider a more obvious example of a

ferroelectric NaNO2, in which the transition is classified as

”
order-disorder“. NaNO2 has a group of atoms NO2, which

can occupy two equivalent positions in the lattice (Figure 1).
From the point of view of microscopy, the system is

equivalent to the quantum problem of states in a two-well

potential. The position of the system in the minimum of

one of the wells corresponds to the state when two oxygen

atoms are turned
”
down“, while they are turned

”
up“ in the

other well.

Then the Hamiltonian of the system in the space of these

two states has the form:

H =

[

ε0 V

V ε0

]

. (1)

Here V is the tunnel matrix element of the transition

between these two states. If an electric field appears in the

system, then the energy positions of the group of atoms

”
down“ and

”
up“ become unequal because this group of

atoms has a nonzero dipole moment (see Figure 2). The

Hamiltonian of interaction with a field E :

Hint =

[

Ed 0

0 −Ed

]

, (2)

where d is the dipole moment of this group of atoms.

The change of energy of the ground state in case of an oc-

currence of a constant field is given for Hamiltonians (1), (2)
by the usual formula for two bound states

1ε = (V −
√

V 2 + (Ed)2). (3)

The change of the total free energy of the entire system —
sample plus the electric field per lattice cell is equal to:

1F = 1ε +
1

8π
E2v0, (4)

where v0 is the volume of the unit cell.

Na

N

O O

b

c

Figure 1. Lattice NaNO2. The group of atoms NO2 can occupy

two equivalent positions.

a

b

e De+

e De–
e

e

e –Ed

e +Ed

Ez

Figure 2. a — quantum states of the group NO2 as states of a

particle in a two-well potential; b — changes of levels when an

electric field occurs due to the dipole moment of the group NO2.

The free energy depends on the magnitude of the field

as a parameter. The equilibrium value of the field is

determined by the minimum of the function:

1F(E) =

[

V −
√

V 2 + (Ed)2
]

+
1

8π
E2v0. (5)

This function has the following form in dimensionless

variables:

1F(P) = V
[

1−
√

1 + P2 + κP2
]

, (6)

where P is the dimensionless macroscopic polarization of

the system

P = (Ed)/V,
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Figure 3. Change of the dependency of the function F(P) in case

of change of the parameter κ .

and the position of the minimum of the function (6) is

defined by a single dimensionless parameter κ :

κ =
Vv0

8πd2
. (7)

The graph of this function for different values κ is shown in

Figure 3.

With values of

κ <
1

2
, (8)

there is a minimum at P 6= 0. In this case, it is beneficial for

the system to switch to a state with a nonzero electric field

in the volume. This is the ferroelectric transition within the

framework of our approach, which corresponds from the

point of view of electrodynamics to the divergence of the

dielectric permittivity of the symmetric praphase to infinity.

These arguments are similar to the usual Ginzburg–
Landau (GL) approach, except that the free energy func-

tional of the order parameter P (6) does not have the

form of an ordinary power functional of GL. It is shown

below that the GL functional of the usual form is obviously

restored near the transition temperature, where the order

parameter is small.

3. Temperature of transition

What happens with an increase of temperature can

be seen in a standard way by calculating the partition

function Z and the free energy F(T, E) = −T lnZ.
For the simple case of an effective description of

the essential ferroelectric states NaNO2 by the Hamilto-

nian (1), (2):

F(T, E) =
[

ε0 −
√

V 2 + (Ed)2
]

− T ln

[

1 + e−
2

√
V2 + (Ed)2

T

]

+
v0

8π
E2. (9)

Or in the given variables:

1F(T, E)/V = (F(T, E) − F(T, 0))/V

= [1−
√

1 + P2 + κP2] − τ ln

[

1 + e−
√

1 + P2

τ

1 + e−
1
τ

]

, (10)

where the dimensionless temperature τ = T/2V .

The change of the dependence of F(P) on temperature

is shown in Figure 4.

The equilibrium value of the field at a given temperature

will be determined from the condition

∂F(T, E)

∂E
= 0 or

∂F(τ , P)

∂P
= 0, (11)

which leads to an equation on P(T )(E(T )) of the form

2κ =
1√

1 + P2
tanh

[

√
1 + P2

2τ

]

. (12)

This equation is equivalent to the necessary condition (8)
for the occurrence of polarization for T = 0. As the

temperature increases, the second multiplier in (12) always

decreases as 1/τ and, starting from some τc , only the trivial

minimum E = 0 remains.

The critical temperature τc corresponds to the disappear-

ance of P , that is, it is determined from the condition

2κ = tanh
1

2τc
. (13)

Except for the case when κ is close to 1/2, this condition

provides a qualitative assessment

τc ≃ 1/4κ or Tc ≃ 4πd2

v0

, (14)

and at the same time, the condition (8) should be fulfilled.

F
(P

)

0

P

T increase

T = 0

Figure 4. Changes F(P) with the increase of the temperature.

Physics of the Solid State, 2025, Vol. 67, No. 2



312 P.I. Arseev

a b

X Y

Z

Ti

Ba

O

p(1) p(2)

xz

2 2x  – y

E

Figure 5. a — lattice cell BaTiO3; b — simplified description of the ferroelectric transition mechanism in BaTiO3. Only two px orbitals

of oxygen atoms closest to titanium and dx2−y2 , dxz orbitals of titanium are considered.

When taking into account other quantum levels, the

estimated Tc will not change qualitatively: if the distance

to other levels is greater than Tc , their role will be

exponentially suppressed. The estimate changes by a

numerical factor of the order of 1 at similar levels, like

probably in compounds of type BaTiO3.

The GL functional of the usual form can be restored

from (10) near Tc , when the dimensionless polarization of

P is small:

1F(T, P)/V = a(τ )P2 + b(τc)P
4, (15)

where the coefficients have the form:

a(τ ) =
1

2τ 2
c

1

ch2(1/τc)
(τ − τc),

b =
1− 2κ

8τc

[

τc +
1

ch2(1/2τc)

]

. (16)

As it should be, the coefficient a becomes negative below

Tc , while coefficient b > 0 at κ < 1/2 (8).

4. Barium titanate

Let’s show that for barium titanate, the mechanism of

ferroelectric instability can be described qualitatively in a

very similar way to the previous case, despite the fact

that this transition has historically been called a transition

of
”
displacement“ type. It was believed that during the

ferroelectric transition, the titanium atoms shift, that is, the

dipole moment changes, which causes the polarization.

Here we will focus only on the first (from the side of high

temperatures) phase transition from a symmetrical cubic

phase to a tetragonal one. The full picture of the transitions

in BTO is quite complex; three phase transitions with a

change of structure are observed in this compound. The

other two transitions below the temperature are significantly

related to structural changes in the lattice, and other

mechanisms need to be discussed for them. All four phases

of barium titanate have been extensively studied numeri-

cally, starting with one of the first papers [10]. Hybrid

approaches are currently used to study transitions between

different phases, in which molecular dynamic calculations

are performed using potentials acquired from first principles

calculations [11,12]. Such calculations make it possible to

visualize the atomic displacements characteristic of certain

changes in the lattice structure and confirm the existence of

four phases in the BTO. However, in our opinion, neither

these calculations nor the numerical results indicating the

instability of the lattice associated with
”
soft modes“ fully

explain the initial physical causes of these instabilities.

Some displacement of atoms obviously takes place during

the transition, but it is not the primary reason for the

occurrence of polarization within the framework of the

considered approach.

The structure of the lattice cell BaTiO3 is shown in

Figure 5, a. The levels t2g (dxy , dxz , dz y) of titanium in the

octahedral environment are lower than eg (dx2−y2, dz 2). Two

orbitals eg hybridize with three p-orbitals of surrounding

oxygens directed at the titanium atom and form 5 zones

near the Fermi level. The orbitals t2g each hybridize with

two pairs of corresponding p-orbitals of oxygens directed

”
orthogonally“ towards titan. (Figure 5, b shows one such

pair for the orbital dxz — these will be the orbitals pz on the

nearest oxy along the axis X , and the second pair comprises

orbitals px on the nearest axes Z). There are three more

identical groups of 3 zones. Since these 9 zones change

only slightly when a constant field is applied, in a simplified

picture to grasp the essence, we will refer to the level dxz

rather than the
”
generated“ zones.

For the set of states shown in Figure 5, b, the states dxz

in the cubic praphase do not hybridize with neighboring

oxygen states px by symmetry. However, the situation

changes if an electric field is applied along the z axis.

In this picture, the main mechanism of the occurrence of

ferroelectricity is the occurrence of hybridization between

pairs of states dxz , px and dyz , py in the presence of an

electric field along the axis z , which leads to a decrease of

the energy of the lower levels occupied by electrons.
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The eigenenergies of the simplified cluster model are

determined from the following determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

εp − ε 0 t p

0 εp − ε −t p

t −t εd − ε 0

p p 0 εt − ε

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (17)

(column order: px(1), px (2), dx2−y2, dxz ). The oxygen

levels εp are the deepest, the levels εt of the orbitals t2g

lie below the levels εd of the orbitals eg : εp < εt < εd . The

matrix element of the transition t describes the hybridization
of orbitals forming states near the Fermi level in a crystal:

t = 〈dx2−y2 |Vat|px 〉.

The energy levels

ε1,2 =
1

2

[

εd + εp ±
√

(εd − εp)2 + 8t2
]

determine the energy of these hybridized Ti and O states

from which the valence band and conduction band are

formed in the crystal.

When the field is applied, the states dz x and px hybridize,

and their hybridization is described by the dipole moment

matrix element over z between these states.

p = eE〈dxz |z |px 〉 ≡ eEdz .

The energy levels are now determined by the equation:

(ε − ε1)(ε − ε2)
[

(εt − ε)(εp − ε) − 2p2
]

= 0.

When the field (p 6= 0) is applied, the oxygen level εp

decreases by

1p =
1

2

[
√

(εt − εp)2 + 8p2 − (εt − εp)
]

, (18)

and the level dxzof titanium increases by the same value.

Our simplified model describes only
”
half“ of states, since

there are still exactly the same states along the axis Y .
Therefore, the occupation of states in this model should

correspond to 1 electron on dxz orbital of titanium, and

4 electrons on 2 p-shells of oxygen. The ground state

without a field has energy:

W0 = 2ε2 + 2εp + εt,

and when the field appears, it becomes:

WE = 2ε2 + 2(εp − 1p) + (εt + 1p) = W0 − 1p. (19)

The energy gain is doubled when taking into account the

states along the axis y :

1F(E) = −21p(E) +
1

8π
E2v0. (20)

Taking into account the explicit form 1p (18), we obtain an

expression of the same form (6) in dimensionless variables

as for sodium nitrite

1F(E) = V
[

1−
√

1 + P2 + κP2

]

, (21)

only the dimensionless polarization and coefficients are

equal here:

P =
2
√
2p

(εt − εp)
, V = (εt − εp),

κ =
(εt − εp)v0

64π(edz )2
. (22)

There is a minimum of free energy at E 6= 0 just as for

NaNO2 if the condition (8) is fulfilled: κ < 1/2.

If such a transition from the cubic praphase to the

state with E 6= 0 takes place, then, of course, there is

some deformation of the lattice and a slight displacement

of the Ti atoms stabilizing this structure. But in the

considered approach, the displacements and deformation

of the lattice play an auxiliary,
”
subsidiary“ role, they

are rather an indicator of the transition, but not the

cause of the appearance of polarization for the first

transition of the
”
proper ferroelectric“ type. It seems

more logical that the field itself — that is, polarization

in the literal sense of the word — should become an

order parameter instead of atomic displacements, which

are present in any structural transition that is not accom-

panied by the appearance of ferroelectricity. A number

of numerical calculations of the stability of various BTO

structures also show that the displacement of, for ex-

ample, titanium atoms during the first transition is very

small [13].

In the language of the band structure, the mechanism

of instability of the cubic praphase remains qualitatively

the same, but instead of talking about filling of the levels

of the cluster under consideration, we should talk about

filling of bands, some of which shift in the presence of

a constant field along the direction Z. Let’s briefly show

what happens in the band language. There are 2 groups

of bands near the Fermi level: 5 bands originating from the

hybridization of orbitals dx2−y2 and dz 2 with 3 p-orbitals of
neighboring oxygen atoms directed at the titanium atom,

and 3 groups of three bands originating from hybridization

of the same structure each of the three t2g states with

four p-orbitals of neighbors corresponding to symmetry.

(The band structure of barium titanate was calculated in

more detail, for example, in Refs. [14,15]). The main

features of these bands are easily reproduced in the tight-

binding approach. Thus, the dispersion relations of the

first five bands associated with eg -orbitals are determined

by the following determinant (kx ,y,z — components of a
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dimensionless wave vector lying in the range [− π
2
, π
2
]):

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

εp − ε 0 2it sin kx 0 2i
t√
3
sin kx

0 εp − ε 2it sin ky 0 −2i
t√
3
sin ky

−2it sin kx −2it sin ky εd − ε 0 0

0 0 0 εp − ε 4i
t√
3
sin kz

2i
t√
3
sin kx 2i

t√
3
sin ky 0 −4i

t√
3
sin kz εd − ε

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (23)

(column order: px , py , dx2−y2 , pz , dz 2). There are following

relations for matrix elements of hybridization in the case of

cubic symmetry:

if

t = 〈dx2−y2 |Vat|px〉,
then

〈dz 2|Vat|px 〉 =
t√
3
, 〈dz 2|Vat|pz 〉 = 2

t√
3
.

There is one dispersion-free band in the spectrum Ep = εp

and 4 bands with dispersion, which are easily found from

equation (23). For instance, we have two more bands

without dispersion E1 = εp, E2 = εd and 2 bands with the

following spectrum in the direction Ŵ− X in the Brillouin

zone (ky = kz = 0):

E3,4(kx) =
(εp + εd

2

)

∓

√

(

εp − εd

2

)2

+
16

3
t2 sin2 kx .

(24)
Similarly, it is possible to find a spectrum of 9 states

originating from orbitals dxz , dyz and dxy . These are three

identical spectra in three bands, the laws of dispersion of

which are determined by the same determinant as the upper-

left block 3× 3 (23) with the replacement εd → εt and

another matrix element of overlap t′ . Schematically, these

bands near Ŵ — points are shown in Figure 6.

When an electric field appears along the axis Z, as was

the case in the simple model, there is also a hybridization

of states dz x with px along the axis X and dz y with py along

the axis Y , described by the matrix element of the dipole

moment along z between these states.

p = eE〈dxz |z |px〉 = eE〈dyz |z |py 〉.

Then, in the general determinant defining the spectrum,

the elements 2p cos kx and 2p cos ky appear, connecting the

lower bands from the group
”
eg“ of bands with 2 (out of

three)
”
t2g“ bands extending from the point εt . Due to this

coupling, the initial bands are split as shown in Figure 6

with a dotted line.

We would like to remind that, starting from the for-

mula (17), the energy levels are indicated as follows: εp —
the atomic oxygen level, εd — the level of dx2−y2, dz 2

titanium and εt — the level of dxz , dyz , dxy titanium.

ed (2)

et (3)

ep (9)

ed

ep

et

DEp

DEp

G G

p

5 3 3+

Figure 6. Diagram of the formation of bands from the initial

atomic levels of titanium and oxygen at the point Ŵ. The degree

of degeneracy of each atomic level (excluding spin) is shown in

parentheses. The hybridization of orbitals leads to the appearance

of 5 bands of states eg and 3 identical groups of 3 bands of states

t2g . These bands are shown separately. Two bands are split off

along Z down from the level εp and up from the level εt when the

field (P) is applied. The amount of splitting at point Ŵ is given by

the formula (25).

Since the lower bands are completely filled, and the upper

ones are empty, the displacement of the bands down from

the level εp always leads to a decrease of the total energy

of the band electrons. The exact answer for this decrease

can only be acquired by summing over all states of the

Brillouin zone, since the decrease in band energy is different

for different k , however, the situation is very simple at point

Ŵ (see (23) and (24) for k = 0). Without the field, the

energies of the bands at point Ŵ are simply εp, εd and εt , and

the hybridization resulting from the field displaces 2 bands

from the lower group eg of bands down and two bands

from the upper group t2g of bands up. The magnitude of

this displacement is:

1E(p) = −
(

εt − εp

2

)

+

√

(

εt − εp

2

)2

+ (2p)2. (25)

Taking into account the electron spin, the estimate of the

decrease in energy by the displacement of the bands at the
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point Ŵ yields:

1W = WE −W0 ≃ 41E(p). (26)

We see that (25) is an expression of the same type as (18)
in the cluster model.

Thus, in both the simplified cluster model and the

band picture for barium titanate, the main mechanism of

ferroelectricity is the appearance of hybridization between

pairs of states dxz , px and dyz , py in the presence of an

electric field along the axis z . This hybridization leads to

a decrease of the energy of the lower filled bands, which

turns out to be beneficial for the system.

We see that in the case of the
”
order-disorder“ tran-

sition, and in the case of
”
displacement“ type transitions

(formulas (5), (20)) the dependence of free energy on the

field, as on the order parameter, has the same qualitative

form in dimensionless variables, shown in Figure 3, and

this dependence ((6), (21)) differs from the usual GL. (Of
course, such a literal coincidence occurs only in simplified

models).

5. Role of the external electric field

Let’s discuss how the described instability can manifest

itself from the point of view of a real experimental

situation. The situation where a ferroelectric sample is

located between two metal plates connected by a wire was

actually described above. At the same time, the energy of

the entire system in the
”
state of the ferroelectric praphase

and the plate without charge“ turned out to be greater than

the energy of the
”
ferroelectric phase of the sample and

the nonzero charge on the plates“. It is most convenient

to extend this ideology to the situation with a given voltage

on the plates as follows. Let us imagine that an external

capacitor of very high capacity C0 with a given charge Q
is connected in parallel with the experimental capacitor in

which the sample is located. Then the change of the charge

due to the flow to the
”
experimental“ capacitor small charge

δQ corresponds to the change of the energy of the large

capacitor by

(Q − δQ)2/2C0 ≃ −δQ(Q/C0) = −δQUext.

This energy should be added to the formulas ((5), (21)). It
can be assumed that the variable on which the free energy

of the entire system depends is the change of the charge

on the plates of the
”
working“ capacitor δQ. The field

(polarization) E that appeared before is the field created by

this change of the charge:

E = 4πδQ/S, (27)

where S is the area of the plates. We will use the

former designation E (and the dimensionless one P),
understanding its relation to alternating charge (27). Now

the formulas ((5), (21)) have the following form:

1F(P) = V
[

1−
√

1 + P2 + κP2 + PPext

]

, (28)

F
(P

)

P

P = 0ext 

P = 0.40ext 

0.25

0.10
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2.5

0.5
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1.5

2.0

0

–1.5

–1.0

–0.5

–2.0

Figure 7. The change of the dependence F(P) when an external

voltage is applied. Parameter κ = 0.2. The values of the external

voltage (arbitrary units) used in the formula (29) for each curve

are shown in the figure.

where Pext is a given dimensionless value of the external

potential fixed by an external large capacitor. In initial values

Pext =
a3

4πd
Uext

L
, (29)

where L is the thickness of the sample.

Figure 7 shows how the dependence of the free energy

on the parameter P changes with a change of the external

potential.

If the ferroelectric was in one of two stable minimum

positions with polarization in a certain direction, the

external voltage adding charge in the same direction does

not significantly change the equilibrium value of the field.

However, when the external voltage tends to change the

charge on the
”
working“ capacitor to the opposite, then

the minimum disappears with an increase of the external

voltage, instability occurs and the ferroelectric switches

to another stable state with polarization in the opposite

direction. If we draw the position of the minima in Figure 7

as a function of the external voltage, we get the hysteresis

loop shown in Figure 8, which is given in all textbooks

and reviews on ferroelectrics, and exactly corresponds to

the classical experimental measurements according to the

Sawyer-Tower scheme [7,16].

A current pulse passes at the moment of
”
polarization

switching“, transferring charges on the
”
working“ capacitor

from one plate to another, if the voltage on this capacitor

is applied by an external source. This effect is also a well-

established experimental fact.

The presence of a charge on an external capacitor or

ions adsorbed from the environment on the surface of a

ferroelectric is essential for explaining many macroscopic

properties, details of polarization switching processes, limits

of stability of states in a particular system, etc. These
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Figure 8. Hysteresis based on the dependence of polarization on

external voltage. Parameter κ = 0.2.

phenomena were discussed in detail in a recent review in

Ref. [17].

6. Concluding remarks

Whether a symmetric praphase will transition to a ferro-

electric state depends on the value of the parameter κ (8).
The formula (7) can be written as follows in the case of

sodium nitrite:

κ =
1

8πα2

V
Vat

, (30)

where the volume of the lattice cell v0 = a3
0 (a0 is the

lattice constant) was taken, the characteristic energy of the

Coulomb potential Vat = e2/a0, and the dipole moment of

the group NO2 is expressed in units of the dipole moment

ea0: d = αea0. Apparently, we need to consider α ≤ 0.1.

In its meaning, the value V is related to the energies

characteristic of ion motion in a crystal, and Vat are charac-

teristic electronic energies. Then V ≃ (10−2−10−3)Vat .

Taking α = 2 · 10−2, we obtain κ ≃ 102 V
Vat

≃ 1−0.1, the

criterion can be fulfilled. Then the transition temperature

Tc ≃ 10−2Vat, which roughly corresponds to the known Tc

at a reasonable value Vat ≃ 4 eV.

Similarly, for barium titanate (22):

κ =
1

64πα2

(εt − εp)

Vat
, (31)

here, the dipole moment dz is written as dz = αea0. From

the known data
(εt−εp)

Vat
≤ 1, then the ferroelectric transition

criterion can be fulfilled at α ≃ 0.1.

These estimates cannot claim to be absolutely accurate,

however, they show that agreement with the experiment

can be achieved with reasonable values of the parame-

ters. There are no obvious physical limitations for the

parameter κ (30), (31) that lead to the requirement κ ≫ 1

or κ ≪ 1. (For example, if the dipole moment dz

between neighboring atoms was required to be greater than

the characteristic intraatomic moment ea0, this would be

unrealistic). This leads to the fact that a small quantitative

difference of the parameters of even similar compounds can

ensure the appearance or absence of ferroelectricity, which

is observed experimentally.

7. Conclusion

Thus, it is shown for the first time that to describe

the mechanism of ferroelectric instability for a class of

intrinsic ferroelectrics, there may be a single approach for

transitions that have traditionally been considered transitions

of different types. The approach is based on the study

of the behavior of the free energy of the total system —
crystal plus electric field. In this case, it is the proper

field that becomes the parameter of the order of the theory.

The appearance of a minimum of free energy at a finite

value of the field order parameter means the appearance of

ferroelectricity, which in another language corresponds to

the divergence of the dielectric permittivity of the praphase

to infinity. The free energy functional of a symmetric

praphase at zero temperature has the form ((6), (21)) and

differs from the classical GL in that the equilibrium value of

the order parameter (fields E) may be outside the range

of applicability of only the first terms of Taylor series

expansion of the free energy in powers of E near E = 0,

as in the usual GL functional. Only at temperatures close

to Tc does the expantion of the free energy (10) into the

Taylor series lead to the usual form of the functional GL.
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