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in alloys prone to tetragonal distortions have been investigated. Through numerical experiments, it has been
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1. Introduction

It is known that ferroelectric phase transitions are invari-

ably accompanied by structural phase changes. For example,

in the BaTiO3 perovskite compound, these are successive

transitions to tetragonal, orthorhombic and rhombohedral

phases [1–3]. At the same time, structural phase transitions

may be followed by phase transitions in magnetic [4–6] and

electronic [3] subsystems.

Landau’s thermodynamic theory for ferroelectric phase

transitions was first proposed by Ginzburg [7–9]. An electric

polarization vector was chosen as the order parameter for

conventional (intrinsic) ferroelectrics, the second and fourth

degrees of polarization modulus P were included in the

thermodynamic potential
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Here, α and β depend on temperature and pressure.

According to (1), Ginzburg assumed that second-order or

first-order, approximated to the second order, phase transi-

tions might undergo in some ferroelectrics, for example, in

triglycine sulfate [10].

With order parameter selection, electric moment was

oriented randomly and didn’t take into account the crystal

anisotropy. Additionally, most of ferroelectrics undergo first-

order phase transitions. In 1949, Devonshire proposed

a more adequate model, where free energy included two

second-degree and fourth-degree invariants and one of

the sixth-degree invariants of the three-component order

parameter [11]
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Free energy of such format gives four types of stable

solutions with zero polarization and with polarization vector

directed along the center of one of the lattice cell cube

sides [100], parallel to the cube face diagonal [110] and

along the main cube diagonal [111]. It is naturally to

correlate the polarization along one of the cube sides with

tetragonal distortions of the cubic structure, though such

possibility was not explicitly addressed in studies conducted

in this field [7–9,12–14].

To explain the whole chain of ferroelectric phase transi-

tions in BaTiO3, more complex Landau free energy confi-

gurations were proposed later, including many invariants for

polarization vector components [15–17]. In [15], free energy

was postulated by the sixth-degree polynomial where three

coefficients depended critically on temperature. In [16,17],
it was addressed in the form of 8-th degree polynomials.

Indenbom pointed out that, since the ferroelectric transi-

tion was virtually always followed by lattice distortion, then

one order parameter in the form of an electric polarization

vector was not sufficient and order parameters describing

structural changes should be considered [18,19]. To describe

phase transitions in extrinsic ferroelectrics within a theory

with a two-component microscopic structural order parame-

ter, numerous thermodynamic potentials were proposed that

differed from each other in a set of invariants, but two types
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of potentials are sufficient to cover the existing experimental

data [13,20–22]
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Here, the order parameter components η and ξ are a

combination of atom migration in a lattice cell. Note

that extrinsic ferroelectric polarization in this model is the

second-order infinitesimal effect [13].

Combined consideration of the microscopic structural

order parameter η and electric moment P [23,24]
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where E is the external electric field strength, or [20]
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makes it possible to take into account simultaneously the

loss of stability of the structural and ferroelectric subsystem,

and their cross-effect due to subsystem interaction (the last

but one term).

For intrinsic ferroelectrics, structural lattice distortions,

though to a smaller extent, but also might affect the

form and parameters of the ferroelectric phase transition

through a trigger effect [21]. Phase transitions in systems

with related order parameters of different nature may be

generally assumed [22–34]. Unlike the above-mentioned

works that use the microscopic structural order parameter,

this work formulates the theory in terms of a deformational

order parameter.

2. Theoretical

The idea of this work is in describing the polarization

effects in ferroelectrics using the macroscopic deformational

order parameter εαβ , where α and β are the Cartesian

components of the deformation tensor. The deformational

order parameter may be used to describe the variation of

many physical properties in PT (phase transition), but low-

symmetry phase errors are possible [35]. However, in our

case, the type of low-symmetry phase is not determined, but

the qualitative picture of PT (phase transition) is examined.

Free energy density for tetragonal distortion cases during

structural transition similarly to [4–6] may be written as
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where a, b, c are the linear combinations of the second-

order, third-order and fourth-order elastic constants of the

structural subsystem, aE, bE are the temperature-dependent

constants of the ferroelectric subsystem, D2 is the param-

eter responsible for subsystem interaction. Hereinafter,

P1, P2, P3 are thex , y, z components of material polariza-

tion, P is the polarization modulus, e2, e3 are the linear

combinations of the Cartesian components of deformation

tensor

e1 = (exx + eyy + ez z )/
√
3, e2 = (exx − eyy)/

√
2,

e3 = (2ez z − exx − eyy )/
√
6. (8)

For the purpose of our review, it is assumed that the

critical dependence on temperature takes place only through

coefficients of quadratic invariants

a = a0(T − TS), α = α0(T − TC), (9)

where a0, α0 are some new constants, TS is the critical tem-

perature of structural transition, TC is the Curie temperature.

Structural component of the free energy density in

variables e2, e3 is typical for crystals undergoing tetrago-

nal distortions in phase transition [4–6,36]. Ferroelectric

component of free energy density corresponds to classical

concepts and was borrowed from [7,8]. This work will be

limited to the highest contribution of the fourth degree of

single-component ferroelectric order parameter P4 implying

that the ferroelectric subsystem on its own can make the

second-order phase transition [10]. However, we’ll show

below that due to the trigger interaction with the structural

subsystem, this transition may become similar to the first-

order phase transition.

Note that consideration of the sixth degree P6 makes

sense only when bE of the fourth degree is negative.

This may be realized at some critical dependence of

this coefficient on temperature similar to (8) or due to

interaction with the structural subsystem through the mixed

5-th degree invariants, which is not included in model (7).
The last term in the free energy density proportional

to D2 describes the interaction between structural and

ferroelectric subsystems and is also invariant with respect to

rotations at angles ±2π/3 of the three-fold axis coinciding

with the main diagonal of the lattice cell cube and is

written similarly to the magnetic materials [4–6]. Such

analogy is quite acceptable directly for order−disorder
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Figure 1. Free energy density isolines on plane e3−e2 at

Teq = 155K [39]. (Conceptual picture).

ferroelectrics [37,38], coincidence of critical temperatures

TS and TC is probably required additionally for displacement-

type ferroelectrics [37,38].
The presence of three-fold axes coinciding with the main

diagonals of the cube leads to the fact that isolines of

the structural component of free energy density in (7)
on plane e3−e2 outline three minima 1−3 (Figure 1)
corresponding to the stable existence of three low-symmetry

phase options [39]. In the center of the plane, there is

also minimum 0 corresponding to the stable state of high-

symmetry phase. It is easy to show that minima 1, 2, 3 in

Figure 1 correspond to the deformation of lattice cell cube

along the z , y, x coordinates, respectively, i. e. coincide with

the four-fold axes.

Equilibrium values of order parameters can be found

from the system of equations
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Depending on the relation of constants, the ferroelectric

subsystem (intrinsic ferroelectrics) or structural subsystem

(extrinsic ferroelectrics) might prevail in model (7)−(9).

Besides the power parameters of the model, relation

between TC and TS can also affect the form of subsystem

interaction. When TC > TS , then the ferroelectric phase

transition occurs earlier during cooling, due to which non-

zero components of P i will have a higher impact on the

structural subsystem than on the opposite case. In this case,

an intrinsic ferroelectric will be realized. In case of an

opposite inequality TC < TS, an extrinsic ferroelectric will

be realized.

3. Change of electric moment
polarization

It is difficult to solve system of equations (10) analytically.
Therefore, it was examined by numerical methods with the

following values: aE0 = 1, bE = 1, a0 = 0.7, b = 0.333,

c = 1, D2 = 0.02, TS = TC = 150K. Equality of TS and TE

was assumed based on the hypothesis that both types of

phase transitions, structural and ferroelectric, can occur

only simultaneously, rather than separately. Relaxation

of the order parameters ηk obey the system of the

Landau−Khalatnikov evolution equations [39]:

∂ηk

∂t
= −γk

∂8

∂ηk
+ f k(ηk), (11)

where ηk is the variable corresponding for indices 1, 2, 3 to

the ferroelectric order parameter components P1, P2, P3,

and for indices 4, 5 to the structural components e2, e3,
γk — kinetic coefficients, f k(ηk) — function simulating

thermal fluctuations or noise in the form of white noise.

We choose the initial temperature a little lower than the

critical point 150K, so that the initial values of the order pa-

rameter components are equal to P1 = P2 = P3 = 0.0001,

e2 = 0.005, e3 = −0.05, i. e. the system is in the region

of attraction to minimum 1 on the free energy density

profile (Figure 1), and the system is placed in a thermo-

stat at 140K (overcooling 10K). For deformational order

parameters, relaxation to the new equilibrium state under-

goes monotonously and stops at e2 = 0 and e3 = −0.507

(curves 4, 5, Figure 2).

Electric moment relaxation takes place according to a

qualitatively different scenario. There is a time point tcr ,

denoted with line AB in Figure 2, such that at t < tcr all

three polarization vector components grow, while the vector

itself is directed along the three-fold axis (main diagonal of

the lattice cell cube). A weak tetragonal distortion occurs

already in the structural subsystem (curve 5, Figure 2),
however, it is small and cannot change the polarization

vector orientation essentially. With t > tcr , tetragonal

distortion in the structural subsystem grows drastically

(curve 5, Figure 2) and leads to the decrease in P2, P3

to zero and to the growth of P1 reaching some asymptotic

value (curves 1−3, Figure 2). Such behavior indicates that

the vector rotates from the three-fold axis to the four-fold

axis of the tetragonal phase.
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A brief conclusion may be made that, regardless of the

selected region of attraction to a particular minimum at

certain structural distortions, there is a jump of electric

moment vector direction from the three-fold axis to the

fourth-fold axis of the tetragonal phase. Different attraction

regions correspond to the jumps to different fourth-fold

axes [39].
For comparison, the inset in Figure 2 shows the plot of

the kinetics of P i for the real BaTiO3 compound calculated

according to (11) using the intrinsic ferroelectric model

(without considering the structural subsystem) with the

Gibbs free energy and parameters borrowed from Table 1

in [15]. Calculation is limited to the tetragonal phase

existence region with freezing depth at Tc = 393K. As

can be seen, the polarization vector rotation effect in the

material relaxation process also takes place here.

4. Hysteresis phenomena

Relaxation of some material in isothermal conditions

at T = 140K < TS was discussed above. To investigate

potential hysteresis phenomena, it is interesting to examine

the behavior of the same material without a thermostat at

the initial temperature of 160K with constant cooling and

heating rate (Figure 3).
Since the initial temperature is higher than the structural

phase transition temperature T = 160K > TS , then the

material restores its cubic symmetry at the initial cooling

stage with all order parameters equal to zero. Structural

transition at this cooling rate really goes at approx. 140K

(curves 4, 5, Figure 3). It also induces ferroelectric transition

(kcurves 1–3) according to a scenario described in 2, i. e.

with rotation of the polarization vector from the three-fold

axis to the fourth-fold axis [40].
P3 decreases monotonously as the temperature grows

during heating, thus, demonstrating the hysteresis (upper
branch of curve 3, Figure 3). The degree of tetragonal

distortion decreases at the same time, also demonstrating

the hysteresis (lower branch of curve 5). Note that the

structural phase transition with and without considering the

polarization subsystem is a first-order transition with the

typical hysteresis. At the same time, when the interaction

of two subsystems is considered, the polarization subsystem

behavior changes significantly, the order of phase transition

changes and the temperature hysteresis occurs.

Note also that the reverse phase transition with respect

to the electric moment (curves 1−3, Figure 3) to the

high-symmetry phase with zero order parameter is com-

pleted earlier than the structural phase transition itself (at
∼ 153 and 160K).

5. Kinetics of spontaneous electric
moments at TC > TS

Assume the Curie temperature for the electric subsys-

tem TC is higher than the critical temperature of structural
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Figure 2. Time relaxation of the order parameters from the

initial state with attraction to minimum 1 at 140K. Initial values

P1 = P2 = P3 = 0.0001, e2 = 0.005, e3 = −0.05. Here, 1, 2, 3 —
electric moment components; 4, 5 — deformational order param-

eters e2 and e3 . The inset shows the model and parameter

calculation from [15].
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Figure 3. Temperature hysteresis of the order parameters during

cooling and heating at a rate of 1K/cond.units. Designations are

the same as in Figure 2.

transition TS , for example, TS = 150K, TC = 175K with the

same remaining parameters. Order parameter relaxation in

this case has generally the same form as that for coinciding

critical temperatures, but there are quantitative differences

(Figure 4). It can be seen that the equilibrium state in time,

when the critical temperatures don’t coincide, is achieved

with a higher rate and the curves move to the left. Hence,

it follows that the electric vector component behavior varies

in an earlier time interval and at higher deformation module.

Equilibrium values of the order parameters increase in
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Figure 4. Order parameter relaxation at the thermostat tem-

perature T = 140K at various critical temperatures TS = 150K,

TC = 175K, (solid lines) and TS = TC = 150K (dashed lines).
Designations are the same as in Figure 2.
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Figure 5. Relaxation of spontaneous electric moment components

at T = 140K at various interaction levels: D2 = 0, 0.005, 0.02,

0.05, 0.2, for TS = TC = 150K. Designations are the same as in

Figure 2.

absolute magnitude (curves 3, 5), and, consequently, the

slope of corresponding curves grows in the transition region.

Phase transition kinetics of the electric and structural

subsystems at some fixed level of interaction between them

D2 = 0.02 was discussed above. It is interesting to address

the effect of D2 on the form of phase transitions individually.

6. Effect of the subsystem interaction
level

We examine the behavior of curves describing the above-

mentioned phase transition at 140K and D2 = 0, 0.005,

0.02, 0.05, 0.2. Figure 5 shows the ferroelectric vector

component kinetics for these cases. At D2 = 0 (hypothetical
case), there is no interaction between subsystems and each

transition occurs individually, i. e.occurrence of tetragonality

in the structural subsystem doesn’t affect the moment vector

module and direction in any way. Therefore, the system

almost immediately changes to the stationary state. This

trend is shown by straight line No.0 and corresponds

to purely ferroelectric transition, which is indicative of a

constant electric vector direction along the three-fold axis

of the cube and of the absence of the polarization change

effect.

Increase in D2 gives rise to the increase in mutual

influence of subsystems. As shown in Figure 5, increase

in the module of vector directed along the three-fold axis

in initial times depends weakly on D2. Then, transition to

the stationary state starts almost simultaneously. Behavior

of this transition depends considerably on D2. The

higher D2 the quicker the stationary state is achieved with

the polarization vector rotation along the fourth-fold axis of

the tetragonal phase. As D2 decreases, the inflection points

of curves P1, P2, P3 shift to the right, which indicates that

equilibrium is achieved at a later time.

7. Low tetragonality and shift
of the critical temperature
of structural transition

Temporary relaxation of transition to the final state was

examined in the previous section on the assumption that two

subsystem temperatures coincided. However, time trend

variation should be expected at various critical temperatures

(for example, at TC = 175K and TS = 150K). In this case,

a forced structural phase transition takes place under the

influence of a higher temperature ferroelectric transition. It

is interesting to study the temperature process of variation

of the structural order parameter at such phase transition

(Figure 6).
For earlier induction of the phase transition, equation (10)

took into account thermal fluctuations or noise. As shown in

Figure 1, all existing low-symmetry phase options are equiv-

alent. We assume that the system has randomly selected the

3-rd low-symmetry phase option as a result of fluctuations

during temperature reduction. As a consequence, in this

case e3 > 0, e2 < 0.

As specified above, when subsystem interaction is absent

or low, the structural transition is spontaneous and is

characterized by quick changes of the order parameter, i. e.

the corresponding curves in the phase transition region have

the maximum first-order derivatives in absolute magnitude

(segment BC in Figure 6). It can be seen that the transition

temperature region becomes smoother with the growth of

interaction, which is due to the effect of the non-zero

polarization vector.

With the highest D2, the corresponding curves get

smoothed insomuch that the order of forced phase transition

actually changes from the first to the second one. This
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change features the increase in temperature of the critical

point of structural phase transition approximately to 168K.

In view of the foregoing, it can be suggested (to be verified

in future) that, as the interaction of two subsystems D2

grows, the temperatures of both phase transitions converge

and coincide at the limit.

Finally, note that a weak tetragonality may be used as

a small parameter. In this case, leaving the lowest degree

of the structural order parameter in (10 a,b), we express e2
and e3 in terms of the polarization order parameters

e2 = −
D2

a
1√
2

(P2
1−P2

2), e3 = −
D2

a
1√
6

(2P2
3−P2

1−P2
2).

(12)
Free energy density (7) in this case rearranges to

8 = 80 −
D2

2

a
(P4

1 + P4
2 + P4

3 − P2
1P2

2 − P2
1P2

3 − P2
2P

2
3)

+
1

2
aEP2 +

1

4
bEP4. (13)

Except the highest degree of the order parameter, equa-

tion (13) coincides with the Devonshire equation (2), if the
following is set

ξ11 = 4

(

bE −
D2

2

a

)

, ξ12 = bE + 2
D2

2

a
. (14)

Negative values of ξ11 at all positive remaining coeffi-

cients correspond to the stable existence of the tetragonal

phase [11].
Thus, the phase transitions in intrinsic ferroelectrics may

be described in terms of electric polarization without any

prejudice. The related variations of lattice symmetry and

deformation in this case are the second-order infinitesimal

effect and might be expressed explicitly as (12) (see also

equations (9.6) in [11]).

8. Conclusion

Thus, in terms of deformational and electric order

parameters, a theory of phase transitions in the structural

and ferroelectric subsystems was developed, with one of the

phase transitions being forced due to the interaction. The

theory refers to materials that undergo tetragonal distortions

in such transitions.

Stepwise variation of the electric polarization direction

was found at the initial system relaxation stage from the

three-fold axis to the fourth-fold axis direction. This effect

increases as the critical temperature difference between

the proper ferroelectric transition and structural transition

grows. At a low interaction constant D2, both transitions

take place in different times. Electric transitions is the main

one and causes forced weak distortions of the structural

subsystems.

At higher D2, the structural transition is smeared and the

transition temperature interval grows. It may be expected

that in the limit of very strong interactions, the temperatures

of both phase transitions will coincide, and the form of

phase transition will change from the first to almost the

second one.

During cyclic cooling-heating, the hysteresis phenomenon

was detected, both with respect to the structural and electric

order parameter. It is shown that the stepwise electric

moment polarization change effect takes place only at the

material cooling stage. Whereas during heating, the electric

moment retains the polarization along the fourth-fold axis

and smoothly vanishes at high temperatures. It is also

shown that, during cooling, the time of polarization jump

from the main diagonal direction to the direction of one of

the lattice cell cube sides is inversely proportional to D2.
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