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Influence of turbulent flow formation conditions on coherent structures

and velocity pulsations
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Turbulent flows of viscous incompressible fluid in a spherical layer are numerically investigated. Two ways of

flow formation are considered: sequential and simultaneous increase of the counter-rotation velocity of spherical

boundaries from the resting state. It is found that at equal Reynolds numbers, but different ways of flow formation,

types of spatial coherent structures, levels of velocity pulsations and their spectra differ.
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Large-scale coherent structures [1–5] can be observed in

flows near the threshold of turbulence formation. Such

structures may result from linear instability of both laminar

flows preceding the onset of turbulence [1,5] and turbulent

flows [6,7]. The existence of coherent structures is assumed

to be supported by fluctuations in turbulence energy [1],
but the problem of the interaction between structures and

chaotic components has not yet been solved [4]. This paper
addresses turbulence in spherical Couette flow (SCF) — the

flow of a viscous incompressible fluid due to the rotation

of coaxially arranged spheres. The interest in turbulence

in rotating flows is due to the need to suppress [8] it, for

example, in liquid metal and melt [9] processing technolo-

gies. As found in [10,11], the possibilities of turbulence

formation in SCF and its properties are determined by

the prehistory of flow development. In [11], under the

condition of equal Reynolds numbers for the inner and outer

spherical boundaries, it is experimentally shown that the

properties of turbulent flows (type of spectrum and values

of correlation dimensionality) differ in different ways of their

formation. In other cases, the issue of the dependence of the

properties of three-dimensional turbulent flows of viscous

incompressible fluid on their prehistory is still open, which

determines the purpose of this paper.

The flow of a viscous incompressible fluid is described

by the equations of Navier −Stokes and continuity

∂U

∂t
= U×rotU−grad

(

p
ρ

+
U2

2

)

− ν rot rotU, divU = 0

with the conditions of no-slip and impermeability at the

boundaries in the spherical coordinate system:

uϕ(r = rk) = �k(t)rk sin θ, ur(r = rk) = 0,

uθ(r = rk) = 0, k = 1, 2.

Here U — velocity field, p — pressure, ρ — density, ν —
kinematic viscosity of the fluid in the layer, uϕ, ur , uθ —
the azimuthal, radial, and polar velocity components,

respectively, �1 and �2 — rotational angular velocities,

and r1 and r2 — the radii of the inner and outer spheres,

respectively (index 1 refers to the inner sphere, 2 — to the

outer sphere).

The numerical solution method is based on a conservative

finite-difference scheme for discretizing the Navier−Stokes

equations over space and a semi-implicit Runge−Kutta

scheme of third-order accuracy for time integration, the

algorithm is investigated in detail in [12], and in the special

case of a three-dimensional problem in a spherical coor-

dinate system using nonuniform θ and r grids — in [13].
The full system of equations was solved with discretization

over space on non-uniform on r and θ grids with a total

number of nodes 5.76 · 105 and a ratio of maximum cell size

to minimum cell size 4. The convergence of the computa-

tional results as the number of nodes increases is studied in

detail in [13–15]. The calculations were performed using the

parameters corresponding to those of the experiment [11]:
ν = 5 · 10−5 m2/s, r2 = 0.15m, r1 = 0.075m (relative
layer thickness σ = (r2−r1)/r1 = 1). We consider two

ways of forming turbulent flows at Re2 = �2r22/ν = −900

(the minus sign in front of one of the Reynolds numbers

is used to denote the opposite direction of boundary

rotation). The first method, let us call it asynchronous,

starts with Re1 = �1r21/ν = 0. Then Re1 is varied at

a constant Re2. In the second method, let’s call it

synchronous, the angular velocities of rotation of both

boundaries are simultaneously varied from the state of

rest to selected values of Re1. The values Re1 were

chosen near the threshold of the transition to turbulence

Re1t = 450 [14]: Re1 = 460, 470 and 490. The time step is

constant 1t = 1.2 · 10−2 s, which provided 120−128 steps

per rotation of the inner sphere. The duration of each

calculation variation was 5400 s, and the averaged values

were calculated over the last 2100 s.

Just as in [14], the azimuthal velocity distribution uϕ

in θ−ϕplane is considered as coherent structures. In
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Figure 1. The azimuthal velocity distribution uϕ [m/s] in the θ−ϕ plane at a distance 0.07σ from the inner sphere.

From the top — asynchronous way of forming flows, from the bottom — synchronous. From left — Re1 = 460, from right— Re1 = 490.

A color version of the figures is presented in the online version of the paper.

the asynchronous way of turbulence formation in [14] it

is shown that atRe1 = 450 and Re2 = −900 a coherent

structure in the form of an azimuthal wave with wave

numberm = 3 ([14], Fig. 1, b) can be identified at a distance

of 0.2σ from the internal sphere. In this paper, it was found

that, regardless of the turbulence formation method, the

same coherent structures dominate in the region between

the outer s p here and the circulation interface defined by

the uϕ = 0condition. Near the inner sphere not only the

type of coherent structures changes with various methods of

turbulence formation, but also the degree of their coherence,

understood as the possibility of distinguishing the dominant

wave number in the azimuthal direction. Thus, at Re1 = 460

(left part of Fig. 1), the wave number m = 2is observed

on the upper fragment (asynchronous method), whereas

there is no dominant number m on the lower fragment

(synchronous method). The opposite is true in the right part

of Fig. 1 for Re1 = 490: at the top (asynchronous method),
a combination of m = 2 and m = 3 is observed (this
structure is not kept constant because waves with m = 2

and m = 3 propagate with different phase velocities [13,15]),
while at the bottom (synchronous method) the dominant

is m = 3. Thus, in the case of Re1 = 460 the degree of

coherence of spatial structures is higher in the asynchronous

method, and in the case of Re1 = 490 — in the synchronous

method of flow formation. Let us further consider the

amplitudes of fluctuations of the azimuthal component of

the kinetic energy of Eϕ− rmsEϕ flows

Eϕ =

∫

u2
ϕ(r, θ, t), rmsEϕ =

√

√

√

√

1

I − 1

I
∑

i=1

(

Eϕ(ti ) − Eϕ0

)2
.

Table 1. Normalized values of the standard deviations of the

azimuthal component of the kinetic energy of the flows’ kinetic

energy

Re1

(

(rmsEϕ)/Eϕ

)

A

(

(rmsEϕ)/Eϕ

)

S
asynchronous method synchronous method

460 0.00556 0.00576

470 0.00606 0.00613

490 0.00714 0.00664

Value Eϕis determined by integrating the azimuthal

component of the flow velocity over the entire volume of

the spherical layer Eϕ(t) andEϕ0
— the instantaneous and

average values of the azimuthal component of the flow

kinetic energy, respectively. It can be seen from Table 1

that at Re1 = 460 rms Eϕ is smaller for the asynchronous

method, and at Re1 = 490 — smaller for the synchronous

method. Comparison of Fig. 1 and Table 1 indicates

a correlation between the degree of spatial structure

coherence and the magnitudes of fluctuations Eϕ : the

higher the degree of coherence, the lower the amplitude

of fluctuations Eϕ ,which is consistent with the available

ideas about the interaction between coherent structures

and velocity fluctuations [1]. Figure 2 shows the distri-

bution of the ratio of the amplitude ratio of the velocity

fluctuations of the flows R = rms(uϕ)S/rms(uϕ)A from the

dimensionless distance δ = (r−r1)/(r2−r1), where index S
refers to the synchronous method, A — to asynchronous

one. Value R at all latitudes and at all values of Re1
has local extrema. The highest and lowest values of R
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Table 2. Local regions of flows, in which the type of velocity pulsation spectra changes under different methods of flow formation

(2D — spectra corresponding to two-dimensional turbulence, 3D — spectra corresponding to three-dimensional turbulence).

Re1 θ δ
View of the spectrum

R (from Fig. 2)
Synchronous method Asynchronous method

460 21.3 0.135 3D 2D > 1

460 52.9 0.61, 0.7 2D 3D < 1

470 21.3 0.134, 0.25, 0.36 2D 3D < 1

470 52.9 0.7, 0.8 2D 3D < 1

470 89.8 0.8 2D 3D < 1

470 89.8 0.25 3D 2D > 1

490 21.3 0.8 2D 3D < 1

490 89.8 0.25 2D 3D < 1

d

0.8

1.0

0.2 0.60.40 0.8 1.0

R

Figure 2. Dependence of the value of R onδ . Squares —
θ = 89.8◦ (equatorial plane), diamonds — θ = 52.9◦ (middle

latitudes), triangles — θ = 21.3◦ (circumpolar region). Red

(uncolored symbols) — Re1=460, green (colored symbols) —
Re1=490. For clarity, the curves at different values of θ are shifted

on the ordinate axis, with horizontal black lines corresponding to

R = 1.

are observed at Re1 = 460 in the equatorial plane and in

the circumpolar region, respectively. At different methods

of flow formation, velocity fluctuations differ not only in

intensity but also in the type of spectra (Fig. 3). In

the synchronous method, the spectra characteristic of two-

dimensional turbulence (2D) with a reverse energy transfer

cascade ( dependence of the energy spectrum E(k) on wave

number k in the formE(k) ∼ k−3), are observed at mid-

latitudes (Re1 = 460, 470), near the rotation axis, and in

a part of the equatorial plane (Re1 = 470, 490). With

the asynchronous method, spectra characteristic of three-

dimensional turbulence (3D) with a direct energy transfer

cascade (E(k) ∼ k−5/3 and E(k) ∼ k−11/5) are obtained

in the same flow regions. It is well known [16] that

regions with different types of spectra can be formed in

flows with rotation. Table 2 shows the coordinates of

the points where different types of spectra were obtained

by different formation methods. Comparison of Table 2

and Figure 2 shows that these points lie in the regions of

local extrema of the R(δ) dependence, i.e., in the regions

of change in the fluctuation intensity of flow velocity.

The last column of Table 2 shows the values of R at the

corresponding points. It can be seen that at the same Re1
local maxima of azimuthal velocity fluctuations correspond

to three-dimensional turbulence, and local minima — to

two-dimensional one.

The obtained results show a general relationship between

all the properties of turbulence discussed above: the higher

the coherence degree of large-scale spatial structures, the

lower the intensity of kinetic energy pulsations. In its

turn, the maximum decrease in the intensity of velocity

pulsations in local flow regions leads to two-dimensional

turbulence with energy transfer from smaller scales to

larger ones, where coherent structures are observed. On

the contrary, as the coherence degree of spatial structures

decreases, kinetic energy pulsations increase, as well as

f, Hz
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–1010

–910

–810
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Figure 3. Azimuthal velocity pulsation spectra at Re1 = 490,

θ = 21.3◦ at distance 0.8σ from the inner sphere. Red (lower
curve) shows asynchronous method, blue (upper curve) —
synchronous method, straight lines — approximation of the spectra

slopes.
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velocity fluctuations, and three-dimensional turbulence is

observed. The processes of energy exchange between

velocity fluctuations and the main flow are currently being

extensively studied [17].
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