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Machine-learned interatomic potential of Li−C for nanomaterials
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The paper reports on the development of two types of interatomic interaction potentials for the atomistic

modelling of carbon nanomaterial complexes with lithium. The first potential is constructed using the Gaussian

approximation method and the second using the deep learning approach. These potentials have been trained using

the results of density functional modelling and provide an accuracy close to that of this method with significantly

lower computational requirements. The datasets contained more than 8000 structures of about 100 atoms. A given

structure was placed in the training set with 90% probability, otherwise it was placed in the validation set. The

resulting potentials allow accurate reproduction of the energies of the complexes and the forces acting on the atoms.

The computation time increases linearly with the number of atoms in the model and can vary by several orders of

magnitude depending on the type of potential and the hardware used. The potential obtained by the deep learning

method seems promising for realistic and accurate modelling of lithium on the surface of carbon nanotubes and

various graphene-like structures at temperatures up to 450K.
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Introduction

Explosive growth of demand for portable sources of

energy caused active research of carbon nanostructures as

a material of lithium battery anode [1]. The experiment

shows that using a multi-layer graphene in the battery

anode [2] or carbon nanotubes (CNT) [3] instead of graphite

makes it possible to increase its reversible lithium capacity.

In case of vertically-aligned CNTs [4] the path of lithium

diffusion inside the anode does not cause doubts contrary

to the graphene, which may have a scaly structure that

promotes lithium adsorption along the scale boundaries.

Such uneven distribution of lithium on the surface may

cause low sensitivity of the process of intercalation to the

concentration of graphene defects [5].
To understand the processes happening in the anode of

the lithium battery in discharging/charging processes, the re-

alistic models are necessary — digital twins of such anodes.

Such models may not be based only on quantum-mechanical

methods due to the complexity of the anode structure, and,

accordingly the large size of the estimated cell. For example,

the promising material of the battery anode proposed in

paper [6] is a graphene grown on the CNTs that are

covalently connected to graphene. Paper [7] describes the

promising outlook of using the CNTs grown on graphene

as anodes of lithium-sulphur batteries. Paper [8] reports

the achievement of the outstanding characteristics of the

battery when using a composite material containing CNTs

as an anode. These examples show that the structure of the

promising materials is much more complicated as the arrays

of nanotubes or stacks of graphene sheets. It is evident that

such materials contain carbon with various hybridization

and are built not only from carbon hexagons. Therefore, the

relevant objective becomes to study the lithium behavior

near the surface of the carbon nanomaterials joined in

a complicated manner and to develop the corresponding

modeling methods.

The common theoretical approach to study of the lithium

adsorption on the carbon surfaces is the electronic density

functional theory. It has an undeniable advantage: there

is practically no need for a priori information on the

studied system, and the validity of the obtained results is

limited only by the available computing resources. The

latter circumstance noticeably limits the size of the model

available for the study. The alternative is classic molecular

dynamics with interparticle potentials of interaction, which

depend on several parameters. These parameters may be

selected based on various assumptions, but the obtained

potential turns out to be applicable only for a narrow class

of objects (close to those systems, for which the parameters

were adjusted).
The quantum jump in improvement of forecasts of the

”
classic“ modeling may be obtained using the methods

of artificial intelligence, where the potential is built using

the estimate data by the electronic density functional

theory (DFT), but not as an explicit function, but as a

neuron network. This is a very rapidly developing area

of research opening the possibility to do modeling by

method of classic molecular dynamics with the accuracy not

inferior to the method of non-empirical molecular dynamics.

Obviously, DFT is successfully used to adjust the potential

parameters without use of the artificial neuron networks as
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Table 1. Parameters c of graphite cell AB-and length of bonds C−C, LC−C, obtained using various exchange-correlation functionals (EX)

EX LC−C, Å c, Å EX LC−C, Å c, Å

LDA 1.412 6.588 vdW-DF-cx of Berland and Hyldgaard 1.426 6.833

PBE 1.424 7.852 SCAN+rVV10 of Peng 1.416 6.627

PBE-D3 1.423 6.905 rVV10 of Sabatini 1.424 6.348

optB88-vdW 1.424 6.638 r2SCAN+rVV10 of Ning 1.418 6.620

optB86b-vdW 1.423 6.566 Original vdW-DF of Dion 1.430 7.076

rev-vdW-DF2 1.423 6.595 optPBE-vdW of Klimeš 1.427 6.792

vdW-DF2 of Lee 1.429 6.943 Experiment 1.418 6.708

well. The example may be the GAP potentials (Gaussian
Approximation Potentials) [9].

Currently several implementations of the machine-trained

potentials are known, the objective of which is to replace

the DFT method for large-scale and long estimations.

The most common of them are the following — MLIP

(Machine Learning Interatomic Potentials) [10], DP (Deep
Potentials) [11] and CHGNet (Crystal Hamiltonian Graph

neural Network) [12]. All the listed models were developed

in the last decade and are currently being actively developed.

All of them may be used together with the LAMMPS

software for modeling by the method of classic molecular

dynamics.

The obvious success in the development of the machine

training methods related to atomistic modeling would be

even more evident for the scientific community, if more

ready-to-use interparticle potentials were available. For

example, there are universal potentials for carbon [13,14],
for 2D carbon structures [15], for carbon structures with

account of Van der Waals interaction [16,17], the develop-

ment of DP-potential is reported [18] (the potential itself is

unavailable). For the lithium and carbon systems there is

only potential [19] (used together with [13]).

This study is aimed at building potential DP-to de-

scribe the interaction of lithium with the surface of CNT

and graphene-like structures. Potentials and examples of

input files for LAMMPS software with their use are given

in additional materials to this paper.

1. Method

Most machine training models, including DP and GAP,

suggest that the potential energy of the system may be

presented by a sum of energy contributions of each atom

describing multiple interactions between the atoms within a

certain fixed distance. This approach is convenient from the

computing point of view, since its complexity rises linearly

with the system size. In many cases the neglection of

the far-reaching Coulomb interaction causes no large errors.

In part it is due to the fact that the models are trained

on the DFT modeling results that take into account the

electrostatic interaction. For those rare cases, when such

indirect accounting is not sufficient, there are generalizations

of the machine training method for the accurate accounting

of the far-reaching electrostatic interactions [20].
The consequence of the specified feature in the machine-

trained potentials is the presence of a certain cutoff

radius, the impact of atoms beyond which is neglected.

To exclude the non-physical interactions, the translation

parameters must be twice higher than the doubled cutoff

radius. When selecting the cutoff parameter, it is useful to

take into account the specific scales of interactions in the

system. Thus, the covalent interactions C−C are observed

at distances of less than 0.16 nm. At distances of around

0.36 nm only low Van der Waals interactions are observed

in the graphite. Lithium in the main state is located at the

distances of around 0.25 nm from the carbon surface. In this

paper the cutoff radius was selected as equal to 0.6 nm.

All results of quantum-chemical calculations given in

this paper were generated in VASP software [21]. It is

known that there are problems with description of the

graphite layers interaction in DFT [22]. The parameter c
of graphite cell AB-and length of bond C−C, LC−C in it

produced when using some exchange-correlation functionals

are given in table 1. From the table you can see that

most functionals overestimate the length of bond C−C

compared to the experimental value. Nevertheless, the

deviations do not exceed 0.012 Å. The situation is worse

with parameter c of the lattice: the PBE functional most

often mentioned in the scientific articles causes a substantial

re-estimation of this value. Using the empirical correction

PBE-D3 improves the situation, but its empirical nature

prevents from being confident in the correctness of correc-

tion prediction to the energy of more complicated carbon

nanomaterials with lithium compared to graphite. The

situation is complicated by the fact that the structures, on

which the potential is trained, must be far from the balance:

the forces that the atoms are exposed to are practically

zero for the equilibrium structures, which reduces the

volume of useful data for potential training. From table 1

you can see that there is a whole range of functionals

that describe well both interatomic and interplanar spacing

in graphite. Unfortunately , using all of them, except for the

excessively simplified functional of LDA is linked to colossal

computing expenses compared to PBE, which prevented

the review of the models discussed in this paper on the

computing resources available to the author. In connection

with the above, the calculations in this paper were carried
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out using exchange-correlation functional of PBE. The

calculations were carried out without accounting for spin

using pseudopotential PAW. The cutoff energy was selected

as equal to 600 eV. The break of the reciprocal space

into k-points was done using the Monkhorst−Pack scheme

with various parameters for unidimensional (1× 1× 29)
and two-dimensional (6× 6× 1) models, which provide

for convergence with respect to energy of not below

0.1meV/atom.

The potentials were developed with two independent

tools: DeePMD-kit (v2.2.6) [11] and GAP [23]. The first of

them suggests deep training (artificial neuron networks with

hidden layers), and the second one, to develop the potential,

uses non-parametric regression, which does not suggest a

closed functional shape and does not attempt to explain

the process that the data are based on, using theoretical

assumptions: the flexible function is adjusted using large

data volumes [24]. Identical training and validation data

sets were submitted to the input of both programs, which

contain coordinates and type of atoms, the forces they are

exposed to, energies of the systems and virials (the sum

taken with a reverse sign for all atoms of the system of

scalar products of the atom radius-vector and the force that

the atom is exposed to).
It should be noted that the preparation of machine-trained

potentials requires substantial computing resources. In case

of a GAP potential, computing nodes are required with high

volume of random access memory (hundreds of gigabytes /
node). To train the quality DP-potentials, the powerful video

cards of supercomputer level are required: Tesla P100, Tesla

V100, Tesla A100 etc .

To train the potential using DeePMD software, for

comparison the se e2 a and se e3 descriptors were used.

Both these descriptors are related to
”
Smooth Edition“

version of descriptors. For descriptors of this type, two

concentric spheres are identified, in the center of which

a specific atom is located. The cutoff sphere with the

large radius limits the area of the space, the interaction

with atoms in which is taken into account when training

the potential. Besides, interaction with the atoms inside the

small sphere is taken into account in full, and with the atoms

in the area between the spheres with the weight reducing

to zero in the large radius sphere. Abbreviations e2 and e3

specify that the first of them takes into account the two-

particle interactions, and the second one — interactions of

atom triplets. However, it does not mean that the se e2 a

descriptor takes into account only the distances between the

atoms. It takes into account their mutual location (radius-
vector).
Most parameters of the se e2 a and se e3 descriptors

match each other. In this paper the values for them

were also selected the same. The cutoff radius was

specified as equal to 0.6 nm, besides, the descriptor would

gradually decrease, starting from the distance of 0.4 nm. The

maximum quantity of the considered carbon and lithium

atoms in the environment of this atom was set as equal

to 160 and 80 accordingly. This parameter was selected

based on the assumptions that the quantity of the carbon

atoms limited by the sphere of radius 0.6 nm, in the tightest

package is around 160. There are much less lithium atoms

in the system. The hidden network contained three layers

with size of 50, 100 and 200. The adjustable network

contained three layers, each with size of 250. The final

speed of training was 10−8, the training was done for the

duration of 106 epochs. The final weights of energies, forces

and virial in the function of losses made 1.5, 1.0 and 0.2

accordingly. Besides, the variant of joint use of se e2 a and

se e3 descriptors with the reduced cutoff radius for se e3

was considered.

To develop the GAP-potential, the distance Nb descrip-

tors of the second and third orders, the SOAP descriptor

were used. All parameters for these descriptors were

taken from paper [19] with some exceptions for the SOAP

descriptor: n max and l max parameters were specified

as equal to 9, the cutoff parameter was equal to 4.0 nm

(maximum value at which the calculation would start in

four computing nodes with 250GB random access memory

on each one). Therefore, the characteristics of the structure

within a certain sphere surrounding a specific atom were:

1) distances between atoms (two-particle descriptor);
2) angles formed by atom triplets (three-particle descrip-

tor);
3) complex information on the mutual position of atoms

(multi-particle SOAP descriptor).
SOAP descriptor for each atom is a vector of hundreds

of components (thousands for the systems with several

elements). Their quantity depends on several parameters,

which, if selected properly, may achieve substantial reduc-

tion in data submitted to the input of the training procedure

without damage to the quality of the trained potential. Use

of the SOAP descriptor makes it possible to substantially

improve the quality of the obtained potential and increases

the computing resources required for its training by far.

2. Results and discussion

2.1. Training, validation and test sets

Creation of the structures database was done in several

stages. At the first stage a small number (around 100)
of steps ab-initio of the molecular dynamics of carbon

nanostructure models was placed into the base (nanotube,
graphene, biphenylene, irida-graphene, ψ-graphene, tetra-

penta-deca-hexagonal graphene) with lithium, the examples

of which are given in fig. 1. The models contained around

100 atoms of carbon and up to 10 atoms of lithium.

Such concentrations correspond to
”
gas“ and

”
islands“

of lithium on the carbon surface [25]. New structures

were added according to the algorithm DP-Gen [26] from

the molecular-dynamic modeling at temperatures of up

to 450K. The elementary cell size was maintained as

equal to 2.5 nm in the directions perpendicular to the axis

of the nanotubes, and in the direction perpendicular to

the plane of graphene-like structures. Other translation

Technical Physics, 2025, Vol. 70, No. 3
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a b c

d f ge

Figure 1. Representatives of model classes: a — graphene+3Li, b — PSI-graphene+3Li, c — irida-graphene+3Li, d — tetra-penta-

deca-hexagonal graphene+4Li, e — biphenylene+3Li, f, g — CNT(5,5)+10Li.

parameters were taken from the corresponding step of the

molecular dynamics. Therefore, the base of the structures

describes the nanotubes and graphene-like objects that do

not interact with their periodical images. After the base was

increased several times, the initial structures obtained in

the method of molecular dynamics were excluded from the

base. Therefore, all structures in the base were selected by

DP-Gen. The database contained 8723 structures, including

513 structures without a lithium atom (63 CNT(5,5), 50

of graphene, 100 of biphenylene, 100 of irida-graphene,

100 of ψ-graphene and 100 of tetra-penta-deca-hexagonal

graphene), 778 CNT(5,5)+1Li, 328 CNT(5,5)+5Li, 1498

CNT(5,5)+10Li, 209 graphene+1Li, 230 graphene+3Li,

1262 biphenylene+3Li, 1342 irida-graphene+ 3Li,

1211 ψ-graphene+ 3Li, 1356 tetra-penta-deca-hexagonal

graphene+4Li and one structure of the isolated lithium

atom.

A specific model with probability of 90% was placed into

a training sample, otherwise it would get into a validation

sample. The test sample was formed by two data sets:

1) 70 structures with a lithium atom on a straight line

perpendicular to the hexagon of the nanotube wall and

passing through its center (fig. 2, a);
2) 30 structures with a lithium atom on a straight

line parallel to graphene with the shortest distances to

the centers of hexagons corresponding to the equilibrium

distance from lithium to graphene (fig. 2, b).

2.2. Potential quality assessment

The root mean squared error (RMSE) is often a quan-

titative measure of errors that the machine training model

tries to minimize. To assess the accuracy of the potential vs

the various types of the structures, RMSE were calculated

on the validation base. The results for the four potentials

are given in table 2 for each class of objects. DP-

e2, DP-e3 and DP-hybrid mean the potentials produced

for the cases of using the se e2 a, se e3 and hybrid

descriptors, accordingly. You can see that the hybrid

potential causes least errors. Maximum errors occur when

the se e3 descriptor is used. Both specified potentials turned

out to be much more demanding to computing resources

compared to the potential DP-e2. We will consider it further

in this paper. In its case in seven out of ten cases the

error turns out to be less than 1meV/atom. For the three

remaining ones — less than 2meV/atom. For RMSE

forces — it does not exceed 0.115 eV/Å. GAP potential

provides for accuracy comparable to the DP potentials only

for one system (CNT(5,5) with five lithium atoms). In other

cases the errors turn out to be up to several times higher.

This indicates the complexity of obtaining high quality GAP-

potentials for the case of large variety of the models in

the training and test samples. This fact will not reflect

the principal limitation of the GAP approach, but only

demonstrates the limited nature of the computing resources

available to the author.

According to RMSE estimates (table 2), the produced

PD potentials are not inferior to the ones given in literature.

For quartz glass the least RMSE of energy and force

made 4meV/atom and 0.289 eV/Å accordingly [27]. The

larger RMSE (4.1meV/atom) was obtained for gold clusters

of similar structure [28]. The attempt of training using

the more diverse gold clusters, the error increased by far.

DP-potential trained on a set from multiple carbon materi-

als [18], generates RMSE 17meV/atom for the validation

sample from graphene structures. Error estimates are

substantially smaller in case of model training in single-type

structures [29]. Therefore, the DP potentials obtained in

7∗ Technical Physics, 2025, Vol. 70, No. 3
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Table 2. Estimation of accuracy of DP-potentials on validation and test sets of data

Class of systems DP-e2 DP-hybrid DP-e3 GAP

Carbon nLi

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

surface
of energy, of force, of energy, of force, of energy, of force, of energy, of force,

meV/atom meV/Å meV/atom meV/Å meV/atom meV/Å meV/atom meV/Å

CNT(5,5)
1

0.32 49 0.28 50 0.32 83 1.07 55(inside
tube)

CNT(5,5)
1 (out

0.43 68 0.42 71 0.77 114 2.63 74
tube)

CNT(5,5) 5 1.69 101 1.63 99 2.23 137 2.10 109

CNT(5,5) 10 1.50 111 1.49 109 2.07 147 5.59 120

Graphene 1 2.37 65 2.08 59 2.96 82 12.50 49

Graphene 3 3.36 64 2.57 60 2.08 85 8.58 54

Biphenylene 3 0.86 93 0.77 84 0.80 133 6.75 91

Irida-
3 1.05 97 0.64 76 1.11 117 9.08 82

graphene

ψ-graphene 3 1.04 79 0.86 72 1.29 122 5.72 75

Tetra-

4 0.89 87 0.73 74 1.58 140 2.44 87
penta-deca-

hexa-

gonal

graphene

Test
1 4.75 95 3.14 89 5.38 156 3.12 60

set 1

Test
1 3.35 20 3.31 18 3.63 21 12.67 14

set 2

a b

Figure 2. End positions of lithium atom in test sets: a — 1

and b — 2.

this paper may be recommended for use when studying the

complexes of various carbon surfaces with lithium atoms.

Despite the fact that the estimates of errors for various

classes of models differ, all of them are small compared to

typical errors reported in the literature for such potentials.

Note that for the DP potential case you can only decide

on the quality of the potential based on the RMSE depen-

dence on the epoch, which DeePMD software generates in

process of training, in the case when the structures used for

training are described well enough by the potential in every

case. The thing is that the specified data are calculated not

for the entire training/validation base, but for the random

sample of them. This results in substantial oscillations of the

specified curve even after the very high number of epochs.

The main stimulus for development of the molecular

dynamics potentials that provide the results similar to DFT,

is the attempt to reduce the calculation time. For this

reason it is important to pay attention to the duration of

calculations, except for the accuracy. Dependence of time

to do one step of molecular dynamics in the LAMMPS

software on the potential type (DP-e2 or GAP) an the

used hardware is given in fig. 3. The dependences given

in the figure are close to linear ones. The calculations

were done for a series of graphene models with the

adsorbed lithium produced by translation of the estimated

cell C98Li3. The minimum from the considered system

contained 404 atoms. Testing was done on computers

with Intel i9 10980XE (18-core) and AMD EPYC 7742

(64-core) processors. Calculations with the DP potential

were additionally started on NVIDIA Tesla P100 (16GB
video memory), Titan V (12GB video memory) and Tesla

Technical Physics, 2025, Vol. 70, No. 3
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Figure 3. Time to do one step of molecular dynamics when using

various hardware (logarithmic scale of axes).

A100 (80GB video memory) video cards. From fig. 3

you can see that the calculations using the GAP potential

take dozens of times more time that the calculations with

the DP potential on the same processor. Compared to

the launch of the calculation on a graphic accelerator, the

loss in time is measured in hundreds of times now. On the

background of such significant changes in the calculation

time the differences in the calculation time on different

video cards and processors do not seem substantial. Due

to the high requirements to the computing resources, the

GAP potential was only tested in relatively small systems —
up to 25 856 atoms. Despite relatively low requirements to

the computing resources for the DP potential, in the case

of using the graphic accelerators the maximum size of the

system available for modeling turns out to be limited by the

size of the video memory, which is usually much smaller

than the random access memory of the central processor.

From fig. 3 you can see that for NVIDIA Titan V video

cards the available models are models of up to 50 000 atoms.

For Tesla P100 video card this value is several times higher

and is 70 000 atoms. Models from more than 310 000 atoms

may be studied on Tesla A100 video cards. Besides, the

time for calculation of one step in such a model will be

three orders less than the time of one step of molecular

dynamics in the VASP package for model C98Li3.

Summing up the above estimates of the accuracy of the

obtained potentials (table 2) and the computing resources

they require (fig. 3), one may conclude that using of the

GAP potential is not justified even in the case when it is

not possible to do the calculations with the DP potential on

graphic accelerators. If there is such a possibility, it is not

feasible to do the calculations with the DP potential on the

central processor.

2.3. Applied software

Apart from using the DP potentials in the LAMMPS

software, they may be incorporated quite easily into the

user software in Python by deepmd module. Based on

GUI4dft software [30] developed by the author previously,

the graphic shell was developed to calculate the energies of

the systems with the DP potentials, including those obtained

in this paper. The software is available to the public on the

GitVerse platform (https://gitverse.ru/sozykin/ml-potential-

calculator). It may be used to assess the energies of the

systems specified in the VASP POSCAR format, and to

assess quantitatively the degree of the system difference

using the SOAP descriptor. The latter possibility is available

through quippy module.

The graphic interface of the software is given in fig. 4.

On
”
Settings“ insert the user specifies the path to the used

DP potential. On
”
Model“ insert there is a button to select

a file with atomic structure in the POSCAR format and

forms where information is displayed on the model handled

at the moment. On
”
Calculation“ insert there are tools for

calculation of the energies of the model or SOAP descriptor.

Since the SOAP descriptor is a vector of a large number

of elements, its values are hard to perceive. The tools

available in the software enable calculations of the norm for

the difference in the descriptors of the systems previously

opened in the software. This parameter may be used as the

measure of the system difference.

Let us consider the example of the software use.

Compare the energies of lithium adsorption calculated

by different methods. For all non-equivalent centers of

adsorption in the studied systems the energies of lithium

adsorption were calculated within DFT and with the DP

potential using formula

Eads = Emodel+Li − Emodel − ELi,

where Emodel+Li — energy of the estimated cell of nan-

otube, graphene, biphenylene, irida-graphene, ψ-graphene

or tetra-penta-deca-hexagonal graphene with one lithium

atom, Emodel — energy of the estimated cell of the same

model without the lithium atom, ELi — energy of the

lithium atom. Equilibrium positions of the lithium atom

are located above the centers of the carbon rings of the

surface. Let us first provide the results of DFT. For all

the studied systems the surfaces contain six-member cycles,

but the adsorption energies in them vary: they are equal

to −1.62, −1.76, −2.19, −2.27, −2.49 and −2.50 eV

for graphene, CNT, biphenylene, irida-, tetra-penta-deca-

hexagonal and ψ-graphene accordingly. The produced

energies of adsorption hardly depend on the carbon ring size

except for the case of adsorption in a three-member cycle

of irida-graphene, where the adsorption energy is −1.97 eV.

In the order of increase of the size of the carbon ring,

above which the lithium atom is adsorbed: biphenylene

(−2.10, −2.19, −2.11 eV), irida-graphene (−1.97, −2.27,

−2.29 eV), ψ-graphene (−2.52, −2.50, −2.55 eV), tetra-
penta-deca-hexagonal graphene (−2.43, −2.50, −2.49,

−2.51 eV).

For the equilibrium configurations found in DFT, the

energies were calculated with the DP potential, and the

interaction energies were calculated. The least average error

in the different centers of adsorption in the interaction en-

ergy was obtained for tetra-penta-deca-hexagonal graphene

(0.05 eV), and the maximum one — for the nanotube

Technical Physics, 2025, Vol. 70, No. 3
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Figure 4. Applied software interface.
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Figure 5. DFT- and DP-energies, their difference for test sets: a — 1, b — 2.

(0.32 eV). Therefore, for this parameter the error does not

exceed 20%.

When the DP potential is used, RMSE of energy for

two test data sets described above made 4.75meV/atom

(95meV/Å) and 3.35meV/atom (20meV/Å) for sets 1

and 2 accordingly. To determine the areas of test sets, for

which the largest error was obtained, let us see the energy

profiles given in fig. 5. Energies were counted relative to the

minimum value independently for each line. Besides, for the

test set 1 the absolute values in the minima are practically

same, and for the test set 2 the DFT data are shifted relative

to the DP data by the value approximately equal to 0.33 eV.

This is the shift reflected in RMSE. The third line (1) —
difference of relative energies for DFT and DP. Relative

energies for the test set 2 are close everywhere. The large

RMSE for the first set is related to large errors in the energy

for the lithium positions near the nanotube surface. Such

positions are far from those, which were used for training,

and those that may be observed in the experiment.

Conclusion

In process of the study a base was developed, which

contains data on the energies of more than 8700 configu-

rations of the carbon nanomaterial structures with lithium

atoms. Configurations arose in process of molecular-

dynamic modeling at temperatures of up to 450K.

Technical Physics, 2025, Vol. 70, No. 3
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Comparison of two approaches to training of potentials of

interparticle interaction and various descriptors within each

of them showed that the most effective was the potential

obtained by the deep training method with a two-particle

descriptor, which takes into account the relative position of

two atoms.

The ability to describe the barriers of lithium diffusion on

the carbon surface with high accuracy was demonstrated,

as well as the energies of the complexes with lithium when

located at typical distances from the carbon surface.

Comparison of the energies of lithium atom interaction

with the carbon surface calculated within the electronic

density functional theory and with the help of the obtained

potential demonstrated that the accuracy of this value

determination turns out to be especially high (less than

0.2 eV) for the case of adsorption on graphene. The

maximum error (0.8 eV) was recorded for the case of

adsorption on irida-graphene. Specified errors, however, do

not exceed the specific spread of this value when using

various first-principle tools.
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