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Introduction

Circular photovoltaic effect is one of the methods to

study the kinetic properties of the material. It consists

in generation of DC in the material when exposed to

obliquely incident elliptically polarized electromagnet wave

in the direction perpendicular to the project of wave

vector on the specimen plane. The DC current value may

indicate the properties of emission and the properties of the

structure. The effect is directly to the presence of spin in

the charge carriers and is better studied in the materials

with a hamiltonian containing a summand linear by quasi-

momentum module and explicitly taking into account the

spin-orbit interaction (so called Rashba and Dresselhaus

hamiltonians) [1–4]. [5] did the calculations with the

help of the density functional theory and the Green’s non-

equilibrium function method to study the photovoltaic effect

of a single-layer lateral heterojunction WSe2−MoS2 under

vertical radiation.

Interaction between light with circular polarization and

quantum materials strengthens in chiral spatial groups due

to structural chirality. Paper [6] studies the tunable circular

photoelectric responses in field transistors 2D Te with dif-

ferent chirality, including longitudinal circular photovoltaic

effect induced by radial spin texture (polarization of spin

and electron is parallel to the direction of the electron

impulse), and circular thermovoltaic effect induced by chiral

crystalline structure (spiral chains of Te atoms). Circular

photovoltaic and photoelectric effects strongly depend on

chirality of Te crystals, which makes 2D Te the material

for development of optoelectronic devices depending on

chirality. [7] developed the general theory of laminar

circular photovoltaic effect in quasi-two-dimensional chiral

bilayers which related to the appearance of polarization-

dependent out-of-plane static dipole moment induced by

circularly polarized light. The laminar circular photovoltaic

effect was calculated in the twisted two-layer graphite,

and it was found that it demonstrates the resonant peak,

the frequency of which may be tuned from visible to

infrared one as the twisting angle varies. Therefore, the

laminar circular photovoltaic effect provides a promising

path to frequency-sensitive detection of light with circular

polarization, especially in the infrared range.

Circular photovoltaic effect is useful to study topological

half-metals, since the tensor of circular photovoltaic effect

quantizes well isolated topological degeneracy in strictly

linear-dispersion band structures. [8,9] studied multiplicative

half-metal Weyl band structures and it was found that the

multiplicative structure reliably protects the quantization

of circular photovoltaic effect even in case of non-linear

dispersion. Besides, this effect may be used to identify

the complex topology, differing the topological degeneracies

of multiplicative topological half-metals on allegedly similar

topological degeneracies by degree of degeneracy and total

topological charge, for example, Dirac nodes.

Paper [10] studies the photovoltaic effects in centrosym-

metric two-dimensional materials, two-layer graphene,

folded as AA and AB [11], by applying external voltage on

the gate to disturb the inversion symmetry. Using approxi-

mation of strong bond to describe electron states, injection

coefficients were calculated for the circular photovoltaic

effect for both materials with wavelengths from terahertz to

visible range. It was shown that photovoltaic effects induced

by gate voltage may be rather significant for the two-layer

graphene folded as AB.

Article [12] presents the study of the photoelectric

effect of double heterostructure graphene/MoS2/Si, grown

by method of fast chemical deposition from vapor phase.

It was found that double transitions of graphene/MoS2-

Schottky transition and heterostructures MoS2/Si play an

important role in increased efficiency of the device. They

made it possible to effectively generate, separate and

collect more electron-hole pairs on a double interface of

graphene/MoS2/Si.

Paper [13] studied the photoresistance of cyclotron reso-

nance in 2D electronic systems based on GaAs. Abnormally
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low sensitivity to helicity of the arriving circularly polarized

terahertz radiation was found. It was found that this

abnormality strongly depends on intensity.

Note that such effect is possible in the materials, for

which spin-orbit interaction is not specific, in this case DC

appears due to the transfer of the angular momentum of

photon to free charge carriers, and the effect is due to not

the spin orientation, but is purely orbital. Such materials

include d-wave superconductors [14,15], graphene [16],
phosphorene [17], silicene [18] and topological insula-

tors [19], which have fundamental similarity: their low-

energy fermionic excitations behave as massless Dirac

particles, and not as fermions that are subordinate to a

regular Schrödinger hamiltonian. Materials united by such

properties were called
”
Dirac materials“ [20,21].

Note that superlattices may be created on the basis of

such materials, where the circular photovoltaic effect will

be possible, but also the response nonlinearity structures

related to features of the energy spectrum should also man-

ifest themselves. One of the superlattices is a superlattice

based on graphene (GSL). There are many methods of GSL

representation [22–26]: use of electrostatic and magnetic

barriers, alternation of graphene single- and bilayer, use

of graphene nanoribbons, deposition of graphene on the

substrate, which contains the periodically arranged layers

of various dielectrics, and alternation of graphene layers at

different angle of rotation relative to each other. Apart from

theoretical modeling, GSL was implemented experimentally.

[27] reports a new approach to making 2D GSL, where the

superlattice potential is modulated by the substrate with

the periodically arranged nanoholes. Paper [28] studies

the unique 2D SL, produced as a result of the graphene

deposition on the sub from metal nanoballs. Study of the

electron transport in the graphene field transistor with a

double gate placed on the folded twisted bilayer WSe2 at

the twisting angle 2.1◦ is presented in [29]. The article

presents the hysteresis characteristics of transfer and studies

the heterogeneity of the charge with several local Dirac

points as the electric shift field increases.

Moire patterns from 2D (2D) heterostructures of

graphene assembled with the help of Van der Waals

interactions, are studied in paper [30]. Such patterns arise

in the two-layer superlattice of graphone (half-hydrogenated
graphene)/graphene obtained as a result of direct single-

sided hydrogenation of two-layer graphene on the substrate.

Compared to source graphene, the two-layer superlattice

has corrugated surface. These moire patterns are detected

with atomic-force microscopy and additionally confirmed

by the fast Fourier transform analysis. High mobility of

charge carriers in the moire superlattice based on graphene

and disturbance of the inversion symmetry by hexagonal

boron nitride cause nonlinear conductance [31]. Nonlinear

conductance strongly depends on the gate voltage and on

the configuration of the layers in the structure, besides, the

huge amplification is related to moire bands.

Apart from the classical superlattices, multiple het-

erostructures based on graphene were studied [32]. Pa-

per [33] studies the segnetoelectric photoelectric effect

that depends on the thickness of segnetoelectric layer,

in the vertical multi-layer heterostructures of graphene/α-

In2Se3/graphene. It is shown that the photocurrent of

short circuit is anti-parallel to segnetoelectric polarization

and increases exponentially as thickness decreases. Pho-

tocurrent generation was studied in the tunnel structures

of graphene/h-BN/graphene with localized defect states

at illumination with light of middle IR range [34]. It

was shown that the photocurrent in these devices is

proportionate to the second derivative of the tunnel current

by shift voltage, reaching the maximum when tunneled

through the impurity level h-BN. It was found that the

reason for photocurrent generation consists in changing

the photon tunneling probability under radiation-induced

heating of electrons in graphene layers.

Since in GLS non-linear effects arise at comparatively low

field intensities, the study of the circular photovoltaic effect

in such structures is of interest. This paper studies how

the DC field directed along alternation of the layers impacts

the circular photovoltaic effect in the anisotropic graphene

superlattice. The analytical expression for current density

was produced, and its dependence on various parameters of

electric fields was studied.

1. Calculation of constant component in
current density

The hamiltonian of the superlattice based on Dirac mate-

rial with one-dimensional potential looks as follows [35]:

vF p̂x σ̂xψ +
(

V (x) + α p̂2
y

)

σyψ = εψ, (1)

where α = 1/2m∗, and spatial modulation profile V (x) is

set by Kronig−Penney model:

V (x) =

{

11, (s − 1)d < x < a + (s − 1)d,

12, a + (s − 1)d < x < s .
(2)

Energy spectrum of the considered structure in the low

energy approximation is as follows [35]:

ε(p) = ±2F

√

sin2
( px

2

)

+ 1/4 (p2
y + 1eff)2, (3)

where 11,2 = 11,2d/vF — band gap half-width,

1eff =
11 + n12

1 + n
, F =

Q
shQ

, Q = n
(12 − 12)

(1 + n)2
,

px = px/d, p2
y = αp2

y d/νF, n = b/a , a, b — width of well

and barrier accordingly, d = a + b — superlattice period

(fig. 1). Different signs are related to valence band and

conduction band. Transitions between the half-metal state

and band insulator are due to parameter 1. When 1 is

negative, a saddle point appears in the spectrum. Increase

of 1 causes the situation when the saddle point and
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Figure 1. GSL band structure: 11 = −5, 12 = 3.5, n = 1,

py = 0.
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Figure 2. Problem geometry.

both Dirac points evolve into a single local minimum of

the spectrum on transition (at 1 = 0) to slot opening

(at 1 > 0). The superlattice considered in this paper

is formed by alternation of bands of two Diract 2D-

crystals with different values of parameter 1 (11 and 12),
parameters 11 and 12 determine the potential value in the

area of the well and barrier.

We will consider the superlattice response to the action

of DC and AC fields

E =
(

E1x cos(ωt) + E0; E1y cos(ωt + ϕ)
)

,

where E0 — module of DC field intensity, E1x ,y , ω —
amplitude and frequency of AC field.

Density of current jy , flowing along axis Y (fig. 2) is

determined using formula

jy = 〈e6pνy f (p, t)〉t , (4)

where e — electron charge, f (p, t) — non-equilibrium

function of carrier distribution.

We will find the distribution function with the help of the

classic Boltzmann equation

∂ f (p, t)
∂t

+ eE
∂ f (p, t)
∂ p

= −ν [ f (p, t) − f 0(p)], (5)

where f 0(p) — equilibrium distribution function, ν —
frequency of collisions.

The speed of electron movement along axis y has the

following appearance

vy =
∂ε(p)

∂ py
=

F py (p2
y + 1eff)

√

sin2(px/2) + 1/4(p2
y + 1eff)2

. (6)

After speed decomposition by py we obtain the following

expression:

vy ≈
2F1effpy

√

sin2(px/2) + 12
eff

, (7)

v ′y (x) =
1

√

sin2(px/2) + 12
eff

. (8)

Expand (8) in the composite Fourier series

v ′y(x) =

+∞
∑

m=−∞

âmeimpx , (9)

where

âm =
1

2π

π
∫

−π

eimpx d px
√

sin2(px/2) + 12
eff

.

Solving equation (5) by method of characteristics, sub-

stituting it and (6) in (4), an expression for the current

constant component is produced:

jy =
2eν

(2π~)2

〈

π
∫

−π

∞
∫

−∞

t
∫

−∞

e−ν(t−t′)vy(px ; py)

× f 0

(

px −
e
c

(

Ax (t) − Ax(t
′)

)

;

py −
e
c

(

Ay (t) − Ay(t
′)

)

)

d2pdt′
〉

t

. (10)

Substitute variables

jy =
2eν

(2π~)2

〈

π
∫

−π

∞
∫

−∞

t
∫

−∞

e−ν(t−t′)

× vy

(

p′
x +

e
c

(

Ax(t) − Ax(t
′)

)

;

p′
y +

e
c

(

Ay(t) − Ay(t
′)

)

)

f 0(p′
x , p′

y)d
2p′dt′

〉

t

. (11)
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jy =
2eν

(2π~)2
~

d

√

νF~

αd

〈

π
∫

−π

∞
∫

−∞

t
∫

−∞

e−ν(t−t′)

× vy

(

p′
x −

edE0x

~ω

(

sin(ωt) − sin(ωt′)
)

−
edE0

~
(t − t′);

p′
y −

√

αd
νF~

e
ω

E0y

(

sin(ωt + ϕ) − sin(ωt′ + ϕ)
)

)

× f 0(p′
x , p′

y )d
2p′dt′

〉

t

. (12)

Substitute (7) with account of decomposition

of (10) in (12):

jy =
4eνF1eff

(2π~)2
~

d

√

νF~

αd

〈

π
∫

−π

∞
∫

−∞

t
∫

−∞

e−ν(t−t′)
+∞
∑

m=−∞

âm

× exp

[

I

(

x−
edE0x

~ω

(

sin(ωt)−sin(ωt′)
)

−
edE0

~
(t−t′)

)

]

×

(

y −

√

αd
νF~

e
ω

E0y
(

sin(ωt + ϕ) − sin(ωt′ + ϕ)
)

)

× f 0(x , y)dxdydt′
〉

t

. (13)

After substitution of the f 0 distribution function and

transition to new variables, we get

jy =
eνF1effn0

I0

~

d

√

νF~

αd

〈

π
∫

−π

∞
∫

−∞

t
∫

−∞

e−ν(t−t′)e
−ε(x,y)

kT

×

+∞
∑

m=−∞

âm exp[Ix ] exp
[

−iα0x
(

sin(ωt) − sin(ωt′)
)]

× exp
(

y − β0y
(

sin(ωt + ϕ) − sin(ωt′ + ϕ)
)

)

dxdydt′
〉

t

,

(14)

where

p′
x = x , p′

y = y, α0x =
medE0x

~ω
, α0 =

medE0

~
,

β0y =

√

αd
νF~

e
ω

E0y , I0 =

∞
∫

−∞

π
∫

−π

e
−ε(x,y)

kT dxdy.

Go to new variables: t−t′ = τ , ωt = k and using the fact

that

e±iz s in(t) =

∞
∑

l=−∞

J l(z )e±ilt ,

where J l(z ) — Bessel function, we get

jy =
eνF1effn0

I0

~

d

√

νF~

αd
1

2πω

π
∫

−π

∞
∫

−∞

∞
∫

0

π
∫

−π

e−ν(τ )e
−ε(x,y)

kT

×

+∞
∑

m=−∞

âmeimx e−α0τ

∞
∑

l=−∞

J l(α0x )e
−ilk

∞
∑

z=−∞

Jz (α0x )e
iz (k−ωτ )

×
(

y − β0y

(

sin(k + ϕ) − sin(k − ωτ + ϕ)
)

)

dkdτ dxdy.

(15)
After integration by k and τ expression (15) will look as

follows

jy =
eνF1effn0

I0

~

d

√

νF~

αd
1

2πω

π
∫

−π

∞
∫

−∞

e
−ε(x,y)

kT

×

+∞
∑

m=−∞

âmeimx
∞
∑

l=−∞

∞
∑

z=−∞

Jz (α0x )J l(α0x )×

−ie−i(ϕ+π(l−z )))(e2iπ(l−z ) − 1)βoyω
(

−e2iϕ(α0−iν

+ω(z −1))(l+1−z )−(l−1−z)(α0−iν+ω(z +1))
)

2(α0−iν+ω(z −1))(l+1−z )(l−1−z )

×(α0 − iν+ω(z +1))(α0−iν+ωz )

dxdy.

(16)
Break expression (16) into two fractions

jy =
eνF1effn0

I0

~

d

√

νF~

αd
1

2πω

π
∫

−π

∞
∫

−∞

e
−ε(x,y)

kT

×

+∞
∑

m=−∞

âmeimx
∞
∑

l=−∞

∞
∑

z=−∞

J l(α0x )

(

−β0yω

2

)

×

−ie−i(ϕ+π(l−z ))(e2iπ(l−z ) − 1)Jz (α0x )(l − 1− z )

×(α0 − iν + ω(z + 1))

(α0 − iν + ω(z − 1))(l + 1− z )(l − 1− z )

×(α0 − iν + ω(z + 1))(α0 − iν + ωz )















dxdy.

(17)
Considering that

lim
x→∓1

(e2iπ(x) − 1)

x ± 1
= 2iπ,

in the first fraction we substitute z = l−1, and in the second

z = l + 1;

jy =
eν̃F1effn0

I0

~

d

√

νF~

αd

π
∫

−π

∞
∫

−∞

e
−ε(x,y)

kT

+∞
∑

m=−∞

âmeimx

×
∞
∑

l=−∞

J1(α0x )(−β|0y)

{

ei(ϕ−π)J l−1(α0x )

(α̃0−i ν̃ + (l−1))(α̃0−i ν̃ + l)

×
+e−i(ϕ−π)J l+1(α0x )

(α̃0 − i ν̃ + (l + 1))(α̃0 − i ν̃ + l)

}

dxdy.

(18)
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where ν̃ = ν/ω, α̃0 = α0/ω.

Since series by l varies from −∞ to +∞, in the first

fraction we substitute l → l + 1 and e±iπ = −1

jy =
eν̃F1effn0

I0

~

d

√

νF~

αd

π
∫

−π

∞
∫

−∞

e
−ε(x,y)

kT

+∞
∑

m=−∞

âmeimx

×
∞
∑

l=−∞

β0y

{

eiϕJ lJ l+1(α0x )

(α̃0−i ν̃ + l)(α̃0−i ν̃ + (l + 1))

×
+e−iϕJ lJ l+1(α0x )

(α̃0 − i ν̃ + (l + 1))(α̃0 − i ν̃ + l)

}

dxdy. (19)

The final expression for current density is written as

jy = j0

+∞
∑

m=−∞

âmCm

∞
∑

l=−∞

β0y J lJ l+1(α0x ){eiϕ + e−iϕ}

(α̃0−i ν̃ + l)(α̃0−i ν̃ + (l + 1))
,

(20)
where

Cm =
1

I0

π
∫

−π

∞
∫

−∞

e
−ε(x,y)

kT eimx , j0 =
~eν̃F1effn0

d

√

vF~

αd
.

2. Numerical analysis of current
density expression

Numerical studies were carried out with Wolfram Mathe-

matica software based on Wolfram programming language.

It focuses on symbolic computations, functional program-

ming and rule-based programming and may use random

structures and data.

Fig. 3 shows the dependence of constant component

in current density on intensity of DC and amplitude

of AC electric field applied along axis X , at β0y = 1.0

and ϕ = π/4. Dependence of current on amplitude of the

α
0x

j/j0

0

0.05

0.10

1.5

1.0

0.5

0

α 0

0

0.5

1.0

1.5

Figure 3. Dependence of current density on intensity of DC and

amplitude of AC electric field applied along axis X at β0y = 1.0,

ϕ = π/4, 11 = −5, 12 = 2.
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Figure 4. Dependence of current density on intensity of DC field

applied along axis X at fixed values: 11 = −5, 12 = 2, β0y = 1.0,

ϕ = π/4; α0x : 1 — 0.6; 2 — 0.8; 3 — 1.0.

0.2 1.20.6 1.41.0

0.06
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3
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Figure 5. Dependence of current density on amplitude of AC field

applied along axis X at fixed values: 11 = −5, 12 = 2, β0y = 0.5,

ϕ = π/4; α0: 1 — 0.05; 2 — 0.5; 3 — 1.0.

field of the wave polarized along the superlattice axis is

of oscillating nature. The highest amplitude of oscillations

is achieved in the area of weak fields. One dimensionless

unit α, β corresponds to 65.8 V/cm, one unit 11,2 is equal to

0.0329 eV. Fig. 4 shows the dependence of the DC current

density along axis Y on amplitude of AC electric field of

the wave polarized along axis X , at several values of DC

electric field intensity. Fig. 5 shows the dependence of the

DC current density along axis Y on the intensity of DC

electric field at several values of amplitude of the AC field

polarized along axis X .

Note that paper [36] studied the circular photovoltaic

effect in a related structure. Dependence of current density

in the direction perpendicular to the axis of superlattice on

the DC field intensity was of somewhat other nature.

jy = j0β0y

∞
∑

l=−∞

J l(α0x)
(

J l+1(α0x ) − J l−1(α0x )
)

×
(α̃2

0 − l2 + ν̃2)
(

(α̃0 − l)2 + ν̃2
)(

(α̃0 + l)2 + ν̃2
) cosϕ. (21)
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Expression (21) has the structure specific for resonance,

when the energy collected by electron at the distance

equal to the superlattice period is numerically equal to the

integer number of light quantum energies. Curves presented

in fig. 5 do not show the second order breaks specific

for the resonance. Expression (20) finds no resonant

dependences. Such difference is due to the exceeded limits

of quasi-classical approximation applicability in paper [36]
when building the dependence of DC current density in the

transverse direction on the DC field intensity.

Therefore, the impact of DC field was studied on the

circular photovoltaic effect in the anisotropic graphene

superlattice at normal incidence. An expression is produced

for current density in such superlattice. Non-additivity of

the graphene-based superlattice energy spectrum causes

mutual dependence of the charge carrier movements in the

directions perpendicular to each other, which, in particular,

is the reason for appearance of the rectification current

impact in such structure in the direction perpendicular to

the drift field, under the action of the incident elliptically

polarized wave incident on the surface. Besides, the current

density in the transverse direction is approximately an order

below the current density in the direction of the superlattice

axis. Dependence of the current density on the intensity of

the applied field has a non-monotonic nature. The nature of

this dependence is similar to the nature of Stark resonance,

known in the quantum semiconductor superlattices.

The above assumptions will be fair for the following

parameters of the material: T = 70K, d = 2 · 10−6 cm,

νF = 108 cm/s.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] V.I. Konchenkov, A.A. Myachkova, D.V. Zav’yalov. J. Phys.:

Conf. Ser., 1697, 012205 (2020).
DOI: 10.1088/1742-6596/1697/1/012205

[2] S.A. Tarasenko. Phys. Rev. B, 83, 035313 (2011).
https://doi.org/10.1103/PhysRevB.83.035313

[3] G.V. Budkin, S.A. Tarasenko. Phys. Rev. B, 105, L161301

(2022). https://doi.org/10.1103/PhysRevB.105.L161301
[4] P. Olbrich, S.A. Tarasenko, C. Reitmaier. Phys. Rev. B, 79,

121302 (2009). https://doi.org/10.1103/PhysRevB.79.121302
[5] W.-M. Luo, Z.-G. Shao, X.-F. Qin, M. Yang. Physica E:

Low-dimensional Systems and Nanostructures, 115, 113714

(2020). https://doi.org/10.1016/j.physe.2019.113714
[6] C. Niu, S. Huang, N. Ghosh, P. Tan, M. Wang,

W. Wu, X. Xu, P.D. Ye. Nano Lett., 23 (8), 3599 (2023).
https://doi.org/10.1021/acs.nanolett.3c00780

[7] Y. Gao, Y. Zhang, D. Xiao. Phys. Rev. Lett., 124, 077401

(2020). https://doi.org/10.1103/PhysRevLett.124.077401
[8] A. Pal, D. Varjas, A.M. Cook. ArXiv, 2023.

https://doi.org/10.48550/arXiv.2312.03159

[9] A. Pal, J.H. Winter, A.M. Cook. Phys. Rev. B, 109, 035147

(2024). https://doi.org/10.1103/PhysRevB.109.035147

[10] Z. Zheng, K. Chang, J.L. Cheng. Phys. Rev. B, 108, 235401

(2023). https://doi.org/10.1103/PhysRevB.108.235401
[11] J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres. Phys.

Rev. B, 78 (4), 045405 (2008).
https://doi.org/10.1103/PhysRevB.78.045405

[12] W. Shi, X. Ma. Coatings, 8, 2 (2018).
https://doi.org/10.3390/ coatings8010002

[13] E. Mönch, S. Schweiss, I. Yahniuk, M.L. Savchenko,

I.A. Dmitriev, A. Shuvaev, A. Pimenov, D. Schuh,

D. Bougeard, S.D. Ganichev. Phys. Rev. Res., 6, 023106

(2024). https://doi.org/10.1103/PhysRevResearch.6.023106
[14] Kazumi Maki. AIP Conf. Proc. 438 (1), 83 (1998).

https://doi.org/10.1063/1.56343

[15] B. Cheng, D. Cheng, K. Lee, L. Luo, Z. Chen, Y. Lee,

B.Y. Wang, M. Mootz, I.E. Perakis, Zhi-Xun Shen,

H.Y. Hwang, W. Jigang. Nat. Mater., 23, 775 (2024).
https://doi.org/10.1038/s41563-023-01766-z

[16] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang,

Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science,

306 (5696), 666 (2004). DOI: 10.1126/science.1102896
[17] Y. Kaddar, W. Zhang, H. Enriquez, Y.J. Dappe, A. Bendounan,

G. Dujardin, O. Mounkachi, Abdallah El kenz, A. Benyoussef,

A. Kara, H. Oughaddou. Adv. Functional Mater., 33 (21),
2213664 (2023). https://doi.org/10.1002/adfm.202213664

[18] H. Oughaddou. Silicene, a Promising New 2D Mater., 90 (1),
46 (2015). https://doi.org/10.1016/j.progsurf.2014.12.003

[19] J. Moore. Nature, 464, 194 (2010).
https://doi.org/10.1038/ nature08916

[20] J. Cayssol. Comp. Rendus Phys., 14 (9−10), 760 (2013).
https://doi.org/10.1016/j.crhy.2013.09.012

[21] T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky. Adv. Phys.,

63 (1), 1 (2014).
https://doi.org/10.1080/00018732. 2014.927109

[22] S.C. Chen, R. Kraft, R. Danneau, K. Richter, M.-H. Liu.

Commun. Phys., 3, 71 (2020).
https://doi.org/10.1038/s42005-020-0335-1

[23] H. Lv, Y. Yao, M. Yuan, G. Chen, Y. Wang, L. Rao, S. Li,

U.I. Kara, R.L. Dupont, C. Zhang, B. Chen, B. Liu, X. Zhou,

R. Wu, S. Adera, R. Che, X. Zhang, X. Wang. Nat. Commun.,

15, 1295 (2024). https://doi.org/10.1038/s41467-024-45503-9
[24] S.A.A. Ghorashi, J. Cano. Phys. Rev. B, 107, 195423 (2023).

https://doi.org/10.1103/PhysRevB.107.195423

[25] M. Pudlak, R.G. Nazmitdinov. Phys. Rev. B, 109, 205402

(2024). https://doi.org/10.1103/PhysRevB.109.205402
[26] B. Wei, H. Ying, J. Chen, Q. Zang, J. Dong, H. Zhang,

Y. Liu, C. Liu. Nanomaterials, 14 (12), 1019 (2024).
https://doi.org/10.3390/nano14121019

[27] C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Pa-

supathy, P. Moon, M. Koshino, P. Kim, C.R. Dean. Nat.

Nanotechnol., 13, 566 (2018).
https://doi.org/10.1038/s41565-018-0138-7

[28] Y. Zhang, Y. Kim, M.J. Gilbert, N. Mason. npj 2D Mater.

Appl., 2, 31 (2018). https://doi.org/10.1038/s41699-018-0076-0
[29] S. Sett, R. Debnath, A. Singha, S. Mandal, J.K.M. Bhakar,

K. Watanabe, T. Taniguchi, V. Raghunathan, G. Sheet,

M. Jain, A. Ghosh. ArXiv, 2024.

https://doi.org/10.48550/ arXiv.2405.18024

[30] H. Li, R. Papadakis, T. Hussain, A. Karton, J. Liu. Nano Res.,

13, 1060 (2020). https://doi.org/10.1007/s12274-020-2744-6
[31] P. He, G.K.W. Koon, H. Isobe, J.Y. Tan, J. Hu, A.H. Castro

Neto, L. Fu, H. Yang. Nat. Nanotechnol., 17, 378 (2022).
https://doi.org/10.1038/s41565-021-01060-6

Technical Physics, 2025, Vol. 70, No. 3



430 International Conference
”
Nanocarbon and Diamond“ (N&D’2024)

[32] C. Dean, A.F. Young, L. Wang, I. Meric, G.-H. Lee,

K. Watanabe, T. Taniguchi, K. Shepard, P. Kim, J. Hone.

Solid State Commun., 152 (15), 1275 (2012).
https://doi.org/10.1016/j.ssc.2012.04.021

[33] S.M. Nahid, S.W. Nam, A.M. van der Zande. ACS Nano,

18 (22), 14198 (2024).
https://doi.org/10.1021/acsnano. 3c11558

[34] D.A. Mylnikov, M.A. Kashchenko, K.N. Kapralov, D.A. Ghaz-

aryan, E.E. Vdovin, S.V. Morozov, K.S. Novoselov, D.A. Ban-

durin, A.I. Chernov, D.A. Svintsov. 2D Mater. Appl., 8, 34

(2024). https://doi.org/10.1038/s41699-024-00470-z
[35] E.I. Kukhar, S.V. Kryuchkov. Superlattices and Microstruc-

tures, 133, 106183 (2019).
https://doi.org/10.1016/ j.spmi.2019.106183

[36] D.V. Zavyalov, V.I. Konchenkov, S.V. Kryuchkov. FTP (in
Russian), 46 (1), 113 (2012).

Translated by M.Verenikina

Technical Physics, 2025, Vol. 70, No. 3


