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With the help of a convolutional neural network with continuous filtering SchNet, trained on the simulation data

by the Car-Parrinello quantum molecular dynamics method, the potential of the black phosphorene force field is

constructed, applicable for use in the framework of modeling by the classical molecular dynamics method. The

parameters of the neural network and the ways of its training are revealed, which allow us to build the most realistic

representation of the force field. Using a force field calculated by a neural network, the thermal conductivity of a

sample of black phosphorene in a LAMMPS package was simulated. The calculated values of thermal conductivity

are consistent with the data obtained by other groups experimentally and within the framework of calculations.
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Introduction

Black phosphorene, which has been discovered exper-

imentally in 2014, is a two-dimensional material with a

pronounced anisotropy of electronic and transport proper-

ties [1,2]. Black phosphorene is also of interest in the context

of production of vertical heterostructures consisting of

several layers of similar two-dimensional crystals (graphene,

silicene, molybdenum sulfide, etc.) held together by van

der Waals forces. Molecular dynamics simulation is a well-

established method for study of van der Waals materials

(see, e.g., [3–7]). Quantum molecular dynamics methods (of

which the Born–Oppenheimer and Car-Parrinello methods

are used most often [8]) provide physically sound models

of atomic motion in the structures under consideration, but

allow one to examine only modest-sized systems (containing

several dozen atoms) on time scales on the order of

hundreds of femtoseconds. Classical molecular dynamics

methods provide an opportunity to calculate the motion of

millions of particles on nanosecond time scales; the greatest

challenge is to reproduce adequately the force field in a

sample. An approach involving the use of neural networks

for calculation of the interatomic interaction potential (force

field), which is then used to calculate particle trajectories

within classical molecular dynamics, has been progressing

rapidly in recent times [3,9,10]. Since a training set is

formed based on the results of ab initio molecular dynamics

(AIMD) modeling of the studied molecules, this approach

theoretically allows one to predict the force field with an

accuracy typical of density functional theory methods.

Fully connected [11,12], graph [13–16], convolu-

tional [17–19], and generative [20–21] neural networks are

currently used widely in reconstruction of the interatomic

interaction potential. The range of deep learning methods

put to use is so wide due, first, to the need to test various

types of material description and architectures and methods

of training of neural networks in order to find those that

represent the force field most accurately. Second, the

structural features of the studied substances necessitate the

application of a wide variety of networks, since networks

of a certain type may characterize well the force field

of certain materials, but are ill-suited for reproducing the

interaction potential in other materials. Specifically, the ap-

plicability of a feed-forward neural network implemented in

DeePMD [11] in calculations of the interatomic interaction

potential of black phosphorene, which is a two-dimensional

crystal, and polyphenylene sulfide, which is a polymer, was

examined in [22]. It was found that the neural network used

in [22] fails to account accurately for the specific features of

the force field of polyphenylene sulfide, which is attributable

to the fact that a polymer has a large (compared to a

crystalline substance) number of configurations that need

to be represented in the training set.

In the present study, an attempt is made to represent

the force field in a sample using a neural network with an

architecture different from DeePMD. We have chosen the

SchNet network, which is a continuous-filter convolutional

neural network and is included into the SchNetPack pack-

age [19]. This network is sometimes classified as a graph

one (see, e.g., [16]), which is attributable to the specifics

of representation of the list of neighbors of a chosen atom.
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Just as in [22–24], black phosphorene is the sample under

study. On the one hand, this material is fairly new, and

the features of its electronic and phonon transport remain

in the focus of attention of researchers. On the other

hand, several studies concerned with the representation of

the interatomic interaction potential in this material have

already been published; therefore, the obtained results may

be compared with the results reported by other research

groups.

The actual comparison of the obtained force fields is just

the first stage of assessment of the applicability of neural

networks for modeling the material under consideration.

One needs to calculate the value of a certain physical

quantity and compare it with experimental data. The

density and thermal conductivity of black phosphorene

were calculated in [23,24] using a force field constructed

by the neural network of the DeePMD package. The

following values were obtained: armchair thermal conductiv-

ity κarmchair = 1.685W/(m·K), zigzag thermal conductivity

κzigzag = 2.552W/(m·K), and a density of 2.72 g/cm3 (the
experimental density value is 2.69 g/cm3). It was assumed

in calculations of the bulk density in [23,24] that the sample

size in the direction perpendicular to the phosphorene

plane is equal to distance d ≈ 5.455 Å [25] between the

layers of black phosphorus in the bulk sample. The test

problem in the present study is the calculation of thermal

conductivity of phosphorene, which allows for comparison

with the results reported in [23,24]. In the future, it is

planned to test the SchNet network in modeling of polymer

materials. It is expected that, similar to how convolutional

neural networks aggregate a large number of pixels in

image processing, the SchNet continuous-filter convolutional

neural network should allow one to take into account the

configurational features of polymers that are beyond the

reach of feed-forward networks. It should be noted that the

majority of studies focused on SchNet involve the use of the

QM9 and MD17 data sets (see references in [17]), which

contain data for relatively small organic molecules. As far

as we know, this network has not been used in studies

of crystalline substances. The accuracy of calculation of

force fields by neural networks of various types (SchNet
included) was compared in [16]. Following [18], the authors
of [16] prepared their own implementation of SchNet,

which provided an opportunity to configure this network

more precisely. An account of systematic errors in the

representation of force fields by graph neural networks was

presented in [16], and ways to reduce these errors were

proposed.

The thermal conductivity of black phosphorus and, in

particular, black phosphorene has been examined in several

studies both theoretically and experimentally. The thermal

stability of phosphorene in a graphene–phosphorene het-

erostructure was studied in [6] by the molecular dynamics

method. It was demonstrated that a phosphorene sample

enclosed between two graphene sheets acquires a signifi-

cantly greater stability than free-standing phosphorene. The

thermal conductivity of the material in such a heterostruc-

ture also increases significantly. The Stillinger–Weber

potential [26] parameterized in [27] was used to model

the interactions between phosphorus atoms in [6], and the

Lennard-Jones potential was used to model the interaction

between phosphorene and graphene sheets. The values of

armchair thermal conductivity κarmchair = 2.5−4.5W/(m·K)
and zigzag thermal conductivity κzigzag = 10−22W/(m·K)
of black phosphorene were obtained in [6]. The Stillinger–
Weber potential was also used in [7,28–30] to model the

properties of black phosphorene. Following [6], the authors

of [29] have modeled a graphene–phosphorene heterostruc-

ture using the classical molecular dynamics method and

calculated its thermal conductivity. The thermal stability

of a heterostructure formed by a sheet of phosphorene

and a phosphorus nanotube positioned on it was examined

in [7]. The influence of boundaries on the electronic

and phonon properties of phosphorene nanoribbons was

investigated in [30]. Report [31] is focused on the first-

principle study of thermal transport in black phosphorene;

the methods of density functional theory were used to

calculate the phonon dispersion, and the actual calculation

of the thermal conductivity coefficient was based on the

solution of the Boltzmann kinetic equation for phonons. The

thermal conductivity values for black phosphorene given

in [31] are as follows: κarmchair = 0.15−5.24W/(m·K) and

κzigzag = 0.51−30.48W/(m·K). This large spread in values

is due to the fact that different models of pseudopotentials

and exchange-correlation interaction functionals were used

to optimize the structure and for subsequent calculations of

the phonon spectrum by the density functional theory meth-

ods. The construction of an interatomic interaction potential

for phosphorus in the form of a Gaussian approximation

potential (GAP) [33], which relies on machine learning,

was discussed in detail in [32]. Heat transfer processes

in different modifications of phosphorene (black, blue, and
violet) were studied in [34] via classical molecular dynam-

ics modeling with the so-called neuroevolutional potential

(NEP) [35]). The following values of the thermal conductiv-

ity coefficient were obtained for black phosphorene in [32]:
κarmchair = 12.5W/(m·K) and κzigzag = 78.4W/(m·K). The
GPUMD package supporting the NEP potential was used

in [34] to implement molecular dynamics; the accuracy

and efficiency of these calculations was compared with the

implementation of molecular dynamics in the LAMMPS

package with the GAP potential. The thermal conductivity

of thin-layer samples of black phosphorus was studied ex-

perimentally via Raman spectroscopy in [25]. A comparison

of experimental data and various model approaches to the

determination of thermal conductivity of black phosphorene

was presented in [36].
The above literature data suggest that, first, the ther-

mal conductivity of black phosphorene has a pronounced

anisotropy and, second, the numerical values of thermal

conductivity vary greatly between the studies performed

by different research groups and depend on the modeling

procedure. Two-dimensional phosphorus modifications
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have a rather complex crystal structure, and their phonon

spectra differ significantly from the spectra of bulk samples.

Different estimates of the thermal conductivity coefficient

are obtained when various aspects of phonon dynamics

are taken into account (in modeling via density functional

theory methods followed by solving the Boltzmann kinetic

equation for phonons or in the case of selection of the

interatomic interaction potential followed by modeling using

the classical molecular dynamics method).
Generally speaking, the harmonic approximation for

crystal lattice vibrations is expected to remain valid in

calculations of the heat capacity and thermal conductivity

of phosphorene at the considered temperatures (around
300K), and the phonon–phonon interaction may be ne-

glected. It is known from general physics that the lattice

thermal conductivity in this case is given by

κ =
1

3
Cu〈λ〉, (1)

where C is the heat capacity of phonon gas per unit

volume, u is the velocity of sound, and 〈λ〉 is the mean

free path of phonons. The velocity of sound in phosphorene

was determined several times (e.g., in [23]) based on the

data from classical molecular dynamics simulations. In

the harmonic approximation, when mechanisms leading

to collisions between different phonons are neglected, the

mean free path is specified exclusively by collisions of

phonons with the boundary surfaces of a crystal and lattice

defects. Further studies are needed to determine the

conditions under which this approximation is applicable to a

two-dimensional black phosphorene crystal. The mean free

path may be determined indirectly based on the solution of

the Boltzmann kinetic equation for phonons (see, e.g., [31]).
At the same time, it was reported in several studies (see,
e.g., [5]) that anharmonic interactions of the phosphorene

lattice already manifest themselves at temperatures around

300K. Modeling via the classical molecular dynamics

method allows one to study the thermal conductivity of

a sample without the preliminary introduction of model

concepts of phonon dynamics and gain an insight into

the crystal lattice vibrations based on statistical data. The

accuracy of the obtained result depends strongly on the

validity of the representation of the force field in the

material. Therefore, the main objective of the present study

is to evaluate the applicability of the potential calculated

by the SchNet convolutional neural network in representing

the interatomic interaction in a black phosphorene crystal in

calculations of thermal conductivity.

1. SchNet simulation of the force field of
black phosphorene

A fragment of the crystal lattice of black phosphorene,

which is the material examined in the present study, is

shown in Fig. 1, a. The training data were obtained by sim-

ulating a cell containing 16 atoms using the Car–Parrinello

(0, a )y

(a , 0) x

Y S

Γ X

a

b

Figure 1. Crystal structure of black phosphorene: a — cell

used for simulation; b — lattice translation vectors: ax = 4.376 Å,

ay = 3.314 Å [1].

AIMD method implemented in the Quantum ESPRESSO

package. The Nosé thermostat is used in modeling by

the Car–Parrinello method. The thermostat oscillation

frequency must be of the same order of magnitude as

the phonon frequency (the specified frequency value was

100 THz). The thermostat temperature was 300K. Two

data sets containing 2000 and 10 0000 records were used

for training. A record contains information about 16 atoms:

the coordinates of each atom in three-dimensional space,

three projections of the force acting on each atom, and the

energy of the entire configuration of atoms.

The SchNetPack package includes the SchNet neural

network itself, which is accessed either through the ASE-

interface or via the command line. The ASE- interface

is preferable, since it allows one to manage data, train a

neural network, and use trained models within the Python

code. The package also includes its own classical molecular

dynamics module, which also based on ASE. This module

was not used in the present study; classical molecular

dynamics simulations were performed in the LAMMPS

package. To do this, we had to build LAMMPS from source

using plugins implementing
”
wrapper“ code to represent

the LAMMPS force field style via a model file produced by

training the SchNet neural network. This approach allows

for a direct comparison of the performance of SchNet and

DeePMD networks, since the difference in LAMMPS input

files then comes down to replacing the reference to a file

containing the model of the interatomic interaction potential

generated by the trained neural network.

The architecture of the SchNet network is presented in

Fig. 2. The molecule is represented atom-wise at each

8 Technical Physics, 2025, Vol. 70, No. 3
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Figure 2. Architecture of SchNet [17].

layer of this network. Attribute vector Xl = (x l
1, x l

2, . . . , x l
n)

is formed from a combination of coordinates of all

atoms R = (r1, r2, . . . , rn) and their charge numbers

Z = (Z1, Z2, . . . , Zn), n is the number of atoms in the

molecule under study, and l is the order number of the

neural network layer. Quantity x l
i is a vector with length

F , where F is specified by parameter n atom basis of class

representation.SchNet.

At the initial stage (l = 0), attribute vectors x0
i are formed

on the basis of embedding performed on the list of charge

numbers. Information about the coordinates of atoms is

then added to x l
i in the interaction layers. These are

the layers where convolution is performed. Tentatively

speaking, an x l
i set of F numbers stores information about

the position of the i-th atom relative to the other atoms.

SchNetPack allows one to vary the following parameters:

— n atom basis (F) — number of feature map elements

(eng. number of feature map);

— number of interaction layers (n interactions), which is

actually the number of convolutional layers;

— type of radial basis functions used and their number

n rbf (Fig. 2; rbf layer, cfconv block);

— cutoff radius, which sets the number of neighboring

atoms taken into account;

— neighbor list construction algorithm.

Relying on the results of computational experiments and

analysis of learning curves, we chose n atom basis = 256,

n interactions = 9, n rbf = 300, cutoff = 5.0 Å, and the

ASENeighborList algorithm for constructing a list of

neighbors that allows one to introduce periodic boundary

conditions. The type and number of radial basis functions

were chosen as per the recommendations of the SchNet

developers. The cutoff parameter value was chosen to be

slightly larger than the lattice constant of black phosphorene

(ax = 4.376 Å, ay = 3.314 Å [1]; Fig. 1, b). The specified

neighbor list formation algorithm and the cutoff radius value

impose restrictions on the batch size (batch size parameter),
which was set to 100−200 in calculations performed with

the NVIDIA GeForce RTX 3060 video card (with larger

batch size values, video memory overflow was noted). The
trained neural network receives the coordinates of atoms as

input parameters; at the output, the values of force vectors

acting on each atom and the total energy of the system

are generated. Since a periodic structure is considered

and it is planned to conduct subsequent modeling using

the classical molecular dynamics method, the weighting

coefficients for calculation of the loss function on the

validation set were chosen to be 0.99 and 0.01 for forces

and energies, respectively. The mean-square error is used as

the loss function.

Figure 3 shows the val loss (loss function on the vali-

dation set) plots for two network training options: 1 —
data set DS1 with 2000 records, the training, validation,

and test set sizes are num train = 1200, num val = 600,

and num test = 200, respectively, and periodic boundary

conditions are not introduced; 2 — data set DS2 with

10 0000 records, num train = 80 000, num val = 15 000,

num test = 5000, and periodic boundary conditions at the

boundaries of the crystal region shown in Fig. 1, a are taken

into account.

It is evident from Fig. 3 that the loss function reaches a

plateau in both cases; as expected, the steady-state val loss

value for a larger set with periodic boundary conditions

introduced is lower.
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Figure 3. Loss function on the validation set: 1 — data set

DS1 (2000 records); 2 — data set DS2 (100 000 records). The

horizontal axis shows the number of neural network training

iterations.

Histograms (Figs. 4, 5) of the distribution of absolute

values of force acting on each phosphorus atom in the unit

simulation cell (Fig. 1) allow one to compare the quality of

prediction of force fields. Figure 6 presents the distribution

of absolute values of forces acting on a phosphorus atom

obtained by combining data on the distribution of moduli

of forces acting on each of the atoms shown in Figs. 4, 5.

The absolute values of force in units of eV/Åare plotted

on the horizontal axis in Figs. 4−6, and the vertical axis

shows the number of such values falling within the given

(F, F + 1F) interval. The presented dependencies are

normalized in such a way that the area under the curve of

distribution of the moduli of forces acting on a phosphorus

atom is equal to unity. In Figs. 4, 5, the histograms of

the distribution of force moduli corresponding to the initial

AIMD-based data and the data generated by both force

field models agree well for a fraction of atoms, while the

distributions of force moduli provided by the neural network

models for the remaining atoms are shifted downward. It

follows from Fig. 6 that, on average, both models provide

a somewhat underestimated absolute force value. It should

be noted that when a phosphorene sample is brought to

thermodynamic equilibrium in molecular dynamics, the

best results are provided by the model trained on the

smaller DS1 data set. It has already been reported (see,
e.g., [37]) that the SchNet network trained on sets of several

thousand records yields more accurate results than the one

trained on hundreds of thousands of records. In Fig. 6,

the distribution of absolute values of forces acting on an

atom obtained via machine learning with a set of 100 000

records is closer to the distribution derived from the initial

AIMD- simulation data (compared to the distribution of

absolute values of forces obtained with a set of 2000

records).

2. Thermal conductivity modeling

The method for calculating thermal conductivity detailed

in the LAMMPS package manual (fix heat command) was

used. A sample obtained by replicating the crystal region

shown in Fig. 1, a 23 times along the X axis (along the

armchair boundary) and 16 times along the Y axis (along
the zigzag boundary) was examined in calculations of

the armchair thermal conductivity. The total number of

phosphorus atoms was 5888. The length of the sample

along the X axis was lx = 202.5 Å; its length along axis Y
ly = 105.3 Å (Fig. 7). The width of the heat source and sink

region was 1l = 10 Å. Since periodic boundary conditions

were used, we positioned the heat source and the heat sink

at the edge and at the center of the sample, respectively.

In a similar fashion, the zigzag thermal conductivity was

calculated for a sample obtained by replicating the crystal

region shown in Fig. 1, a 12 times along the X axis and

31 times along the Y axis. In this case, lx = 105.7 Å,

ly = 204 Å, and the total number of atoms was 5952.

Thermal conductivity coefficient κ is defined as the

coefficient of proportionality between heat flux J and the

temperature gradient: ∇T :

J = −κ∇T. (2)

In the configuration presented in Fig. 7, the thermal

energy flux along the X axis is considered; therefore

expression (2) is reduced to the one-dimensional case:

J = −κ(∇T )x = −κ
dT
dx

≈ −κ · 1T/
( lx

2

)

, (3)

where 1T is the temperature difference between the heat

source and the heat sink and lx/2 is the distance between

them.

Heat flux is defined as the amount of heat passing through

the sample cross section per unit time:

J =
1Q
1t · S

. (4)

Combining (3) and (4), we obtain

κ =
1Q
1t · S

lx

2

1

1T
. (5)

Thermal conductivity values are calculated in LAMMPS

based on time averaging of the temperature difference

between the heat source and the heat sink.

Since the studied sample is two-dimensional, we take

distance d ≈ 5.455 Åbetween the phosphorene layers [25]
in a bulk sample as the dimension along the Z axis, so that

S = d · ly . Thus, the armchair thermal conductivity of the

black phosphorene sample is given by

κarmchair = κx =
1Q

1t · ly · d
lx

2

1

1T
, (6)

and its zigzag thermal conductivity is written as

κzigzag = κy =
1Q

1t · lx · d
ly

2

1

1T
. (7)
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Figure 4. Comparison of histograms of the distribution of absolute values of forces acting on an atom for each of the model atoms

(atoms 0−7). White histogram — AIMD data; black histogram — force field calculated by the network trained on data set DS1; red

histogram — force field calculated by the network trained on DS2.

The simulation of thermal conductivity in LAMMPS is

carried out in two stages. At the first stage, the system is

brought to equilibrium at a temperature of 273K: 10 000

steps in
”
heating“ from 0 to 20K using the NVE ensemble

and the Berendsen thermostat with rate adjustments at

each time step; 20 000 steps in heating from 20 to 273K

using the NVE ensemble and the Berendsen thermostat

with rate adjustments every 100 steps; and 10 000 steps

with the temperature maintained at 273K using the NVT

ensemble with rate adjustments every 100 steps. One time

step corresponds to 1 fs. At the second stage, we set the

position of the
”
hot“ and

”
cold“ blocks (heat source and

Technical Physics, 2025, Vol. 70, No. 3
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Figure 5. Comparison of histograms of the distribution of absolute values of forces acting on an atom for each of the model atoms

(atoms 8−15). White histogram — AIMD data; black histogram — force field calculated by the network trained on data set DS1; red

histogram — force field calculated by the network trained on DS2.

sink), use the NVT ensemble with rate adjustments every

100 steps (10 000 steps in total), and calculate the average

temperature difference between the blocks. Averaging is

performed every 200 time steps, the initial data are updated

every 20 steps, and 6 previous values corresponding to the

moments of updating the initial data are used in averaging.

The thermal conductivity values obtained in modeling of

heat transmission along the armchair and zigzag boundaries

are κarmchair ≈ 3W/(m·K) and κzigzag ≈ 11W/(m·K). On

the one hand, thermal conductivity has a pronounced

anisotropy, which has already been reported in a number of

experimental and theoretical studies of black phosphorene.
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Figure 6. Comparison of distributions of absolute values of forces

acting on an atom for all atoms of the model. Blue solid curve

1 — AIMD data; black dotted cure 2 — force field calculated by

the network trained on data set DS1; red dash-and-dot curve 3 —
force field calculated by the network trained on DS2.
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Figure 7. The positioning of the heat source (Hot) and sink

(Cold) regions in modeling of the thermal conductivity of the

sample along the X axis.

On the other hand, the values obtained earlier in [23,24] are
several times smaller. This is likely attributable to the lower

accuracy of the interatomic interaction potential generated

by the SchNet network (compared to the potential generated

by DeePMD).

3. Discussion

It can be seen from Figs. 4−6 that although the potential

model presented by the neural network does, on average,

underestimate the magnitudes of forces acting on atoms in

both cases, the results provided by the model trained on a

set containing 2000 records are largely similar to those of

the model trained on a set containing 100 000 records. This

is likely attributable to the specifics of implementation of the

SchNetPack package. The calculations are organized in such

a way that the learning rate changes only after a full epoch

has passed (when all values from the training set have been

fed to the input of the neural network). Being a crystalline

substance, black phosphorene features a small (compared

to amorphous materials) number of different configurations

that need to be taken into account. The network is trained

by gradient descent, and the learning rate, which determines

the step size in moving toward the minimum of the loss

function, should preferably be recalculated as soon as the

introduction of new data ceases to alter significantly the

loss function value. If the loss function barely changes after

the neural network has been presented with the first few

thousand records, while the learning rate is recalculated

only after the neural network has been presented with

several tens of thousands of records, a significant amount

of unnecessary computational work, which does not lead to

any significant enhancement of accuracy of the prediction of

the force field by the generated model, is performed. The

issue of accuracy of prediction of the interatomic interaction

potential by graph neural networks, of which SchNet is an

example, was examined systematically in [16]. Among other

methods for reducing the force field prediction errors, the

authors of [16] propose the use of ensembles of neural

networks with different architectures or different settings

trained on the same data with subsequent averaging of the

obtained predictions in a certain way. Another option would

be to train a neural network on different subsets from the

training set and process the results in a similar way to how

multiple trees are used in the random forest algorithm.

The calculated thermal conductivity values of black

phosphorene correlate with the results reported by other

research groups. However, the DeePMD network is more

accurate in selecting the interatomic interaction potential

for black phosphorene than SchNet. The developers

of SchNetPack have recently expanded the package by

adding the FieldSchNet, PaiNN, and SO3net [19] networks,
which are built on slightly different principles than SchNet.

Preliminary studies, where the problem of equilibrating a

phosphorene sample was used an example, performed using

the classical molecular dynamics module of the SchNetPack

package with a potential calculated by the PaiNN network

revealed that the sample remains stable, long-range ordering

is preserved, and the amplitude of temperature fluctuations

is significantly smaller than the one obtained with a potential

calculated by the SchNet network. In addition, the simplest

method for calculating thermal conductivity provided by

the LAMMPS package was used in the present study.

The use of other methods should make it possible to

obtain a more accurate value of thermal conductivity of

phosphorene.

Conclusion

The SchNet network was configured and trained to obtain

the interatomic interaction potential of black phosphorene,

and a comparison of histograms of the distribution of

magnitudes of forces acting on an atom corresponding to

different data sets and training methods was performed. The

molecular dynamics method implemented in the LAMMPS
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package was used to bring the system to equilibrium, and

the thermal conductivity of a sample along the
”
armchair“

and
”
zigzag“ boundaries was calculated. Compared to

the data obtained with the potential calculated by the

DeePMD package, the approach used in the present study

yields overestimated values of thermal conductivity in both

directions. The main result is that the SchNet network,

which has previously been used mostly for modeling the

energy and forces of interatomic interactions of small

organic molecules, was found to be applicable in modeling

of the force field of black phosphorene (a two-dimensional

crystalline material), although the accuracy of the resulting

model is lower than that of the model provided by the

DeePMD network.
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W.C. Witt, F. Zills, G. Csányi. arXiv:2401.00096 (2024).
DOI: 10.48550/arXiv.2401.00096

[14] B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C.J. Bartel,

G. Ceder. Nat. Mach. Intell., 5, 1031 (2023).

DOI: 10.1038/s42256-023-00716-3

[15] C. Chen, S.P. Ong. Nature Comput. Sci., 2, 748 (2022).
DOI: 10.1038/s43588-022-00349-3
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