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Simulation of the ultra-short pulses dynamics in a polymer composite

with graphene nanoribbons and metal nanoparticles
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In this paper, we study the evolution of a short-duration two-dimensional and three-dimensional electromagnetic

pulse when it interacts with a composite of a polymer and graphene nanoribbons containing metal nanoparticles

(atoms adsorbed on the graphene surface). Based on the wave equation, taking into account the contributions

of the nanoribbons and polymer to the current, an effective equation for the vector potential of the electric field

of the pulse is obtained. It is found that the introduction of metal adatoms into the polymer matrix causes a

change in the amplitude of the wave propagating in such a system. The parameters of the electromagnetic wave

are analyzed depending on the pulse type (two-dimensional and three-dimensional), the type of metal particle, and

the concentration of the polymer in the composite.
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Introduction

In recent decades, the unique properties of carbon-based

nanostructures have been used actively in entirely differ-

ent areas of scientific research and advanced technology

(semiconductor, optoelectronic, etc.). Specifically, one of

the priority tasks in nonlinear optics is the selection of a

material that would provide certain desired parameters of

electromagnetic pulses. Carbon nanotubes (CNTs) [1,2] and
other graphene-like materials (graphene ribbons, silicene,

germanene) [3] are promising candidates in this context.

For example, the possibility of stable propagation of pulses

containing several oscillations of the electromagnetic field

(in most cases, 1–3 oscillations; such pulses are often

called extremely short ones, ESPs) in such structures was

demonstrated in [4,5]. This is achieved due to the balance

of dispersion and nonlinearity of the system. It was

demonstrated that the magnitude of spin-orbit interaction

has a significant influence on the evolution of ESPs.

A pressing problem in this case is the determination of

purity of a material, which often contains various inclusions,

including metal (platinum, gold, silver, etc.) nanoparticles.

The physical and chemical properties of nanoparticles differ

from those of the materials from which they were obtained.

A large number of metal and metal oxide nanoparticles have

already been synthesized, and their unique electrical, mag-

netic, optical, and catalytic properties make them sought-

after in various fields of science and technology. Specifically,

they may be used separately or in combination with other

nanostructures in biosensors to enhance the signal, raise

the sensitivity and detectivity, and perform quantitative

determination of various biomolecules [6]. Hybrids of

noble metal nanoparticles and carbon nanotubes are used

as electrocatalysts for fuel cells [7]. It is worth noting that

such impurities may alter the energy spectrum of carbon

nanostructures [8,9] and, consequently, their properties; in

general, they exert both a positive influence and a negative

one. This is what makes the study of this influence on the

characteristics of a pulse important.

The use of carbon nanomaterials in the design of various

optoelectronic components, including ultra-compact opto-

electronic filters [10], optoelectronic integrated circuits [11],
photonic emitters [12], etc., is also worthy of note.

In the present study, we examine the dynamics of a short-

duration infrared laser pulse interacting with a polymer

composite with graphene nanoribbons [13] that contain

metallic impurities. A model developed earlier, which needs

to be modified to factor in the presence of polymers in the

medium, is used for calculations.

Nanoribbons are quasi-one-dimensional materials with a

honeycomb structure with a width of several atoms [14].
From an application point of view, a variety of methods

for synthesis of a large number of two-dimensional mono-

layer materials are available at present. Different types

of nanoribbons, such as silicene, boron nitride, gallium

oxide, graphene ones, etc., have already been examined

in detail. The present study is focused on graphene

nanoribbons [15], which are a monolayer of s p2-hybridized

carbon atoms arranged in two-dimensional lattices with an

aspect ratio of more than one hundred that have significant

interphase regions and edge regions. As for the methods of

production of graphene nanoribbons, two main approaches

may be distinguished: top-down synthesis and bottom-

up synthesis, which include chemical techniques, plasma

etching, lithography, etc. [16,17]. In addition to graphene

processing, CNT unwrapping is also used [18].
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Figure 1. a — schematic diagram of the system geometry; b — fragment of a graphene nanoribbon with a layer of metal particles, which

are represented by red circles (top view); red lines indicate the bonds between metal adatoms.

Graphene nanoribbons have a variety of practical applica-

tions; however, since graphene has no band gap, it cannot

be used in optoelectronic devices [19]. One of the methods

for increasing the band gap is doping with various types of

impurities, including metallic ones.

It is worth noting that the use of the composite is

made feasible by the need to obtain a given geometry

of graphene nanoribbons with a specific orientation and

distances between them. This may be achieved both in

the process of formation of the composite and after the

introduction of nanoribbons into the polymer matrix with

the application of such external inputs as electric and

magnetic fields, mechanical deformation (compression and

stretching), or catalysts [20–23]. It has been demonstrated

numerous times that graphene nanoribbons may be aligned

in a polymer matrix to form composites. It was found

that such hybrid forms have better mechanical strength,

electrical conductivity, thermal stability, and rheological

characteristics.

Note also that the evolution of electromagnetic pulses in

CNTs with polymers (thin composite films [26] included, al-
though without metallic impurities) in two-dimensional [24]
and three-dimensional [25] cases has already been studied.

Therefore, in the present study, we focus on the effects that

manifest themselves in the behavior of an extremely short

pulse and are caused by the presence of metal nanoparticles

(atoms adsorbed on the graphene surface) in a composite

of graphene nanoribbons with a polymer; in other words,

we examine the influence of metal adatoms on the pulse

characteristics.

1. Model and basic equations

Let us consider the propagation of an extremely short

optical pulse in a medium with a polymer containing

graphene nanoribbons with zigzag-type boundaries. The

composite material is positioned in the path of the laser

pulse in such a way that the electric field strength vector and

vector potential A(x , z , t) are directed at an angle of 90◦

to the nanoribbon plane (Oy), while the wave vector is

oriented parallel to axis Oz (Fig. 1). Note that nanoribbons

are assumed to be single-layer in our model. Such ribbons

may be obtained, e.g., by electron lithography, wherein

graphene is cut into pieces [27], or from two-layer CNTs

unzipping in the process of ultrasonic treatment [28]. We

examine the adsorption of nickel and copper atoms on a

graphene nanoribbon with metal particles forming a single

layer of closely packed adatoms. Notably, nickel adatoms

interact strongly with a graphene nanoribbon (stronger
hybridization), while copper adatoms interact weakly. The

structure of nanoribbons is regular without deformations;

defects are induced by the presence of metallic impurities,

which leads to a change in the Hamiltonian parameters.

The Hamiltonian characterizing the electronic properties

of a graphene nanoribbon takes the form [29,30]

H = Hkin + Hpot + Hint + HR, (1)

where Hkin is the kinetic energy of electrons, Hpot is the

potential energy, Hint is the exchange interaction, and HR is

the Rashba spin-orbit interaction. The constituent parts of

the Hamiltonian are

Hkin = ~vD(τ kxσx + kyσy ),

Hpot = 1bgσz s0,

Hint = λA
σz + σ0

2
s z + λB

σz − σ0

2
s z ,

HR = λR(τ σx sy − σy sx ), (2)

where kx , ky are the electron wave function components;

vD is the velocity of electrons in the vicinity of the Dirac
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point; τ = ±1 with account for the valley sign for Dirac

points; 1bg is the band gap half-width; λA, λB are the

exchange interaction constants for sublattices A and B of a

two-dimensional graphene sheet; λR is the Rashba spin-orbit

interaction constant; σi (i = x , y, z ), s i (i = x , y, z ) are the

Pauli matrices in spin and lattice spaces; and σ0, s0 are unit

matrices in the corresponding spaces.

The chosen values of the interaction constants of Hamil-

tonians Hint and HR and the 1bg value corresponded to the

case when a metal adatom is located above a carbon atom of

sublattice A. Therefore, the coupling with this sublattice is

assumed to be stronger compared to that with sublattice B .

It is known that the Rashba spin-orbit interaction constant

for the graphene plane is close to zero; however, an energy

gap opens in the spectrum when impurities are present,

and λR increases significantly [31].
Total energy operator (1) was then presented in matrix

form:

H =









α 0 a b
0 β s a

a∗ s∗ γ 0

b∗ a∗ 0 δ









,

α = 1bg + λA, β = 1bg − λA,

γ = −1bg − λB , δ = −1bg − λB ,

a = ~vD(τ kx − iky ), b = iλR(1− τ ),

s = iλR(1 + τ ) (3)

and the eigenvalue problem was solved using the

Descartes−Euler method [32]:

ε1,2,3,4 =
√

z 1 ±
√

z 2 ±
√

z 3,

z i = w i −
p
6
, w1 = M1 + M2,

w2,3 = −M1 + M2

2
± i

√
3

M1 − M2

2
,

M1 =
3

√

−0.5q1 +
√

Q1, M2 =
3

√

−0.5q1 −
√

Q1,

Q1 =

(

p1

3

)3

+

(

q1

2

)2

, p1 = − p2

12
+

p2 − 4r
16

,

q1 =
p
6

(

p2

18
− p2 − 4r

16

)

− q2

64
,

p = −3F2

8
+ B, q =

F3

8
− FB

2
+ C,

r = −3F4

256
+

F2B
16

− FC
4

+ D,

F = −(α + β + λ + δ),

B = αβ + (α + β)(γ + δ) + γδ − 2|a |2 − |b|2 − |s |2,
C = −αβ(γ + δ) − γδ(α + β) + |s |2(α + δ) + |b|2(β + γ),

D = αβγδ − αγ|a |2 − αδ|s |2 + |a |4 − a2b∗s∗

− |a |2βδ − |b|2βγ − (a∗)2bs + |b|2|s |2. (4)

The equation characterizing the propagation of an ex-

tremely short pulse may be written as follows:

1A− εm

c2

∂2A

∂t2
+

4π

c
j(A) = 0. (5)

Here, A is the vector potential of the electric field, c is the

speed of light, εm is the permittivity of the medium, j is

the electric current density, and 1 is the Laplace differential

operator.

In the present study, we consider the two-

dimensional case with vector potential assuming the form

A =
(

0, A(x , z , t), 0
)

; therefore, the current density will

have only one non-zero y component.

Since the polymer matrix is a composite of a polymer

with graphene nanoribbons, the current density has two

components:

j(A) = j1(A) + j2(A), (6)

where j1, j2 are the contributions of graphene nanoribbons

and polymers to the electric current, respectively.

In the low-temperature approximation, the expression for

current density j1 is written as

j1 = e

h
∫

−h

h
∫

−h

d px d py vy

(

px , py −
e
c

A(x , z , t)

)

,

vy(px , py) = ∂E(px , py )/∂ py , (7)

where vy(px , py ) is the velocity of electrons; px , py are the

electron momentum components; e is the electron charge;

and E(px , py ) is the electron dispersion law determined

according to expression (4).

Limits of integration h over a rectangular region are

determined based on the equality of the number of particles

that follows the Fermi−Dirac distribution:

h
∫

−h

h
∫

−h

d px d py =
x

1stBZ

d px d py〈a+
px ,py

, a px ,py 〉, (8)

where 1st BZ denotes the first Brillouin zone;

a+
px ,py

, a px ,py are the creation and annihilation operators

for electrons; and 〈. . .〉 denotes averaging with the density

operator.

The second component of current density j2 was calcu-

lated similarly to the calculation of current in a system of

quantum dots with hopping conductivity [33]. This model

was detailed and validated for polyacetylene in [34]:

j2 = eγ0
3d
2~

χpol sin

(

aPOLeA
c

)

, (9)

γ0 = 2.7 eV, d = 0.142 nm, aPOL — length of a carbon

bond in a polymer, and χpol defines the concentration of

electrons in the polymer.
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2. Results of numerical modeling:
two-dimensional case

The obtained Eq. (5) was solved with (7) and (9)
taken into account using the finite difference numerical

method [35] with standard stability conditions. The initial

condition for an extremely short pulse consisting of a single

field oscillation was specified in the form of a Gaussian

function:

A(x , z , 0) = Am exp

(

− z 2

γ2
z

)

exp

(

− x2

γ2
x

)

,

dA(x , z , 0)
dt

=
2Am zvz

γ2
z

exp

(

− z 2

γ2
z

)

exp

(

− x2

γ2
x

)

. (10)

Here, Am is the pulse amplitude; vz = 0.95c is the pulse

velocity at time point t = 0 (in units of the speed of light);
and γz , γx define the pulse width in the specified directions

(6µm and 16.5µm).
Numerical modeling was performed with the follow-

ing parameters: the polymer (polyacetylene) matrix was

1× 1× 1 cm in size, the polymer concentration was close

to 75%, z = 0 corresponded to its location (origin) and the

point of entry of a pulse into the composite, the approxi-

mate width of graphene nanoribbons was 20 nm, and the

distance between them was 0.2µm. The parameters of the

Hamiltonian in formula (3) were as follows: for Ni nanopar-

ticles — 1bg = 29.5meV, λR = 4.9meV, λA = 60.8meV,

λB = 8.9meV, for Cu — 1bg = 7.9meV, λR = 1.6meV,

λA = 1.97meV, λB = 0.16meV [31]. The distance between

the particle layer and the graphene nanoribbon was 0.306

and 0.312 nm for Ni and Cu, respectively. The electric field

strength of an extremely short pulse at the initial moment

of time (maximum value) was 5 · 107 V/m.

The intensity of the electric field of the pulse was

determined as

I ∝ E2,

E = −1

c
∂A
∂t

. (11)

Figure 2 presents the variation of intensity of a two-

dimensional extremely short optical pulse in the process

of its propagation through the composite with graphene

nanoribbons and nickel nanoparticles.

According to Fig. 2, the pulse motion is fairly localized,

and the spatial shape is preserved. At the same time, the

front edge is distorted significantly, and the formation of

several peaks following the main one is observed.

Figure 3 illustrates the features of behavior of an

extremely short optical pulse induced by different types of

nanoparticles.

It can be seen that the pulse shape and the front curvature

depend strongly on the presence/lack of nanoparticles. It is

worth noting that the specific type of metal particles has a

less significant effect on the shape of a pulse than on its

intensity.

The dependence of characteristics of an extremely short

pulse on the polymer concentration is shown in Fig. 4.

The obtained dependences suggest that an increase in

polymer concentration in the composite leads to a stronger

pulse spreading compared to propagation in a medium

containing graphene nanoribbons outside of the polymer

matrix. On the one hand, the use of a polymer makes it

convenient to work with nanoribbons; on the other hand, it

leads to more profound changes in the pulse characteristics

relative to the original parameters. Therefore, this effect

should be taken into account in synthesis of composites.

3. Results of numerical modeling:
three-dimensional case

The wave equation for the vector potential may be written

in this case in a cylindrical coordinate system:

εm

c2

∂2A
∂t2

−1

r
∂

∂r

(

r
∂A
∂r

)

− ∂2A
∂ϕ2

−∂2A
∂z 2

=
4π

c

(

j1(A)+ j2(A)
)

,

r2 = x2 + y2, ϕ = arctg

(

y
x

)

. (12)

Here, the vector potential of the momentum field is given

by

A =
(

0, A(x2 + y2, z , t), 0
)

.

The third term in Eq. (12) containing the second

derivative with respect to angle ϕ may be neglected, since

the smallness of the accumulated charge (according to

the estimates made in earlier studies, the contribution of

the accumulated charge does not exceed 2% of the total

contribution to the current value) ensures a cylindrical

symmetry of the electric field of the pulse [36].
The initial condition was chosen as in the two-

dimensional case (with allowance for the transition to a

cylindrical coordinate system):

A(r2, z , 0) = Am exp

(

− z 2

γ2
z

)

exp

(

− r2

γ2
r

)

,

dA(r2, z , 0)
dt

=
2Am zvz

γ2
z

exp

(

− z 2

γ2
z

)

exp

(

− r2

γ2
r

)

, (13)

where γz = 3µm and γr = 6µm is the pulse width along

coordinate r .
The dynamics of intensity variation of a three-dimensional

extremely short electromagnetic pulse is presented in Fig. 5.

As in the 2D case, the pulse propagating through the sam-

ple undergoes broadening and a reduction in amplitude due

to the emergence of peaks of slightly different magnitudes.

Notably, its front is not distorted.

The pulse characteristics for hybrids with and without

different nanoparticles were also investigated. It was found

that the polymer composite with metal nanoparticles pro-

vides a more localized propagation of a three-dimensional

pulse than the composite without them. An increase in the
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Figure 2. Intensity of the electric field of a two-dimensional electromagnetic pulse propagating through the composite with graphene

nanoribbons containing nickel nanoparticles at different points in time: a — t = 3.0 · 10−13 s; b — t = 5.0 · 10−13 s; c — t = 7.0 · 10−13 s;

d — t = 9.0 · 10−13 s. The coordinate scales units correspond to 2 · 10−5 m. The color scale represents the intensity normalized to the

maximum level for all panels (a–d).
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Figure 3. Intensity of the electric field of a two-dimensional electromagnetic pulse propagating through the composite with graphene

nanoribbons containing metal nanoparticles at time t = 9.0 · 10−13 s for different nanoparticles: a — Ni; b — Cu; c — CNTs without

impurities. The coordinate scales units correspond to 2 · 10−5 m. The color scale represents the intensity normalized to the maximum

level for all three panels (a–c).
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Figure 4. Intensity of the electric field of a two-dimensional electromagnetic pulse propagating through the composite with graphene

nanoribbons containing Ni nanoparticles at time t = 9.0 · 10−13 s for different polymer concentrations: a — χpol = 0; b — χpol = 0.5;

c — χpol = 0.8. The coordinate scales units correspond to 2 · 10−5 m. The color scale represents the intensity normalized to the maximum

level at χpol = 0.
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Figure 5. Intensity of the electric field of a three-dimensional electromagnetic pulse propagating through the composite with graphene

nanoribbons containing nickel nanoparticles at different points in time: a — t = 3.0 · 10−13 s; b — t = 5.0 · 10−13 s; c — t = 7.0 · 10−13 s;

d — t = 9.0 · 10−13 s. The coordinate scales units correspond to 2 · 10−5 m. The color scale represents the intensity normalized to the

maximum level for all panels (a–d).

polymer concentration affects the magnitude of the
”
tail“

following the pulse: the more graphene nanoribbons in the

composite, the smaller the
”
tail.“

Conclusion

(1) A model characterizing the effect of metal nanopar-

ticles on the dynamics of 2D and 3D electromagnetic

pulses propagating in a polymer composite with graphene

nanoribbons was constructed.

(2) It was demonstrated that the presence of metal

nanoparticles in graphene nanoribbons in the composite

material may be detected by examining the spatial and

energy characteristics of a pulse.

(3) It was found that the proportion of polymer in the

composite has a significant influence on the dynamics of an

extremely short optical pulse. Notably, the front of a two-

dimensional pulse is curved more strongly as this proportion

increases. At the same time, the introduction of metal

nanoparticles into the polymer composite with graphene

nanoribbons allows one to suppress this effect.

(4) In the case of a three-dimensional extremely short

optical pulse, the proportion of polymer in the composite

was found to control the magnitude of the
”
tail“ moving

behind the main pulse.

Acknowledgments

The author wishes to thank Prof. M.B. Belonenko for

long-term support, fruitful discussions, and useful advice.

Funding

This study was carried out under state assignment of the

Ministry of Science and Higher Education of the Russian

Federation (project
”
FZUU-2023-0001“).

Conflict of interest

The author declares that she has no conflict of interest.

Technical Physics, 2025, Vol. 70, No. 3



International Conference
”
Nanocarbon and Diamond“ (N&D’2024) 447

References

[1] P. Harris. Carbon Nanotubes and Related Structures. New

Materials for the Twenty-First Century (Cambridge Univ.

Press, 1999).
[2] N.N. Konobeeva, E.G. Fedorov, N.N. Rosanov, A.V. Zhukov,

R. Bouffanais, J. Appl. Phys., 126, 203103 (2019).
DOI: 10.1063/1.5128365

[3] A. Molle, C. Grazianetti, L. Tao, D. Taneja, Md.H. Alam,

D. Akinwande. Chem. Soc. Rev., 47, 6370 (2018).
DOI: 10.1039/C8CS00338F

[4] A.V. Zhukov, R. Bouffanais, N.N. Konobeeva, M.B. Belo-

nenko. Phys. Lett. A, 380 (38), 3117 (2016).
DOI: 10.1016/j.physleta.2016.07.021

[5] N.N. Konobeeva, M.B. Belonenko. Tech. Phys. Lett., 43 (4),

386 (2017). DOI: 10.1134/S106378501704023X
[6] S. Malik, J. Singh, R. Goyat, Ya. Saharan, V. Chaudhry,

A. Umar, A.A. Ibrahim, S. Akbar, S. Ameen, S. Baskoutas.

Heliyon, 9 (9), e19929 (2023).
DOI: 10.1016/j.heliyon.2023.e19929

[7] Q.T. Phan, K.Ch. Poon, H. Sato. Intern. J. Hydrogen Energy,

46 (27), 14190 (2021). DOI: 10.1016/j.ijhydene.2021.02.006
[8] L. Shang, T. Bian, B. Zhang, D. Zhang, L.Z. Wu,

C.H. Tung, Y. Yin, T. Zhang, Angew. Chem., 53, 250 (2014).
DOI: 10.1002/anie.201306863

[9] J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang,

Z. Zhang. Nanoscale, 2, 2733 (2010).
DOI: 10.1039/C0NR00473A

[10] A. Tavousi, M.A. Mansouri-Birjandi, M. Janfaza. Appl. Opt.,

57 (20), 5800 (2018). DOI: 10.1364/AO.57.005800
[11] Y. Liu, S. Wang, H. Liu, L.-M. Peng. Nature Commun., 8, Art.

N 15649 (2017). DOI: 10.1038/ncomms15649

[12] Y. Wang, G. Sun, X. Zhang, X. Zhang, Z. Cui. Adv. Electronic

Mater., 10 (10), 2400124 (2024).

DOI: 10.1002/aelm.202400124

[13] S. Majumder, A. Meher, S. Moharana, K.H. Kim. Carbon,

216, 118558 (2024). DOI: 10.1016/j.carbon.2023.118558
[14] C. Tian, W. Miao, L. Zhao, J. Wang. Rev. Phys., 10, Art.

N 100082 (2023). DOI: 10.1016/j.revip.2023.100082
[15] A.P. Johnson, C. Sabu, N.K. Swamy, A. Anto, H.V. Gan-

gadharappa, K. Pramod. Biosens. Bioelectron., 184, Art.

N 113245 (2021). DOI: 10.1016/j.bios.2021.113245
[16] P.V. Fedotov, D.V. Rybkovskiy, I.V. Novikov, E.D. Obraztsova.

Phys. Status Solidi, 259, Art. N 2100501 (2022).
DOI: 10.1002/pssb.202100501

[17] S. Jeon, P. Han, J. Jeong, W.S. Hwang, S.W. Hong. Nanoma-

terials, 11 (1), 33 (2021). DOI: 10.3390/nano11010033
[18] Z. Zhang, A. Fraser, S. Ye, G. Merle, J. Barralet. Nano Futur,

3, Art. N 42003 (2019). DOI: 10.1088/2399-1984/ab4eff
[19] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov,

A.K. Geim. Rev. Mod. Phys., 81, 109 (2009).
DOI: 10.1103/RevModPhys.81.109

[20] R.J. Castellano, C. Aki, G. Giraldo, S. Kim, F. Fornasiero,

J.W. Shan. J. Appl. Phys., 117, 214306 (2015).
DOI: 10.1063/1.4921948

[21] F. Bondino, E. Magnano, R. Ciancio, C. Castellarin Cudia,

A. Barla, E. Carlino, F. Yakhou-Harris, N. Rupesinghe,

C. Cepek. Phys. Chem. Chem. Phys., 19, 32079 (2017).
DOI: 10.1039/C7CP05181F
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