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Brillouin-Mandelstam scattering in weakly disordered nanoparticles
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Utilizing the earlier elaborated general approach we undertook the comprehensive analisys of model light

scattering spectra in arrays of nanoparticles on nonpolar crystals within Brillouin-Mandelstam and Raman channels.

It is shown that the light scattering by acoustic phonons could serve as an independent tool with respect to the

main Raman one providing us with additional experimental information – particularly, about the properties of

nanoparticles sufaces.
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Introduction

The significant progress achieved over the last two

decades in physicochemical studies of nanosystems and,

especially, in their numerous and diverse high-tech appli-

cations has drawn close attention to the development of

reliable methods for monitoring the properties, standardiza-

tion, and certification potential of these systems. For all the

richness and diversity of such systems, of particular interest

are zero-dimensional objects — nanoparticles (see, e.g.,

review [1] and references therein). This is attributable both

to the relative simplicity of their production (e.g., in the form

of quantum dots, including semiconductor ones; crystalline

nanopowders, such as much-studied nanodiamonds, includ-

ing detonation ones; suspensions; etc.) and to a variety

of potentially applicable exotic properties of nanoparticles

distinguishing them from a macroscopic solid, which stem

primarily from their high surface/volume ratios and the

dimensional quantization of certain physical quantities (e.g.,
momentum) in these systems.

Various methods are used at present to examine the

properties of nanoparticles and their arrays; in this con-

text, optical methods, being non-destructive, accurate, and

relatively inexpensive, appear to be particularly promising.

Owing to the extreme smallness of the objects being

studied, the optical effect best suited for such research

is Raman scattering. Specifically, the approach to pro-

cessing of Raman spectra of weakly disordered nonpolar

nanocrystals (primarily nanodiamonds) developed in our

recent studies [2,3] provided an opportunity to extract such

parameters as the size of particles in a nanopowder, their

dispersion and shape, and the degree of their contamination

from experimental data with high accuracy. In addition, this

approach provided an opportunity to explain theoretically

the known experimental 1/L dependence of the Raman

peak width on the particle size, which was observed by

Yoshikawa [4]. In this case, the magnitude of broadenings

matching those observed experimentally for relatively pure

diamonds was provided by the mere inclusion of disorder

in the form of a small concentration of point defects (see
below) that corresponds, in particular, to the experimentally

measured concentrations of nitrogen and NV- defects in

diamond nanoparticles. A very close fit to the experimental

data for particles in the nanometer range was obtained

within this approach (see the references in [5]); in fact,

it is much better than the one provided by the widely used

empirical method of phonon confinement [6,7].

As for Brillouin-Mandelstam (BM) scattering in nanopar-

ticles, it cannot be said that the corresponding experiments

have not been performed at all (see, e.g., [8,9]), but they are

much less numerous than Raman ones. BM scattering is

traditionally used to study the physicochemical structure of

matter, while the Raman effect is used primarily to examine

collective excitations of solids.

The present study was motivated by the publishing of

report [9] containing detailed data on BM scattering in

nanoparticles and by the opinion expressed in [8,9] that

Raman scattering of acoustic phonons in nanoparticles may

be used to study them and is potentially even better suited

for this than the common Raman effect. We thought it

appropriate to carry out an in-depth analysis of BM spectra

similar to the one performed for the Raman effect [2,3]
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Figure 1. Raman (a) (taken from [13]) and BM (b) phonon spectra of a cubic particle. Active modes contributing to the corresponding

experimental peaks are shown in red. In the Raman case, the structure of active modes is richer; a separate high-lying mode, which

provides 2/3 of the total intensity, and a quasi-band separated from it, which is responsible for the asymmetry of the Raman peak, are

seen. The BM spectrum has several active modes, and their properties are discussed in the text.

and compare the capabilities of both approaches. The

verdict of our analysis is as follows: the specifics of

BM scattering make it useful in certain aspects where

Raman scattering provides a rather rough description of

the dynamics of vibrational modes and, consequently, the

structure of nanoparticles. Therefore, a BM experiment

may serve as an informative complementary method and,

combined with Raman spectroscopy, provide more complete

and detailed data on nanoparticles and their arrays.

1. Phonon spectra.
”
Active“ and

”
silent“

modes

Let us start our comparative analysis by calculating the

vibrational eigenmodes in the optical (Raman) and acous-

tic (BM) cases. A significant difference becomes evident

right from the onset. In the Raman case, eigenmodes are

found both within the atomistic (discrete) theory via the

dynamic matrix diagonalization method (DMM) [2] and

within the continuum approach by solving the Dirichlet

problem for the Klein–Fock–Gordon equation in Euclidean

space (EKFG) [3] for a particle. As for the acoustic

mode, only the first option remains well-defined at an

arbitrary particle shape. The continuum theory needs to be

supplemented by Neumann-type conditions for the radial

part of derivative of the eigenfunction at the boundary

of the region where, in the general case, modes (and
polarizations) become entangled and, consequently, the

boundary conditions are ambiguous for all particle shapes

except the spherical one. Therefore, we rely mostly on

DMM in subsequent calculations, but borrow the notation

from the spherical continuum problem. Details of the

solution of the mathematical problem of vibrational modes

of a spherical particle in the elastic continuum model, the

notation of these modes stipulated by symmetry arguments,

and an account of the application of this model to the

problem of BM scattering were provided in [10–12].

We investigated numerically a simple cubic lattice with

nearest and next-nearest neighbor interactions within the

”
mass on springs“ model. Figure 1 shows the phonon

spectra for the Raman and BM problems. It is clear that

the spectrum is quite rich in both cases. At the same

time, most eigenfrequencies do not contribute to the optical

response, since their matrix elements of interaction with

a photon, which are specified by the squared modulus

of the eigenfunction (or its derivative) integrated over the

volume of a nanoparticle, are close to zero for symmetry

reasons. Let us consider, for example, the spectra of

active modes of cubic and spherical particles in Fig. 2.

Only two modes, which are identified as the first breathing

(B-mode with azimuthal quantum number l = 0) and the

first quadrupole (Q-mode with l = 2) vibrational modes of

a spherical particle, make a significant contribution to the

intensity; therefore, the other three lines in the figure (these
are satellites of the first breathing and quadrupole modes)
may be neglected at the start. It is proven below that the

notation of eigenmodes of a sphere may be transferred with

little to no changes to particles with a small number of

faces (at least for Platonic and Archimedean solids).

2. Dependence of frequencies on the
shape and size of particles

It is easy to plot similar graphs for particles with a

number of faces falling within the range between a cube

and a sphere. We did this for particles in the form of an

octahedron with p = 8 faces and a truncated octahedron

with p = 14. The phenomena we observed in the process

of examination of a cube and a sphere (as p decreases, the

frequencies of Q- and B-modes converge, the intensity is

transferred from the breathing mode to the quadrupole one,
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Figure 2. Active BM modes of the spectrum of a cubic particle (red solid curve) (a) and comparison of active modes of a cubic (red
solid curve) and spherical (black dotted curve) particles (b); the curves are broadened artificially for clarity. In both cases, the breathing

mode is located to the right of the quadrupole one. It is evident that the position of the quadrupole mode is almost independent of the

particle shape, although its intensity decreases slightly with an increase in the number of faces. At the same time, breathing mode shifts to

the right, and its intensity increases. The total intensity of peaks is determined primarily by the Q-mode for both the cube and the sphere;

in the latter case, a second quadrupole doublet is added to the first one.
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Figure 3. Dependence of frequencies of active Q-modes of nanoparticles on the shape (a) and size of a (cubic) particle (b). Here, N is

the particle volume. To demonstrate the scale of the dimensional quantization effect and for comparison with the Raman case, the silent

torsional mode (as the lowest-energy mode of the acoustic spectrum) is also shown in panel b.

and the second quadrupole doublet is amplified) were found

to persist at intermediate values of p and are characterized

by a certain function that changes approximately by 12%

with a variation in shape (see Fig. 3, a; for comparison, the

frequencies of Raman lines vary with shape by 20%). In

other words, a description of non-spherical particles in terms

of modes inherent, strictly speaking, to a sphere only is also

meaningful, since these modes have a common symmetric

origin. The trend toward an increase in significance of

the contribution from higher quadrupole harmonics with an

increase in the number of nanoparticle faces is preserved in

this case.

Another important dependence, which was confirmed

numerically, is the inverse dependence of frequencies of

active modes on particle size L that follows from the

acoustic nature of these excitations (see Fig. 3, b):

ωn,l(L, p) ≈ u(p, n, l)a−1(a/L), (1)

where n is the principal quantum number of the mode, u is

its velocity, a is the lattice constant, and L is the nanoparticle

size (in the case of a cubic particle, the cube edge length).
Note that formula (1) provides an opportunity to determine

experimentally the size of nanoparticles based on the BM

peak position.

3. Broadening of phonon lines due to
disorder

The processes of scattering of optical phonons by spatial

inhomogeneities of a crystal played a significant role in

the formation of the Raman peak.
”
Disorder“ was (and

is) understood as the following model scenarios: (a) rare

point mass defects at sites, both strong (the mass of a

defect atom differs greatly from the mass of carbon) and

weak, where the rarity of defects (lack of interference

between the events of scattering by individual defects) is

ensured by the smallness of dimensionless disorder strength

Technical Physics, 2025, Vol. 70, No. 3
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Figure 4. Density of states of weakly disordered acoustic modes in a nanoparticle with bulk weak (a), fairly strong (S = 0.04) (b), and
surface (10% of surface vacancies) (c) disorder.

parameter S ≪ 1 (note that a value of S ∼ 0.003 already

provides fairly large Raman peak widths compatible with

the experimental ones); (b) the same scenario with a point

interatomic bond defect (
”
spring“) Ki j ; (c) extended and

resonance defects, still with a small value of S ≪ 1 due to

the smallness of concentration. Such media are referred to

as
”
weakly disordered“ ones. It is evident that the effects

of diamond amorphization are beyond the scope of analysis,

since the concentration of inhomogeneities in this case is on

the order of unity, although the amplitude of scattering by a

single defect may be small.

A fairly strong attenuation of phonons in a weakly

inhomogeneous medium ensured a finite peak width that is

comparable to the experimental one [4,13,14]. The primary

contribution was provided by bulk disorder, while the

surface of nanoparticles produced only a small subleading

contribution [13,14]. Scattering by disorder has been

examined in [13,14] both analytically and numerically, and

an impressively accurate agreement between these two

approaches was achieved.

And what of the broadening of acoustic phonon lines

in the case of BM scattering? Let us first consider

analytically the scattering of acoustic phonons by point mass

defects distributed in the bulk of a nanoparticle. As in

Raman scattering, two scenarios, which differ somewhat

in the computational approach, should be distinguished:

the case of non-overlapping phonon lines and the case of

a continuous spectrum (where overlapping is provided by

disorder). With separated lines, attenuation Ŵ is given by

Ŵnl ≃ S1/2 (a/L)5/2 f (n, l, p),

where parameter S = nimp(δm/m)2 is a measure of the

disorder strength and f is a certain function that depends

on the shape of nanoparticles and quantum numbers of

the mode and increases rapidly with these numbers (from
values on the order of unity for the first quantum numbers).
Here, nimp is the concentration of point impurities exempli-

fied by substitutional impurities with mass defect δm relative

to mass m of atoms of a regular lattice.

In the contrary case of overlapping levels, we find

Ŵnl ≃ S (a/L)4 g(n, l, p),

where g is another function from the same class as f .
It is evident that, in contrast to optical phonons (which,

to remind [13,14], had Ŵ ∝ S1/2(a/L)3/2 for separated levels

and Ŵ ∝ S(a/L) for overlapping ones), acoustic phonons

feature a weak attenuation due to scattering by bulk

disorder, since it is proportional to higher powers of small

parameter a/L. The results of the numerical experiment

illustrated in Figs. 4, a, b suggest the same conclusion. These

figures present the density of states of disordered acoustic
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Figure 5. Fit to the Raman experiment performed in [9] with

corrected values of fitting parameters.

phonons at two different values of disorder strength S; the
first is extremely small, while the second is so large that

the levels of optical phonons should overlap to the utmost

extent. In the present case, weaker disorder takes the form

of completely separated levels, while the spectrum at the

second (larger) value is just barely starting to overlap at

high quantum numbers. Therefore, bulk disorder has little

effect on the BM spectrum.

The pattern changes significantly if we introduce surface

defects into analysis. This case is presented in Fig. 4, c. It

can be seen that even at a relatively low concentration of

surface vacancies, the density of states of acoustic phonons

is a continuous function (levels overlap). Thus, BM spectra

are extremely sensitive to surface disorder, but have a

relatively weak sensitivity to bulk disorder; i.e., the pattern

is the exact opposite of the Raman one. This is why, in

our view, it is beneficial to use these two methods together:

they naturally complement each other.

4. Discussion

Another important aspect of our research should be men-

tioned in conclusion. In the already mentioned study [9],
Stehlik et al. have attempted to fit their experimental data

(the data on Raman scattering in nanoparticles included)
using various theoretical constructs, including our theory

presented in [2,3]. By an unfortunate coincidence, the

parameter values for fitting were taken from an earlier

work [15], where (just once!) an incorrect numerical

multiplier was specified. A fit with corrected parameter

values, which characterizes the experimental data from [9]
much better, is presented in Fig. 5.

The theory presented here will be discussed in detail in a

separate in-depth paper.

Thus, the process of Raman scattering of light by

acoustic phonons (BM effect) in weakly disordered crys-

talline nanoparticles (i.e., at low defect concentrations) was

analyzed and modeled thoroughly. Optically active phonon

modes (breathing and quadrupole ones) were identified, and
the dependences of frequencies and intensities of their lines

on the size and shape of nanoparticles were analyzed. It

was demonstrated that the broadening of phonon lines of

these modes is largely insensitive to bulk disorder in a

particle, but depends strongly on surface defects. Thus,

BM scattering may serve as an experimental nanoparticle

examination technique complementary to the Raman effect.
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