05

Механические характеристики алюминиевых сплавов морского класса при высоких скоростях деформации

© Г.Г. Савенков,^{1,2} Т.И. Сычёва,² Е.В. Щукина,² В.Вас. Баландин,³ А.М. Брагов³

¹Санкт-Петербургский государственный технологический институт (технический университет),
 ¹90013 Санкт-Петербург, Россия
 ²Концерн "МПО-Гидроприбор",
 194044 Санкт-Петербург, Россия
 ³Нижегородский государственный университет им. Н.И. Лобачевского,
 603950 Нижний Новгород, Россия
 e-mail: sav-georgij@yandex.ru

Поступило в Редакцию 4 февраля 2025 г. В окончательной редакции 17 марта 2025 г. Принято к публикации 11 апреля 2025 г.

Представлены результаты экспериментальных исследований динамических характеристик алюминиевых сплавов 1561 и 1575-1 при скоростях деформации $\sim 10^3$ и $\sim 10^4$ s⁻¹. Испытания при скорости деформации 10^3 s⁻¹ проведены на установке, реализующей методику разрезного стержня Гопкинсона. Испытания при скорости деформации 10^4 s⁻¹ проведены на установке с реализацией метода плоского соударения ударника с мишенью (образцом) путем регистрации скорости свободной поверхности образца интерферометром VISAR. Рассмотрена структура плоских образцов после испытаний. Установлено, что рельеф разрушенной поверхности при высоких скоростях удара (> 300 m/s) образован за счет хаотического слияния пор и трещин расслоения различной формы.

Ключевые слова: алюминиевые сплавы, разрезной стержень Гопкинсона, откольная прочность, динамическая прочность, микроструктура.

DOI: 10.61011/JTF.2025.08.60900.16-25

Введение

Современные корпусные конструкции, изготовленные из новых и инновационных материалов, часто функционируют в условиях высокоскоростного (взрывного, ударного) воздействия. Поэтому перед конструкторами и инженерами, занимающимися вопросами разработки и эксплуатации подобных изделий, как правило, стоят две задачи. Либо обеспечение функционирования конструкции, либо организация управляемого процесса разрушения. И в том, и в другом случае требуется знание характеристик материалов при высоких скоростях деформации, которые присущи взрывным и ударным воздействиям. При этом желательно охватить как можно более широкий диапазон скоростей деформации, например, от 10^3 до 10^5 s⁻¹. Нижний предел $(10^3$ s⁻¹) характерен для ударов с небольшой скоростью (менее 100 m/s), верхний (10^5 s^{-1}) — для высокоскоростных ударов ($\sim 1000 \text{ m/s}$) и взрывных нагрузок.

В настоящее время существуют несколько методов определения динамических характеристик, наиболее распространенные из них — метод Кольского с реализацией в методике разрезного стержня Гопкинсона (РСГ) и метод высокоскоростного нагружения плоских мишеней (испытуемых образцов) в условиях одноосной деформации [1,2].

В рамках первого метода можно получить механические характеристики материала как при растяжении, так и при сжатии. В рамках второго — только при растяжении, и при этом определяется только одна механическая характеристика — критическое напряжение разрушения: или откольная стойкость (при наличии единичных микротрещин в образце), или откольная прочность (при наличии в образце магистральной трещины или откольной тарелочки) [3].

Второй метод связан с откольным разрушением материала в волнах нагрузки и разгрузки, которые являются результатом отражения волн сжатия от свободных поверхностей [2,4].

К настоящему времени для большого ряда конструкционных металлов и сплавов, в том числе различных марок алюминия и алюминиевых сплавов, имеется достаточно большой банк (созданный по результатам экспериментов в рамках указанных методов [1–6]) данных по их динамическим характеристикам.

Однако динамические свойства некоторых новых коррозионностойких свариваемых алюминиевых сплавов, применяющихся в конструкциях скоростных судов, кораблей с динамическими принципами поддержания и некоторых других конструкций [7], не исследованы. К таким сплавам относятся среднепрочный сплав 1561 системы Al-Mg и высокопрочный сплав 1575-1 системы Al-Mg–Sc. Последний содержит 0.12%–0.2% Sc [7], что, как известно [8], обеспечивает существенный прирост основных прочностных характеристик, предела те-

Материал	Временное сопротивление σ_b , MPa	Предел текучести <i>o</i> _{0.2} , MPa	Относительное удлинение б5,%	Относительное сужение ψ,%
1561 1575-1	$\begin{array}{c} 345\pm5\\ 400\pm5\end{array}$	$\begin{array}{c} 180\pm5\\ 270\pm5\end{array}$	$\begin{array}{c} 20\pm1.5\\ 17\pm1.5\end{array}$	$\begin{array}{c} 26\pm1\\ 24\pm1 \end{array}$

Таблица 1. Стандартные механические характеристики алюминиевых сплавов при растяжении

Рис. 1. Микроструктура исходных образцов сплава 1561 (a) и 1575-1 (b).

кучести и предела прочности по сравнению со сплавом 1561.

Поэтому, исходя из вышесказанного, настоящая работа посвящена исследованию высокоскоростного деформирования и разрушения указанных сплавов и определению их динамических характеристик.

1. Материалы и методики испытаний

Механические характеристики при растяжении по ГОСТ 1497-23 исследуемых алюминиевых сплавов 1561 и 1575-1 приведены в табл. 1. Испытания проводили на пропорциональных цилиндрических образцах тип III с начальным диаметром $d_0 = 5 \text{ mm}$ и рабочей длиной $l_0 = 5d_0$ на испытательной машине W+b LFM-50.

Металлографические исследования образцов проводили на световом микроскопе "Observier.Z.1m". Травление осуществлялось реактивом Келлера [9]. Микроструктура исходных образцов сплавов представлена на рис. 1.

Сплав 1561 имеет мелкозернистую структуру с незначительными по размеру включениями дисперсных фаз (рис. 1, a).

В отличие от сплава 1561 в сплаве 1575-1 наблюдается более неоднородная структура с крупными интерметаллидами скандиевой фазы Al₃Sc (рис. 1, *b*).

Определение динамических характеристик при скоростях деформации $\dot{\varepsilon} \sim 10^3 \, {
m s}^{-1}$ осуществлялось по методу Кольского с реализацией в методике разрезного стержня

Рис. 2. Образец на растяжение для испытаний на РСГ.

Гопкинсона [1,10,11] на установке РСГ-20 с газовой пушкой ПГ-20, двумя мерными стержнями диаметром 20 mm и комплексом измерительно-регистрирующей аппаратуры.

Образцы для испытаний имели форму, представленную на рис. 2, диаметр рабочей части образца — 5 mm, длина — 10 mm, полная длина образца — 40 mm. Для каждой скорости нагружения испытывалось по три образца, при этом скорость деформации получена с точностью ±5% [12].

Динамическая диаграмма деформирования (растяжения) образца в рамках метода Гопкинсона строилась в координатах "истинное напряжение" (σ_{tr}) — "истинная (логарифмическая) деформация" (ε_{tr}).

Истинное напряжение рассчитывалось по формуле (1), а подсчет логарифмической деформации осуществлялся по формуле (2) [13]:

$$\sigma_{tr} = \sigma(t)(1 + \varepsilon(t)), \tag{1}$$

$$\varepsilon_{tr} = \ln(1 + \varepsilon(t)),$$
 (2)

Рис. 3. Схема установки ПГ-57 для определения откольной прочности.

где $\sigma(t)$ — среднее напряжение в образце в момент времени t, $\varepsilon(t)$ — средняя относительная деформация образца в тот же момент времени t [10].

Определение откольной прочности материалов проводилось на испытательной установке ПГ-57, которая представляет собой газовую пушку с двухдиафрагменным затвором, работающую на сжатом воздухе. Установка позволяет получать скорости соударения от 50 до 500 m/s. Для регистрации скорости свободной поверхности используется интерферометр VISAR. Источником излучения для интерферометра является одномодовый и одночастотный неодимовый лазер Verdy-2 с длиной волны излучения 0.53 nm. Схема установки представлена на рис. 3.

В качестве ударников использовались диски диаметром 52 mm и толщиной 3 mm из алюминиевого сплава той же марки, что и испытуемые образцы (диски диаметром 92 mm и толщиной 6 mm).

Получением откольного импульса считается появление первого минимума зависимости откольной поверхности от времени. По полученной зависимости определяются следующие характеристики: максимальная W_1 и минимальная W_2 скорость свободной поверхности, время падения скорости от максимальной до минимальной.

Максимальные растягивающие напряжения σ_p и скорость деформации $\dot{\varepsilon}$ рассчитываются по формулам (3) и (4):

$$\sigma_p = 0.5\rho_0 c_0 (W_1 - W_2), \tag{3}$$

$$\dot{\varepsilon} = \frac{1}{c_0} \frac{\partial W_1}{\partial t},\tag{4}$$

где ρ_0 — плотность материала образца (для исследуемых материалов составляет 2650 kg/m³), объемная скорость звука (5240 m/s). Как отмечалось выше, при наличии магистральной трещины внутри образца (наличии откола), которую обнаруживают при разрезании образца, максимальные растягивающие напряжения σ_p соответствуют откольной прочности, в противном случае

(единичные трещины) характеризуют откольную стойкость [3]. В целом σ_p является характеристикой прочности материала при скоростях деформации $10^4 - 10^5 \text{ s}^{-1}$.

2. Результаты механических испытаний и их анализ

2.1. Испытания на динамическое растяжение на РСГ

Результаты испытаний образцов из алюминиевых сплавов 1561 и 1575-1 на РСГ приведены в табл. 2 (указаны истинные значения динамического предела прочности и текучести). Типичные диаграммы динамического деформирования образцов представлены на рис. 4.

результатов ударное Сравнение на растяжение (табл. 2) с результатами стандартных испытаний показало (табл. 1), что в диапазоне скоростей $(1.5{-}3)\cdot 10^3\,s^{-1}$ для сплава 1561 резко возрастают предел текучести (на 25 %-80 %) и в меньшей степени (на 25%-33%) при скоростях деформации $(2.5-3.0) \cdot 10^3 \, \text{s}^{-1})$ предел прочности. Также возрастают предел текучести и предел прочности для сплава 1575-1 (хотя и в меньшей степени, чем у сплава 1561). При этом характеристика пластичности сплавов (относительное сужение ψ) практически не изменилась. Сравнение по относительному удлинению некорректно ввиду разной длины образцов l₀ и рабочего диаметра d_0 (и, как следствие, разного отношения l_0/d_0 [13]) для статических и динамических испытаний.

2.2. Испытания по определению откольных характеристик

Результаты испытаний образцов из алюминиевых сплавов на установке ПГ-57 приведены в табл. 3, типичные кривые скорости свободной поверхности образцов приведены на рис. 5.

Марка сплава	Скорость деформации $\dot{arepsilon}, { m s}^{-1}$	Динамический предел текучести σ_{sd}, MPa	Динамический предел прочности σ_{bd}, MPa	Относительное удлинение $\delta_d, \%$	Относительное сужение $\psi_d, \%$
1561	$\begin{array}{c} 1500 \pm 10 \\ 2500 \pm 10 \\ 3000 \pm 10 \end{array}$	$\begin{array}{c} 225 \pm 15 \\ 300 \pm 10 \\ 325 \pm 10 \end{array}$	$\begin{array}{c} 345 \pm 5 \\ 430 \pm 15 \\ 460 \pm 15 \end{array}$	16 ± 1 19 ± 1 20 ± 1	24 ± 1 26 ± 1.5 26 ± 2
1575-1	1500 ± 10 2000 ± 10 3000 ± 10	$310 \pm 30 \\ 340 \pm 10 \\ 385 \pm 15$	$450 \pm 5 \\ 475 \pm 5 \\ 540 \pm 10$	$\begin{array}{c} 14\pm 1 \\ 13\pm 0.5 \\ 10\pm 0.5 \end{array}$	23 ± 1 21 ± 1 19 ± 1

Таблица 2. Динамические свойства алюминиевых сплавов на растяжение

Таблица 3. Результаты испытаний сплавов на динамическую прочность

Материал образца	Скорость удара, m/s	Скорость деформации, s ⁻¹	Откольная прочность, МРа
Сплав 1561	$\begin{array}{c} 150 \pm 20 \\ 250 \pm 20 \\ 350 \pm 20 \\ 420 \end{array}$	$\begin{array}{c} 8.3 \cdot 10^3 \\ 10.6 \cdot 10^3 \\ 15.7 \cdot 10^3 \\ 16.2 \cdot 10^3 \end{array}$	$470 \pm 10 \\ 470 \pm 10 \\ 480 \pm 15 \\ 540 \pm 5$
Сплав 1575-1	$\begin{array}{c} 150 \pm 25 \\ 250 \pm 10 \\ 350 \pm 15 \end{array}$	$\begin{array}{c} 8.3 \cdot 10^3 \\ 10.2 \cdot 10^3 \\ 11.6 \cdot 10^3 \end{array}$	$400 \pm 20 \\ 410 \pm 15 \\ 570 \pm 15$

Рис. 4. Диаграммы деформирования сплава 1561 (*a*) и сплава 1575-1 (*b*) при скорости деформации 1500 s⁻¹.

Анализ полученных результатов по динамическим характеристикам, приведенным в табл. 2 и 3, показал, что значения истинных пределов прочности, полученные

в рамках испытаний на РСГ при скоростях деформации $(1.5-3) \cdot 10^3 \text{ s}^{-1}$ для обоих сплавов, практически совпадают со значениями откольной прочности при скоростях деформации $(8.3-16.2) \cdot 10^3 \text{ s}^{-1}$. Этот результат хорошо согласуется с результатами работы [14], в которой было показано на примерах сталей различных марок, меди и титанового сплава, что значения истинного сопротивления разрыву при скорости деформации $5 \cdot 10^3 \text{ s}^{-1}$ практически совпадают со значениями откольной прочности.

Из представленных результатов следует, что, начиная с некоторой скорости деформации, начинается рост характеристик динамической прочности (откольной прочности).

2.3. Результаты металлографического анализа

Металлографический анализ проводился только для плоских образцов, результаты микроструктурных исследований разрушенных образцов после их испытаний на РСГ будут представлены в отдельной статье.

Поскольку микроструктурные исследования образцов из алюминия и алюминиевых сплавов после откольного разрушения проводились во многих работах [6,15–18] и др.], металлографический анализ образцов в нашем случае проводился, прежде всего, с целью выявления неких особенностей только процесса откольного разрушения, ранее в этих сплавах не наблюдавшихся. С этой целью испытанные образцы разрезались вдоль направления удара по диаметру и на полученной поверхности

Рис. 5. Типичные осциллограммы скорости свободной поверхности для алюминиевых сплавов 1561 (*a*, *b*) и 1575-1 (*c*, *d*) при скоростях удара 420, 270, 340, 250 m/s соответственно.

проводились исследования микроструктуры. Отметим следующий факт. В табл. 3 представлены результаты определения откольной прочности за исключением результатов для обоих сплавов при скоростях удара (150 ± 25) m/s. В этих образцах магистральная трещина не наблюдалась, т.е. в соответствующих строках представлены характеристики откольной стойкости.

2.4. Результаты металлографического анализа образцов из сплава 1561

В структуре образцов из сплава 1561 последовательно наблюдаются: при скоростях удара $\sim 150 \text{ m/s}$ — трещины расслоения в местах залегания скоплений дисперсных фаз и мелких динамически рекристаллизованных зерен (рис. 6, *a*), с увеличение скорости удара ($\sim 170 \text{ m/s}$)

трещины расслоения укрупняются, в том числе за счет образования микропор и их слияния (рис. 6, b). Трещины расслоения направлены вдоль распространения ударной волны и, по-видимому, их образование связано со скоростной неоднородностью среды [6,19]. При скоростях удара > 210 m/s происходит укрупнение пор, их слияние с образованием трещин отрыва и формирование магистральной трещины, в единичных местах наблюдается локализация деформации путем адиабатического среза (рис. 6, с). Направление трещин отрыва — перпендикулярно направлению распространения ударной волны. И, наконец, при скоростях удара ~ 300 m/s и выше, формируется откольная "тарелочка", а рельеф оставшейся части образца представляет собой поверхность, образованную за счет хаотического слияния пор и трещин расслоения различной формы (рис. 6, d). Хаотизация

Рис. 6. Микроструктура образцов из сплава 1561 после ударного воздействия. На фрагментах *a*-*d* скорость удара 150, 170, 270 и 320 m/s соответственно. Стрелкой указан адиабатический срез.

слияния пор, вероятно, обусловлена неустойчивостью пластической деформации вследствие различия ее скоростей в смежных зонах пластического течения. В свою очередь различие скоростей деформации в смежных зонах является следствием дисперсии скоростей частиц материала [6,19].

2.5. Результаты металлографического анализа образцов из сплава 1575-1

В структуре образцов из сплава 1575-1 после испытаний при скоростях удара ~ 140 m/s динамическое воздействие проявляется в увеличении количества и укрупнении хрупких трещин в интерметаллидах (рис. 7, *a*), при этом трещины расслоения практически отсутствуют. Можно полагать, что интерметаллидные включения служат эффективными очагами диссипации ударной волны. Трещины расслоения начинают появляться, так же как и микропоры, при скоростях удара ~ 175 m/s. Затем при скоростях > 220 m/s, как и в случае сплава 1561, происходит укрупнение микропор, их слияние с образованием трещин отрыва и формирование магистральной

трещины (рис. 7, *c*). При скоростях удара ~ 300 m/s и выше, так же как и в случае сплава 1561, формируется откольная "тарелочка", рельеф оставшейся части образца представляет собой поверхность, образованную за счет слияния пор и трещин расслоения различной формы (рис. 7, *d*, *e*). При этом структура рельефа более упорядочена, чем в сплаве 1561, что может указывать на меньшую дисперсию скоростей частиц среды при динамическом нагружении.

Следует отметить, что в нашем случае контуры магистральной трещины и поверхности разрушения отличаются от аналогичных форм в образцах из сплава 1565 [20], который относится к той же группе алюминиевых сплавов [7], что и исследованные в настоящей работе. В сплаве 1565 контур магистральной трещины и соответственно контур поверхности разрушения имеют ярко выраженную ступенчатую форму.

Заключение

Проведенные экспериментальные исследования позволяют сделать следующие выводы:

Рис. 7. Микроструктура образцов из сплава 1575-1 после ударного воздействия. На фрагментах *a*-*d*, *e* скорость удара 137, 176, 250, 340 m/s соответственно.

 алюминиевые сплавы 1561 и 1575-1 обладают высокой удельной динамической прочностью, что позволяет рекомендовать их в качестве конструкционных материалов для изделий, которые должны обладать относительно небольшой массой и работать в условиях экстремальных внешних нагрузок;

2) сплав 1561 при меньших значениях статической прочности более восприимчив, чем сплав 1575-1, к скорости деформации $\sim 10^3\,s^{-1}$ (его значения динамических предела текучести и прочности существенно

возрастают по отношению к статическим значениям, при этом показатель пластичности ψ_d остается на прежнем уровне);

3) сплав 1575-1 по сравнению со сплавом 1561 при увеличении скорости деформации до $\sim 10^3 \, {\rm s}^{-1}$ склонен к охрупчиванию (с ростом скорости деформации уменьшается показатель пластичности ψ_d);

4) значения истинных пределов прочности, полученные в рамках испытаний на РСГ при скоростях деформации $(1.5-3) \cdot 10^3 \, \text{s}^{-1}$ для сплавов 1561 и 1575-1, прак-

тически совпадают со значениями откольной прочности при скоростях деформации $(8.3{-}16.2)\cdot10^3\,s^{-1}.$

Финансирование работы

Работа частично выполнена при финансовой поддержке Государственного задания Минобрнауки России (проект № FSWR-2023-0036).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.М. Брагов, А.К. Ломунов. Использование метода Кольского для исследования процессов высокоскоростного деформирования материалов различной физической природы (Изд-во Нижегородского гос. ун-та, Нижний Новгород, 2017), 148 с.
- [2] Разрушение разномасштабных объектов при взрыве, под общей ред. А.Г. Иванова (РФЯЦ.ВНИИЭФ, Саров, 2001), 482 с.
- [3] Г.Г. Савенков, А.В. Кузнецов, А.М. Брагов. ЖТФ, 88 (5), 740 (2018).
- [4] Б.Л. Глушак, И.Р. Трунин, С.А. Новиков, А.И. Рузанов. Фракталы в прикладной физике, под общей ред. А.Е. Дубинова (Арзамас-16, 1995), с. 59–122.
- [5] Г.И. Канель, С.В. Разоренов, А.В. Уткин, В.Е. Фортов. Ударно-волновые явления в конденсированных средах (Янус-К, М., 1996), 408 с.
- [6] Ю.И. Мещеряков. Многомасштабные ударно-волновые процессы в твердых телах (Нестор-История, СПб., 2018), 480 с.
- [7] Е.П. Осокин, Н.Н. Барахтина, В.И. Павлова, Е.А. Алифиренко, С.А. Зыков. Технология легких сплавов, 3, 69 (2022). DOI: 10.24412/0321-4664-2022-3-69-84
- [8] В.В. Захаров, А.И. Фесенко. Технология легких сплавов, 4, 40 (2015).
- [9] А.И. Балуев, Л.А. Бозина, Г.И. Николаев, В.В. Обуховский, К.И. Хвостынцев. Практическое руководство по металлографии судостроительных материалов (Издво Судостроение, Л., 1982), 136 с. 48 с.
- [10] А.М. Брагов, Л.А. Игумнов, А.Ю. Константинов, А.К. Ломунов. Высокоскоростная деформация материалов (Изд-во Нижегородского гос. ун-та, Нижний Новгород, 2020), 300 с.
- [11] А.М. Кузьмин, А.Ю. Константинов, Г.Г. Савенков. ЖТФ, 94 (10), 1688 (2024).
 - DOI: 10.61011/JTF.2024.10.58862.201-24
- [12] А.М. Брагов, А.В. Кузнецов, Г.Г. Савенков, Т.И. Сычева, Е.В. Щукина. ПМТФ, 62 (1), 119 (2021).
- [13] Н.А. Шапошников. Механические испытания металлов (Машгиз, М.-Л., 1951), 384 с.
- [14] Г.Г. Савенков. ПМТФ, 46 (6), 103 (2005).
- [15] А.К. Диваков, Л.С. Коханчик, Ю.И. Мещеряков, М.М. Мышляев. ПМТФ, 3, 135 (1987).
- [16] И.Г. Бродова, А.Н. Петрова, С.В. Разоренов, Е.В. Шорохов. Физика металлов и металловедение, **116** (5), 548 (2015).
- [17] Ю.В. Петров, С.А. Атрошенко, Н.А. Казаринов, А.Д. Евстифеев, В.Ю. Соловьев. ФТТ, **59** (4), 648 (2017).

- [18] И.Н. Бородин, А.Е. Майер, С.А. Атрошенко. Базовый масштабный уровень откольного разрушения в чистом алюминии и его сплаве Д16: микроструктурные исследования и численное моделирование // Физикохимические аспекты предельных состояний и структурных превращений в сплошных средах, материалах и технических системах, 1, 208 (2017).
- [19] Ю.И. Мещеряков, А.К. Диваков. Интерференционный метод регистрации скоростной неоднородности частиц в упруго-пластических волнах нагрузки в твердых телах (ЛФИМаш, Л., 1989), 36 с.
- [20] А.К. Диваков, Н.И. Жигачева, Г.В. Коновалов, Ю.И. Мещеряков, Е.П. Осокин. Письма в ЖТФ, 45 (5), 34 (2019).