## 05

## Синтез и свойства соединения $Na_2FeLiSi_6O_{15}$

© Т.В. Дрокина, А.М. Воротынов, А.Д. Балаев, О.А. Баюков, М.С. Молокеев

Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН, Красноярск, Россия E-mail: tvd@iph.krasn.ru

Поступила в Редакцию 17 апреля 2025 г. В окончательной редакции 25 мая 2025 г. Принята к публикации 27 мая 2025 г.

Проведены исследования структурных, резонансных, статических магнитных свойств соединения Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>, полученного методом твердофазного синтеза из исходных оксидов Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>. Показано, что катионы железа в эмелеусите, находящиеся в высокоспиновом состоянии Fe<sup>3+</sup> (S = 5/2,  $3d^5$ ) и в идеальных октаэдрах, образуемых анионами кислорода, в области температур 4.2–300 K формируют парамагнитную подсистему с молярным значением эффективного магнитного момента  $\mu_{eff} = 6.02 \,\mu_B$  и с g-фактором при T = 297.8 K, равным 2.092. По-видимому, из-за разделенности катионов железа группами немагнитных ионов SiO<sub>4</sub>, LiO<sub>4</sub> обменное взаимодействие между ними мало (кратчайшие расстояния Fe–Fe равны 5.867(3) Å), что приводит к отсутствию дальнего магнитного порядка.

Ключевые слова: синтез, кристаллическая структура, магнитные, резонансные свойства.

DOI: 10.61011/FTT.2025.06.60944.83-25

### 1. Введение

Минерал эмелеусит Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> был обнаружен в 1978 г. в Гренландии (Island of Igdlutalik, Greenland) [1]. Эмпирическая формула природного минерала Li<sub>1.91</sub>Na<sub>3.96</sub>Fe<sub>1.56</sub>Al<sub>6</sub>Ti<sub>0.07</sub>Mg<sub>0.03</sub>Zr<sub>0.01</sub>Si<sub>12</sub>O<sub>30</sub>, орторомбическая кристаллическая структура, параметры элементарной ячейки:  $a = 10.073 \pm 0.002$  Å,  $b = 17.350 \pm 0.005$  Å,  $c = 14.010 \pm 0.005$  Å. Количество формульных единиц в элементарной ячейке Z = 4 [1].

Результаты более полного исследования структуры эмелеусита Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> представлены в работе [2].

В настоящей работе перед авторами стояла задача синтезировать соединение  $Na_2FeLiSi_6O_{15}$  и изучить структурные, резонансные, статические магнитные свойства с целью определения магнитного состояния материала, содержащего катионы  $Fe^{3+}$ .

## 2. Синтез образцов и техника эксперимента

Соединение Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> получено реакцией в твердой фазе из стехиометрической смеси порошкообразных окислов высокой чистоты Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> с пятью отжигами длительностью 24 h при температурах 800-910 °C на воздухе. Химический и фазовый состав синтезированных образцов контролировался методом рентгеноструктурного анализа.

Порошковая рентгенограмма Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> отснята при комнатной температуре на дифрактометре Наоуиап DX-2700BH (оборудование Красноярского регионального центра научно-исследовательского оборудования Федерального исследовательского центра "Красноярский научный центр CO PAH") с излучением CuK<sub>α</sub> и линейным детектором. Размер шага 2 $\theta$  составлял 0.01°, время счета — 0.2 s на шаг.

Спектры ядерного гамма-резонанса регистрировались на спектрометре МС-1104Ем Института физики им. Л.В. Киренского СО РАН при комнатной температуре с источником  $\text{Co}^{57}(\text{Rh})$  на порошках поликристаллических образцов Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> массой 5–10 mg, приходящейся на 1 сm<sup>2</sup>, по естественному содержанию железа. Величины химических сдвигов приведены относительно  $\alpha$ -Fe.

Спектры электронного магнитного резонанса NaMnFe<sub>2</sub>V<sub>3</sub>O<sub>12</sub> сняты на спектрометре Bruker Elexsys E580 в X-диапазоне и интервале температур 110–300 К. При записи спектров использованы следующие параметры: мощность CBЧ — 0.63 mW, амплитуда модуляции — 0.7 G, частота модуляции — 100 kHz, ширина развертки магнитного поля — 5 kG, время развертки — 40 s.

Статические магнитные свойства Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> измерены на Quantum Design PPMS-9 (Physical Property Measurement System) в интервале температур  $1.8 \leq T \leq 300$  K.

## 3. Экспериментальные результаты и их обсуждение

### 3.1. Данные структурных исследований

Изучение структурных свойств поликристаллического соединения Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> проведено методами рентгеновской дифракции и мёссбауэровской спектроскопии.

На рис. 1 показана порошковая рентгенограмма Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> при комнатной температуре.

Уточнение Ритвельда реализовано при помощи программы TOPAS 4.2 [3]. Почти все пики, кроме малой



**Рис. 1.** Рентгенограмма поликристаллического соединения  $Na_2FeLiSi_6O_{15}$  при температуре T = 300 K. Разностная рентгенограмма — нижняя кривая.

**Таблица 1.** Основные параметры рентгеновского эксперимента и результаты уточнения кристаллической структуры Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>

| Фаза                                                | Содержание, % | Пространственная<br>группа | Параметры ячейки, Å, deg;<br>объем ячейки, Å <sup>3</sup>                                   | $R_{\rm wp}, R_{\rm p}, \%;$<br>$\chi^2$ | <i>R</i> <sub>B</sub> , % |
|-----------------------------------------------------|---------------|----------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|
| Na <sub>2</sub> FeLiSi <sub>6</sub> O <sub>15</sub> | 94.3(2)       | Стса                       | a = 14.0260(2),<br>b = 17.3867(3),<br>c = 10.0918(2),<br>V = 2461.05(8)                     | 1.29,                                    | 0.39                      |
| NaFeSi <sub>2</sub> O <sub>6</sub>                  | 5.7(2)        | C2/c                       | a = 9.656(1),<br>b = 8.7974(1),<br>c = 5.2939(6),<br>$\beta = 107.708(9),$<br>V = 428.41(9) | 0.96,<br>1.61                            | 0.62                      |

Примечание: *a*, *b*, *c*, β — параметры элементарной ячейки; V — объем ячейки; факторы недостоверности:  $R_{wp}$  — весовой профильный,  $R_p$  — профильный,  $R_B$  — интегральный;  $\chi^2$  — качество подгонки.

величины пиков примеси NaFeSi<sub>2</sub>O<sub>6</sub> (5.7(2) wt.%) описываются орторомбической ячейкой (*Cmca*) с параметрами близкими к таковым у Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> [2] (структура типа граната). Таким образом, структура Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> была использована в качестве исходной модели для уточнения Ритвельда. Нестандартная пространственная группа *Acam* была приведена к стандартной *Cmca*, координаты атомов трансформированы согласно изменениям. Уточнение было стабильным и показало низкие *R*-факторы (таблица 1 и рис. 1). Количество формульных единиц в элементарной ячейке Z = 8.

Координаты атомов в кристаллической структуре  $Na_2FeLiSi_6O_{15}$ , заселенность позиций и тепловые параметры представлены в таблице 2.

Основные длины связей в кристаллической структуре при T = 300 К показаны в таблице 3.

Структура соединения изображена на рис. 2.

Кристаллическая структура  $Na_2FeLiSi_6O_{15}$  представляет собой слоистую структуру, параллельную (001).



Рис. 2. Кристаллическое строение  $Na_2FeLiSi_6O_{15}$ .

Она состоит из зигзагообразных двойных силикатных цепочек, вытянутых вдоль оси [100], которые соединены цепочками многогранников Na(2) и чередующихся тетраэдров Li и октаэдров Fe. Атом Na(1) расположен в зеркальной плоскости, координируемой девятью атомами кислорода. Параллельно двойным силикатным цепочкам расположена плоскость, содержащая атомы Li, Fe и Na(2). Тетраэдры Li и октаэдры Fe имеют общие ребра 0(2)-0(4), образуя цепочки в направлении [001].

**Таблица 2.** Координаты атомов, изотропные тепловые параметры Biso в кристаллической структуре  $Na_2FeLiSi_6O_{15}$  при T = 300 K

| Атом | x         | У         | z          | $B_{\rm iso},{\rm \AA}^2$ |
|------|-----------|-----------|------------|---------------------------|
| Na1  | 0.5       | 0.4143(5) | 0.2504(6)  | 2.5(2)                    |
| Na2  | 0.25      | 0.2252(3) | 0.25       | 2.3(2)                    |
| Li   | 0.245(5)  | 0         | 0          | 1.6(8)                    |
| Fe   | 0.25      | 0.4139(2) | 0.25       | 1.47(15)                  |
| Si1  | 0.6131(5) | 0.1329(2) | 0.4845(4)  | 0.96(13)                  |
| Si2  | 0.6130(3) | 0.0727(3) | 0.1914(3)  | 0.96(13)                  |
| Si3  | 0.6139(4) | 0.3096(2) | 0.4579(3)  | 0.96(13)                  |
| 01   | 0.1384(6) | 0.2232(5) | -0.0030(5) | 0.50(14)                  |
| 02   | 0.1681(4) | 0.4190(4) | 0.4168(8)  | 0.50(14)                  |
| 03   | 0.3621(6) | 0.1119(3) | 0.3338(7)  | 0.50(14)                  |
| O4   | 0.3333(5) | 0.4934(4) | 0.3367(8)  | 0.50(14)                  |
| 05   | 0.3581(7) | 0.1398(4) | 0.0860(7)  | 0.50(14)                  |
| 06   | 0.1639(4) | 0.3322(4) | 0.1726(7)  | 0.50(14)                  |
| 07   | 0.5       | 0.1207(5) | 0.5130(9)  | 0.50(14)                  |
| 08   | 0.5       | 0.0542(5) | 0.1865(8)  | 0.50(14)                  |
| 09   | 0.5       | 0.3211(5) | 0.4387(9)  | 0.50(14)                  |

| Связь                 | Длина, Å  | Связь                  | Длина, Å |
|-----------------------|-----------|------------------------|----------|
| Na1-O2 <sup>i</sup>   | 2.901(8)  | Fe-O2                  | 2.039(7) |
| Na1-O4                | 2.850(8)  | Fe-O4                  | 2.010(8) |
| Na1-O6 <sup>i</sup>   | 2.815(8)  | Fe-O6                  | 2.022(7) |
| Na1-O7 <sup>ii</sup>  | 2.471(11) | Si1-O1 <sup>vii</sup>  | 1.621(9) |
| Na1-O8 <sup>iii</sup> | 2.516(12) | Si1-O2 <sup>viii</sup> | 1.551(9) |
| Na1-O9                | 2.497(11) | Si1-O3 <sup>ix</sup>   | 1.603(8) |
| Na2-O1                | 2.995(6)  | Si1-O7                 | 1.626(7) |
| Na2-O1 <sup>iv</sup>  | 3.077(7)  | Si2-O3 <sup>ix</sup>   | 1.627(8) |
| Na2-O3                | 2.658(8)  | Si2-O4 <sup>x</sup>    | 1.597(8) |
| Na2-O5                | 2.691(8)  | Si2-O5 <sup>ix</sup>   | 1.630(8) |
| Na2-O6                | 72.353(8) | Si2-O8                 | 1.618(4) |
| Li-O <sup>v</sup>     | 1.96(4)   | Si3-O1 <sup>vii</sup>  | 1.606(9) |
| Li-O3 <sup>vi</sup>   | 2.97(4)   | Si3-O5 <sup>xi</sup>   | 1.613(8) |
| Li-O4 <sup>v</sup>    | 2.07(4)   | Si3-O6 <sup>vii</sup>  | 1.543(8) |
| Li-O5                 | 3.03(4)   | Si3-O9                 | 1.622(6) |

**Таблица 3.** Основные длины связей в кристаллической структуре Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> при температуре T = 300 K

Коды симметрии: (i) -x + 1/2, y, -z + 1/2; (ii) -x + 1, -y + 1/2, z - 1/2; (iii) -x + 1, y + 1/2, -z + 1/2; (iv) -x + 1/2, -y + 1/2, -z; (v) x, -y + 1/2, z - 1/2; (vi) -x + 1/2, -y, z - 1/2; (vii) x + 1/2, y, -z + 1/2; (viii) x + 1/2, -y + 1/2, -z + 1; (ix) -x + 1, y, z; (x) -x + 1, y - 1/2, -z + 1/2; (xi) -x + 1, -y + 1/2, z + 1/2.

Для изучения состояния катионов железа в  $Na_2FeLiSi_6O_{15}$  проведены исследования методом ядерного  $\gamma$ -резонанса. Мёссбауэровский спектр, полученный при комнатной температуре, показан на рис. 3, *а.* Распределение квадрупольных расщеплений в экспериментальном спектре представлено на рис. 3, *b.* Параметры спектра приведены в таблице 4.

Из анализа данных мёссбауэровской спектроскопии следует, что катионы железа в фазах образца находятся в высокоспиновом состоянии  $Fe^{3+}$  (S = 5/2,  $3d^5$ ) и в координации 6 по кислороду. Для основной фазы Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> квадрупольное расщепление QS (0.23 mm/s) много меньше ширины линии W, что свидетельствует о нахождении катионов железа в идеальных октаэдрах, образуемых анионами кислорода.

Примесная фаза NaFeSi<sub>2</sub>O<sub>6</sub> показывает очень широкие линии поглощения (0.90 mm/s), что, по-видимому, связано с искажением кристаллической структуры эгирина.

# 3.2. Результаты исследования Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> методом ЭПР

Спектры электронного парамагнитного резонанса  $(\Im\Pi P)$  в  $Na_2FeLiSi_6O_{15}$  изучены на частоте 9 GHz в

0.67

0.39

| IS, mm/s ±0.01 | QS, mm/s±0.02 | W, mm/s $\pm 0.02$ | A, at.% $\pm 5$ | Позиция                               |
|----------------|---------------|--------------------|-----------------|---------------------------------------|
| 0.41           | 0.23          | 0.39               | 61              | Fe <sup>3+</sup> (6) B NazFeI iSicO15 |

0.90

39

**Таблица 4.** Мёссбауэровские параметры <sup>57</sup>Fe в Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>: IS — изомерный химический сдвиг относительно α-Fe, QS — квадрупольное расщепление, W — ширина линии поглощения, A — заселенность позиции железа в предположении одинаковой вероятности эффекта Мёссбауэра для различных кристаллографических позиций



**Рис. 3.** *а*) Мёссбауэровский спектр Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>, измеренный при комнатной температуре. Цветными линиями обозначены компоненты спектра. Ниже спектра представлен спектр ошибки (разность между экспериментальным и теоретическим спектрами). *b*) Распределение квадрупольных расщеплений в экспериментальном спектре.



**Рис. 4.** Спектр ЭПР Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> на частоте 9 GHz при комнатной температуре и результат подгонки экспериментального спектра двумя кривыми поглощения лоренцевой формы 1 и 2.

интервале температур 110–300 К. На рис. 4 приведен спектр ЭПР при комнатной температуре и показан результат подгонки экспериментального спектра ЭПР двумя кривыми поглощения лоренцевой формы 1 и 2.

На рис. 5 приведены температурные зависимости интенсивности I, резонансного поля  $H_{res}$  и ширины линии dH для подгоночных кривых I и 2. Интенсивность определялась как площадь под подгоночными линиями ЭПР-сигнала, ширина линии — как расстояние по полю между экстремумами на кривой производной линии поглощения, значение резонансного поля соответствует пересечению кривой первой производной поглощения с нулевой линией.

Из анализа ЭПР данных следует, что сигнал 1 обусловлен основной матрицей Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>. Сигнал 2дает примесная фаза NaFeSi<sub>2</sub>O<sub>6</sub>. При T = 297.8 К величины фактора расщепления Ланде для кривых 1 и 2составляют g(1) = 2.092 и g(2) = 1.995 соответственно. При T = 108 К g(1) = 2.167 и g(2) = 2.021.

Fe<sup>3+</sup>(6) в NaFeSi<sub>2</sub>O<sub>6</sub>



Рис. 5. Температурные зависимости a) интенсивности I, b) резонансного поля  $H_{res}$ , c) ширины линии dH ЭПР-сигнала на частоте  $\nu = 9$  GHz в Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>.

# 3.3. Результаты статических магнитных измерений Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>

Магнитным атомом в соединении Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> является катион железа в высокоспиновом состоянии Fe<sup>3+</sup> (S = 5/2, L = 0), находящийся в октаэдрическом кислородном окружении. На рис. 6 приведены температурные зависимости магнитного момента M и обратной магнитной восприимчивости  $\chi^{-1}$  Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>, измеренные в магнитном поле H = 1000 Oe (масса образца m = 0.06353 g).

В образце присутствует примесная фаза эгирина NaFeSi<sub>2</sub>O<sub>6</sub>. О структурных и магнитных свойствах эгири-



Рис. 6. Температурные зависимости a) магнитного момента M и b) обратной магнитной восприимчивости  $\chi^{-1}$  Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>, измеренные в магнитном поле H = 1000 Oe (масса образца m = 0.06353 g).

на сообщается в работах [4–9]. Кристаллическая симметрия описывается моноклинной пространственной группой C2/c. Количество формульных единиц в элементарной ячейке Z = 4.

Магнитным примесном атомом В соелинении NaFeSi<sub>2</sub>O<sub>6</sub> также является катион железа в высокоспиновом состоянии Fe<sup>3+</sup> (S = 5/2)И в октаэдрическом кислородном окружении. Полиэдры вокруг атомов Fe в примеси нашего образца сильно искажены (квадрупольное расщепление  $Q = 1.00 \,\mathrm{mm/s}$ ), таблица 4.

При высоких температурах в клинопироксене NaFeSi<sub>2</sub>O<sub>6</sub> реализуется парамагнитное состояние, описываемое законом Кюри–Вейсса, с асимптотической температурой Нееля  $\Theta = -43.6$  К, C = 0.0166 К  $\cdot$  cm<sup>3</sup>/g и  $\mu_{\rm eff} = 5.56 \,\mu_{\rm B}$  [8]. При температуре  $T_{\rm N} = 7.8$  К образец переходит из парамагнитного состояния в состояние с дальним магнитным порядком, включая соизмеримую и несоизмеримую модулированные магнитные структуры, формирующиеся преимущественно антиферромагнитным взаимодействием [9].

Для определения магнитных характеристик Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> мы воспользовались подгоночной функцией для температурной зависимости магнитной восприимчивости, записанной следующим образом:

$$\chi(T) = \chi_0 + 0.943C/(T - \Theta) + 0.057 \cdot 0.0166/(T + 43.6),$$

где  $\chi_0$  — не зависящие от температуры вклад ванфлековского парамагнетизма и диамагнитный вклад, C и T — подгоночные параметры основной фазы Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>. Третий член в уравнении представляет собой вклад в восприимчивость от примесной фазы NaFeSi<sub>2</sub>O<sub>6</sub> с параметрами, взятыми из работы [8]. При обработке зависимости магнитной восприимчивости в эмелеусите Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> учтены данные рентгеноструктурного анализа по содержанию фаз, таблица 1. Результат представлен на рис. 7.



**Рис. 7.** Температурная зависимость магнитной восприимчивости  $\chi$  Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub>. Черная линия — эксперимент, красная линия — подгоночная кривая.

В результате получены следующие параметры для основной фазы Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> и  $\chi_0$ :  $C = 0.00871 \text{ K} \cdot \text{cm}^3/\text{g}$ ,  $\Theta = -3.01 \text{ K}$ ,  $\chi_0 = 4.45688 \cdot 10^{-5} \text{ cm}^3/\text{g}$ . Константа C соответствует молярному значению эффективного магнитного момента  $\mu_{\text{eff}} = 6.02 \,\mu_{\text{B}}$ .

Магнитная восприимчивость  $\chi$  в Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> зависит от температуры *T* по гиперболическому закону (рис. 7), что характерно для парамагнитного состояния. При повышении температуры величина магнитной восприимчивости снижается вследствие теплового движения, ведущего к беспорядочному расположению магнитных моментов. По-видимому, из-за разделенности катионов железа группами немагнитных ионов (SiO<sub>4</sub>, LiO<sub>4</sub>) обменное взаимодействие между ними мало́ (кратчайшие расстояния Fe–Fe равны 5.867(3) Å).

## 4. Заключение

Эмелеусит Na<sub>2</sub>FeLiSi<sub>6</sub>O<sub>15</sub> получен реакцией в твердой фазе из стехиометрической смеси порошкообразных окислов высокой чистоты Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> с отжигами при температурах 800-910 °C. В статье приведены результаты исследования свойств синтезированного соединения методами рентгеновской дифракции, электронного парамагнитного резонанса, ядерного гамма-резонанса и статических магнитных измерений.

Кристаллическая структура  $Na_2$ FeLiSi<sub>6</sub>O<sub>15</sub> описывается орторомбической ячейкой, пространственная группа *Стса*, с параметрами, близкими к таковым природного минерала.

Показано, что эмелеусит является парамагнетиком с молярным значением эффективного магнитного момента  $\mu_{\text{eff}} = 6.02 \,\mu_{\text{B}}$  и с *g*-фактором при  $T = 297.8 \,\text{K}$ , равным 2.092.

#### Благодарности

Авторы благодарят Красноярский региональный центр коллективного пользования ФИЦ КНЦ СО РАН за предоставленное оборудование для исследования рентгеноструктурных свойств и измерений ЭПР-характеристик.

### Финансирование работы

Работа выполнена в рамках научной тематики Госзадания Института физики им. Л.В. Киренского СО РАН.

### Конфликт интересов

Авторы сообщают об отсутствии конфликта интересов.

### Список литературы

- [1] B.G.J. Upton, P.G. Hill, O. Johnsen, O.V. Petersen. Mineral. Mag. 42, 321, 31 (1978).
- [2] O. Johnsen, K. Nielsen, I. Sotofte. Z. Kristallogr. Cryst. Mater. 147, 297 (1978).
- [3] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [4] O. Ballet, J.M.D. Coey, G. Fillion, A. Ghose, A. Hewat, J.R. Regnard. Phys. Chem. Minerals 16, 7, 672 (1989).
- [5] E. Baum, W. Treutmann, W. Lottermoser, G. Amthauer. Phys. Chem. Minerals **24**, *4*, 294 (1997).
- [6] G.J. Redhammer, G. Amthauer, W. Lottermoser, W. Treutmann. Eur. J. Mineral 12, 1–2, 105 (2000).
- [7] S. Jodlauk, P. Becker, J.A. Mydosh, D.I. Khomskii, T. Lorenz, S.V. Streltsov, D.C. Hezel, L. Bohaty. J. Phys.: Condens. Matters 19, 43, 432201 (2008).

- [8] S.V. Streltsov, D.I. Khomskii. Phys. Rev. B77, 6, 064405 (2007).
- [9] G.J. Redhammer, A. Senyshyn, M. Meven, G. Roth, S. Prinz, A. Pachler, G. Tippelt, C. Pietzonka, W. Treutmann, M. Hoelzel, B. Pedersen, G. Amthauer. Phys. Chem. Minerals 38, 2, 139 (2010).

Редактор Е.В. Толстякова