11,02,01

Красное смещение резонанса Ми-Фрёлиха и пиннинг электронов на границе сферической наночастицы меди, окруженной протонами

© И.Е. Истомин, С.Г. Ястребов ¶, Т.Н. Василевская

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия [¶] E-mail: yastrebov@mail.ioffe.ru

Поступила в Редакцию 16 мая 2025 г. В окончательной редакции 1 июля 2025 г. Принята к публикации 2 июля 2025 г.

> Предложена модель, обосновывающая прикрепление протонов связей С-Н к поверхности медных наночастиц в нанокомпозите аморфного углерода, модифицированного медными нанокластерами (a-C:H:(Cu)). Показано, что нековалентное взаимодействие дипольного момента связи С-Н с индуцированными зарядами в наночастицах меди приводит к локализации электронов вблизи их поверхности (так называемому пиннингу электронов). Оно сопровождается частотными сдвигами инфракрасных полос поглощения связей С-Н и уменьшением электронной плотности в объеме наночастиц меди, что приводит к уменьшению плазменной частоты наночастицы и, как следствие, к сдвигу резонанса Ми-Фрёлиха в инфракрасную область спектра.

Ключевые слова: аморфный углерод, нековалентные взаимодействия, резонанс Ми-Фрёлиха, плазмоника.

DOI: 10.61011/FTT.2025.06.60952.132-25

1. Введение

Нанокомпозитные материалы, включающие наноразмерные частицы металлов, привлекают пристальное внимание исследователей в последнее десятилетие, поскольку позволяют варьировать в широких пределах физикохимические и оптические свойства [1,2]. При этом немаловажную роль может играть взаимовлияние свойств наночастиц металла и матрицы, реализующееся в масштабах ближнего и среднего порядка проявляющееся в сдвиге резонанса Ми-Фрёлиха (МФ) в инфракрасную и ультрафиолетовую области спектра. Так, в работе [2] подобные сдвиги объяснялись диполь-дипольным взаимодействием между соседними наночастицами меди, образующими димеры. Однако роль химических составляющих матрицы на такие сдвиги не нашла до сих пор достаточного отражения в литературных данных. Так, например, аморфный углерод, который использовался в цитируемых работах для инкапсуляции наночастиц меди, может содержать водород, образующий С-Н связи. Так, при непосредственном контакте с металлом протон, принадлежащий С-Н связи может локализовать электроны вблизи поверхности наночастицы металла, приводя к обеднению электронами ее объем и смещению частоты резонанса в инфракрасную область спектра.

Это явление может оказаться важным, например при конструировании оптических фильтров на основе аморфного гидрогенизированного углерода, модифицированного медными нанокластерами a-C:H: (Cu).

В настоящей работе исследуется влияние С-Н связей, локализованных вблизи поверхности наночастиц меди на поведение резонанса МФ, называемого иногда локализованным поверхностным плазмонным резонансом. Для предсказания поведения частоты МФ резонанса в новых материалах, содержащих связи С-Н важно получить ответ на вопрос, могут ли нековалентные взаимодействия между дипольными моментами связей С-Н, входящих в матрицу нанокомпозита a-C:H: $\langle Cu \rangle$ влиять на частотный сдвиг резонанса МФ. Кроме того, исследование возможности концентрации протонов вблизи поверхности наночастицы металла перспективно, поскольку предлагаемый модельный объект исследования может быть применен для решения задач прикладной бетавольтаики.

2. Эксперимент

Слои а-С:Н: (Cu), модифицированного медью, наносились на поверхность подложки бромида калия и аморфного кварца с помощью совместного распыления графитовой и медной мишеней с использованием магнетрона постоянного тока в атмосфере аргонводородной плазмы. Технологические режимы подробно описаны в работе [2]. Медные пластины занимали 15% площади канавки эрозии графитовой мишени. Полученные пленки исследовались с использованием метода ИК-спектроскопии: использовался двулучевой прибор Specord 75 IR. Спектры пропускания и отражения измерялись с помощью спектрофотометра Hitachi U3410.

Как следует из рис. 1, наблюдаются полосы поглощения как в случае образца, содержащего медь, так и не содержащего ее. В области растяжения С-Н связей для случая, когда атомы углерода связаны с их окружением sp³ типом гибридизации (пример интерпретации подобного спектра можно найти в работе [3]). Это позволяет констатировать, что водород входит в

Рис. 1. *а*) Разложение на сумму Лоренцевых контуров фрагмента спектра ИК-поглощения аморфного гидрогенизированного углерода в области поглощения колебаниями растяжения С-Н связей в случае, когда углерод связан sp³ связями со скелетом аморфного углерода (образец без меди) *b*) Разложение на сумму Гауссовых контуров фрагмента спектра ИК-поглощения аморфного гидрогенизированного углерода, модифицированного наночастицами меди.

пленку в связанной с углеродом форме. Из разложения спектров на рис. 1 видно, что происходят изменения форм контуров, на которые раскладывается спектр и положения максимумов их частот. Так, в случае образца, не содержащего наночастицы меди сумма Лоренцевых осцилляторов, достаточно точно описывает спектр.

В случае образца а-С:Н: (Си) нам не удалось разложить спектр на сумму Лоренцианов, но применение набора Гауссианов оказалось удачным, как видно из рисунка. Анализ сравнения результатов рис. 1, а и рис. 1, b показывает, что основной вклад в инфракрасное (ИК) поглощение вносят три гауссовых контура в то время как в случае рис. 1, а необходимо учитывать семь лоренцевых контура. Т.е. инкапсуляция нанокластеров меди приводит к существенной модификации ИК спектра. Модификация спектра может проявляться из-за взаимодействия колебаний растяжения связи С-Н, находящихся вблизи наночастиц меди, с электронами этих наночастиц. Напомним, лоренцевыми контурами обычно описывают однородно уширенные спектральные полосы (резонансы), связанные с естественными параметрами гармонического осциллятора (в нашем случае колебания связи С-Н). Гауссовы контуры, напротив, описывают неоднородно уширенные резонансы. Этот тип уширения спектральных линий в нашем случае может быть обусловлен взаимодействием колебаний связей С-Н и осциллятора, наведенного в металле, и статистическим усреднением разных осцилляторов, взаимодействующих с наведенными диполями, например, находящимися на разных расстояниях от поверхности металлического кластера.

На рис. 2 кружками показан обработанный спектр поглощения слоем a-C:H: (Cu) в ближнем инфракрасном, ультрафиолетовом и видимом диапазонах спектра.

Рис. 2. Вклад нанокластеров меди в спектр поглощения а-С:Н: (Cu) показан открытыми кружками. Логарифмическинормальное гауссово разложение представлено красным и темно-зеленым контурами соответственно. Синяя кривая, соединяющая кружки, показывает сумму темно-зеленого и красного контуров. Стрелками отмечены положения максимумов.

Максимальное значение интенсивности полосы поглощения достигается при энергии 1.7 eV. Опытным путем показано, что спектр разбивается на сумму двух логарифмически-нормальных распределений с энергиями максимумов 1.6 и 1.8 eV для распределения, изображенного красным и темно-зеленым цветом, соответственно.

В случае резонанса МФ логарифмически-нормальную разновидность распределения можно связать с флуктуа-

циями размеров и диэлектрических свойств локального окружения наночастиц.

Выделенные полосы поглощения можно связать со сдвинутыми в ИК область спектра резонансами МФ, т. е. с плазменными колебаниями электронов, локализованными в сферических наночастицах меди. Расчет, выполненный в работе [2], дает значение для несдвинутого резонанса МФ значение порядка 2 eV. В последующем изложении будет представлена модель, объясняющая сдвиг.

3. Модель пиннинга электронов и ее обсуждение

Как отмечалось выше, медь значительно модифицирует спектр ИК-поглощения в области 2862-2990 cm⁻ что видно из сравнения рис. 1, а и рис. 1, b. Имея в виду аморфный характер материала и недостаток структурных данных, представляется достаточно сложным восстановить геометрию взаиморасположения концевых связей С-Н по отношению к поверхности наночастицы. Однако можно отметить основные моменты, влияющие на возможность модификации спектров. Для этого обратимся к рис. 3, на котором представлена качественная модель взаимодействия некоторых колебаний С-Н связей с наночастицами в масштабе ближнего порядка. Колебание С-Н связей можно представить, как колебание диполей, которые локализуются вблизи поверхности наночастицы и наводят в ней диполи. Такие диполи представлены на рисунке для двух предельных случаев.

Если в первом случае ось диполя перпендикулярна поверхности наночастицы, то во втором она параллельна ей. В первом случае (рис. 3, a) суммарный дипольный момент пар диполей увеличивается, и соответствующие полосы поглощений становятся интенсивнее. А во втором случае дипольные моменты разнонаправлены, их суммарный момент равен нулю и, следовательно, интенсивности полос поглощения уменьшаются.

Взаимодействие дипольного момента С-Н связи с индуцированным диполем в наночастице меди (рис. 3, *a*) ведет к перераспределению заряда в ней. Положительно заряженный протон С-Н связи, находясь у поверхности наночастицы, притягивает свободные электроны меди к этой поверхности. Это становится причиной образования области с повышенной концентрацией электронов у поверхности и, соответственно, к обеднению электронами объема наночастицы, что приводит к снижению плазменной частоты и красному смещению резонанса МФ.

На рис. 4 приведена качественная модель неоднородного распределения заряда, вызванного присутствием протонов вблизи поверхности наночастицы меди. Область пространства, заполненная протонами связей С-Н, окрашена на рисунке красным цветом. В результате взаимодействия увеличивается концентрация электронов вблизи поверхности наночастицы эта область пространства, занятая локализованными электронами,

Рис. 3. Качественная схема взаимодействия диполей, находящихся вблизи поверхности медной наночастицы. В верхней полуплоскости голубым цветом показан диполь связи С-Н, в нижней оранжевым — диполь сил отражения). Для колебания растяжения с нормально ориентированным дипольными моментами (*a*), ИК-полоса в спектре ИК поглощения возгорается. Полосы для колебаний с параллельными дипольными моментами (*b*) гаснут, т.к. дипольные моменты компенсируют друг друга.

Рис. 4. Качественная модель перераспределения электронов внутри наночастицы меди, окруженной протонами (красная оболочка) при варианте связывания диполей, показанном на рис. 3, *а*. Насыщенным синим цветом показана область с повышенной концентрацией электронов, удерживаемых протонами возле поверхности. Светло-голубым цветом показана область обеднения электронами, расположенная внутри наночастицы.

закрашена темно-синим цветом. За ней следует область, обедненная электронами, которая закрашенная светло-синим цветом.

Устойчивость конфигурации зарядов, изображенных на рис. 4 зависит от температуры, т.к. достаточно высокая температура способна разрушить связь между диполями. Поэтому важно оценить энергию связи двух диполей, изображенных на рис. 3, *а*. Такая оценка энергии связи выполнена в работе [4], для случая протонов, взаимодействующих с массивной медью, и составляет для одной связи величину, превышающую 2 eV/bond для различных кристаллографических направлений. Это значение существенно больше энергии, соответствующей комнатной температуре. Т. е. конфигурация зарядов, схематично показанная на рис. 4 устойчива. Из сказанного следует, что рассмотренную модель можно использовать для оценки влияния пиннинга электронов протонами на частоту резонанса МФ, используя удельную концентрацию поверхностных протонов как параметр.

Расчет концентрации свободных электронов в наночастице меди, окруженной протонами

Выше описана модель, качественно объясняющая эффект пиннинга электронов. Здесь мы количественно оценим это явление.

Для расчета распределения концентрации свободных электронов в наночастице меди $n_e(r)$, воспользуемся выражением из работы [5]:

$$n_e(r) = n_0 \left(1 - \frac{u(r)}{\varepsilon_f^0}\right)^{3/2},$$
 (1)

где $\varepsilon_f^0 = \frac{\hbar^2}{2m} (3\pi^2 n_0)^{2/3}$, n_0 — средняя плотность распределения электронов в массивной меди, m — масса электрона. Потенциальная энергия электрона:

$$u = -e\varphi, \tag{2}$$

где *е* — модуль заряда электрона, *φ* — потенциал. Для *φ* справедливо уравнение Пуассона:

$$\nabla^2 \varphi = -4\pi\rho, \qquad (3)$$

где ∇ — оператор набла, ho — плотность заряда.

В качестве модели рассмотрим равномерно распределенный закрепленный положительный заряд и неравномерно распределенный незакрепленный отрицательный заряд внутри сферы. На поверхности сферы равномерно распределен положительный заряд с концентрацией n_p . Внутри сферы

$$\rho = e(n_0 - n_e) = en_0 \left(1 - \left(1 + \frac{e\varphi(r)}{\varepsilon_f^0}\right)^{3/2}\right).$$

Уравнение (3) внутри частицы будет иметь вид:

$$\nabla^2 \varphi = -4\pi e n_0 \left(1 - \left(1 + \frac{e\varphi(r)}{\varepsilon_f^0} \right)^{3/2} \right). \tag{4}$$

Плотность распределения заряда вне сферы $\rho = 0$, тогда уравнение (3) примет вид:

$$\nabla^2 \varphi = 0. \tag{5}$$

Для поиска решения необходимо задать граничные условия: потенциал и его первая производная непрерывны на поверхности сферической наночастицы (*R* — ее радиус), поле внутри сферы должно быть ограничено, на бесконечности поле равно нулю:

$$\begin{cases} \varphi(R-0) = \varphi(R+0) \\ \frac{d\varphi}{dr} (R-0) - \frac{d\varphi}{dr} (R+0) = -4\pi e n_p \\ \frac{d\varphi}{dr} (0) = 0 \\ \frac{d\varphi}{dr} (\infty) = 0. \end{cases}$$
(6)

Решение уравнений (4), (5), (6) показано на рис. 5 $(\kappa = \frac{n_e}{n_0})$.

5. Оценка влияния пиннинга на оптические свойства

Исходя из расчета распределения электронов внутри частицы (рис. 5) можно сделать вывод о том, что повышенная концентрация локализованных электронов наблюдается вблизи поверхности наночастицы и снижается до равновесного значения при значении радиуса, равном 0.75 nm от центра частицы, т. е. 0.25 от ее края.

Неоднородное распределение электронов создает трудности количественной оценки вклада локализованных электронов в суммарную диэлектрическую функцию. Поэтому мы ограничились оценкой этого вклада

Рис. 5. Распределение электронов в сферической наночастице меди. Диаметр D = 2 nm и поверхностная концентрация $n_p = 6.8$ nm⁻². Синяя пунктирная линия соответствует распределению электронов в кластере меди без его покрытия протонами. Красная кривая показывает нормированную зависимость концентрации электронов от расстояния от цента кластера (соответствующего нулю на рисунке) до его поверхности. Пересечение вертикальной синей кривой с красной показывает точку, концентрация электронов в которой равна таковой для массивной меди.

через изменение плазменной частоты за счет уменьшения общего числа электронов в кластере за счет связывания.

Далее, мы оцениваем поглощающую способность наночастицы, *C*_{ext} [6]:

$$C_{ext} = 4\pi k \varepsilon_m^{1/2} Re(i\alpha) \tag{8}$$

Здесь α , k и ε_m — поляризуемость наночастицы, волновое число и диэлектрическая проницаемость среды, в которой находится наночастица т.е. аморфный гидрогенизированный углерод $\varepsilon_m \approx 4$ [2].

В случае однородной частицы ее поляризуемость имеет вид [6]:

$$\alpha = \frac{\varepsilon - \varepsilon_m}{\varepsilon + 2\varepsilon_m} R^3. \tag{9}$$

Здесь ε — комплексная диэлектрическая проницаемость меди, зависящая от частоты. В соответствии со ссылкой [6] зависимость ε от частоты электромагнитного излучения для массивной меди описывается следующим выражением:

$$\varepsilon = \varepsilon_{\infty} - \frac{\omega_{p0}^2}{\omega(\omega + i\gamma)} \tag{10}$$

Здесь γ — постоянная затухания, i — мнимая единица, ω — частота электромагнитного излучения, ε_{∞} — высокочастотная диэлектрическая проницаемость. Размерный конфайнмент, при переходе от массивного металла к сферической частице диаметра D приводит к замене в (10) γ на γ_{eff} [6]:

$$\gamma_{eff} = \gamma_{\infty} + \frac{2v_f}{D} \tag{11}$$

где $v_{\rm F} = 1.56 \cdot 10^6 \, {\rm m/s}$ — скорость Ферми электронов для меди.

Очевидно, что условие для частоты МФ-резонанса (ω_r) получается из приравнивания нулю действительной части знаменателя выражения (9):

$$\varepsilon_{Re} + 2\varepsilon_m = 0, \tag{12}$$

Здесь ε_{Re} и ε_m — действительная часть диэлектрической функции металлической наночастицы и матрицы, соответственно. Как отмечалось выше, в соответствии с выражением (11) ε_{Re} зависит от частоты, а равенство (12) достигается для резонанса МФ. Обозначим эту частоту как ω_r . Объединяя выражения (9) и (12) имеем формулу, пригодную для расчета ω_r :

$$\omega_r = \sqrt{\frac{\omega_{p0}^2}{\varepsilon_\infty + 2\varepsilon_m} \left(1 - \frac{6n_s}{n_e D}\right) - \gamma_{eff}^2} \qquad (13)$$

Приведем оценку частот резонанса, рассчитанных в соответствии с выражением (13) для разных размеров нанокластеров. Для этого расчета, мы использовали концентрацию свободных электронов меди n_0 , рассчитанную исходя из плазменной частоты объемной меди

Рис. 6. Связь между размером медной наночастицы и резонансными частотами резонанса МФ, рассчитанная с помощью выражения (8). Темно-зелеными и красными прямыми показаны максимумы рисунка 2.

 $\omega_{p0} = 8.0 \,\mathrm{eV}$ [6], $n_0 = 84.9 \,\mathrm{nm}^{-3}$. Так выражение для квадрата плазменной частоты ω_p^2 в наночастице с модифицированной электронной плотностью имеет следующий вид:

$$\omega_p^2 = rac{4\pi ((n_0 - n_s S/V))e^2}{m_e} = \omega_{p0}^2 \left(1 - rac{n_s 3}{n_0 R}\right),$$
 $\omega_{p0} = \sqrt{rac{4\pi n_0 e^2}{m_e}}.$

Здесь R = D/2, S и V — радиус, площадь поверхности наночастицы сферической формы и ее объем, соответственно; $n_p \approx n_s$ — поверхностные концентрации протонов и электронов.

Расчет по формуле (13) с параметрами, приведенными выше, представлен на рис. 6. Из рисунка видно, что резонансная частота 1.6 eV реализуется для наночастиц диаметром 1 nm, а резонансная частота 1.8 eV присуща частицам диаметром 2 nm.

Совместное существование популяций двух типов нанокластеров может быть обусловлено особенностями технологического процесса магнетронного распыления, использованного при росте нанокомпозита. Поскольку различные условия зародышеобразования и роста могут приводить к появлению дискретных распределений по размерам. Можно предположить, что в нашем случае, они способствуют преимущественному формированию двух фракций нанокластеров. Фракцию с размерами 2 nm мы наблюдали на электронно- микроскопических изображениях нанокомпозита в работе [2]. Однако, наночастицы с размером 1 nm не удалось различить, поскольку они могут маскироваться под нанообъекты размером ~ 2 nm, если лежат не в одной плоскости, что приводит к наложению их изображений друг на друга.

6. Выводы

Протоны, присоединенные к углероду связью С-Н способны локализовать электроны нанокластеров меди вблизи поверхности, уменьшить плазменную частоту нанокластера меди, что приводит к сдвигу резонанса МФ в инфракрасную область спектра.

Наблюдаемые экспериментальные зависимости поглощения электромагнитного излучения в спектральной области, где проявляются резонансы Ми-Фрёлиха в нанокомпозите a-C:H: $\langle Cu \rangle$, могут быть объяснены двумя типами нанокластеров меди, отличающимися диаметрами, 1 и 2 nm. Оба нанокластера окружены оболочками протонов связей C-H с поверхностной плотностью зарядов $n_p = 6.8$ nm⁻².

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Tamulevičius, Š. Mekinis, T. Tamulevičius, H.-G. Rubahn. Rep. Prog. Phys. 81, 024501 (2018) https://doi.org/10.1088/1361-6633/aa966f
- [2] I. Istomin, S. Yastrebov, M.R. Singh. Diam. Relat. Mater. 136, 109962 (2023) https://doi.org/10.1016/j.diamond.2023.109962
- [3] A. Grill, V. Patel. Appl. Phys. Lett. 60, 2089 (1992) https://doi.org/10.1063/1.107098
- [4] K. Cao, A. Füchsel, A.W. Kleyn, L.B. Juurlink. Phys. Chem. 20, 22477 (2018) https://doi.org/10.1039/C8CP03386B
- [5] C. Kittel. Introduction to solid state physics (8th ed.), (Wiley, New York, 2005).
- [6] C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particles. (Academic, New York: Wiley, 1981)
- [7] P.B. Johnson, R.W. Christy. Phys. Rev. B 6, 4370 (1972).

Редактор В.В. Емцев